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Abstract— This paper proposes a P300-based BCI speller
called LSC-4Q that takes advantage of steady state visual
evoked potentials (SSVEP) that appear naturally in the brain
as a side effect of the inter-stimulus interval of P300 visual
paradigms. The LSC-4Q speller has a circular layout divided
into quadrants, and symbols flash individually with a given
pseudo-random strategy. Controlling the sequence of the events
such that consecutive flashes alternate between sides or quad-
rants of the speller, we research the possibility of detecting the
SSVEP phase associated with the side or quadrant for which
the user is focusing on the target symbol, without explicitly
incorporating a SSVEP flickering stimulator. The SSVEP phase
is extracted using a statistical spatio-spectral Fisher criterion
beamformer (SSFCB) implemented in the frequency domain.
Results show that SSFCB efficiently extracts phase tags from
the SSVEPs embedded on the visual evoked potentials of
the oddball paradigm. Preliminary results with 4 participants
suggest that it is possible to detect with high accuracy the
side of the screen to which the user is looking, and with
less precision the detection of the quadrant. Main issues are
related to phase variability across sessions. Online results show
that some participants can benefit from the combined P300-
Lateral approach, improving the overall classification when
P300 misclassifications occur.

I. INTRODUCTION

A Brain-computer interface (BCI) provides a control chan-
nel for people with severe motor disabilities, independent
of muscular activity [1]. In severe situations, such as peo-
ple with amyotrophic lateral sclerosis (ALS) in complete
locked-in-state (CLIS), people loose completely the ability
to control movement, including vertical and horizontal eye
movements [2]. In these cases, BCI has to be controlled
without resorting to any muscular activity including ocular
movements [3] [4]. However, CLIS cases are very rare,
and people go through several phases until they reach such
condition. In most cases of severe motor impairment, such
as middle and advanced stages of ALS and other motor-
related neurological conditions most people preserve some
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residual functionality (e.g., ocular movement, facial muscular
activity, speech sounds, head movements, skin sensation).
It is therefore important that BCIs are designed to take
advantage of end-users capabilities available, for example,
by combining multiple biosignal inputs or different neural
mechanisms, under the concept of hybrid BCIs (hBCIs)
[5]. Hybrid BCIs can not only broaden the range of end-
users who can benefit from BCI technology, but also help
improve BCI’s throughput and reliability. Hybrid BCIs have
been proposed in diverse ways, namely, combining elec-
troencephalography (EEG) with multiple biosignals, such
as electromyography and electrooculography, or integrat-
ing different types of stimulation (e.g., visual, auditory,
tactile), or combining different neural mechanisms (e.g.,
P300 event related potentials (ERP), steady state visual
evoked potentials (SSVEP) and event related synchroniza-
tion/desynchronization (ERS/ERD)) [6]. In particular, P300
and SSVEP have been combined to improve communication
transfer rates or as a strategy for asynchronous BCI control
[7] [8] [9]. In P300-SSVEP hBCIs proposed until now, the
SSVEP stimulator is explicitly based on flickering stimuli
working in parallel with the P300 oddball paradigm. Here,
we introduce a novel P300-based BCI system called LSC-4Q
(lateral single character - 4 quadrant) speller, which extends
our previous LSC speller [10] by adding phase detection
of SSVEPs naturally elicited by the P300 visual stimuli.
The original LSC speller is a visual P300-based BCI, in
which symbols flash individually in a circular layout. LSC
was already thoroughly validated with able-bodied and motor
disabled subjects [10], comparing favorably over the standard
row-column speller [11]. It was already used in different
contexts, for example in combination with error related
potentials (ErrPs) to detect and correct errors automatically
[12].

In this paper, without explicitly integrating a SSVEP
stimulator, we take advantage of a side effect of P300 visual
paradigms, which generate a stimulation frequency related
to the inter-stimulus interval of the events, thereby natu-
rally eliciting SSVEPs. Controlling the P300 event sequence
between sides and quadrants of the speller, we investigate
whether it is possible to detect the screen side or even the
quadrant to which the user is gazing the target symbol,
through extraction of SSVEP phase. Phase coded flickering
stimuli is commonly used to increase the transfer rate of
SSVEP-BCIs [13], but here we try to measure the frequency
and phase evoked from random spatial events in an oddball
paradigm. The flashing event strategy of the P300 LSC-
4Q paradigm induces phase shifts on the SSVEP which



Fig. 1. Printscreen of LSC layout. Highlighted letter is the stimulus event.
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Fig. 2. a) Event sequence in LSC paradigm; b) Temporal diagram of LSC
events; c) Event sequence in LSC-4Q paradigm; d) Temporal diagram of
LSC-4Q events.

can be measured by a phase detection algorithm. In a
previous analysis made from datasets obtained in [12] we
concluded that over 30% of P300 miss-detections were from
symbols in different sides and ≈ 60% in different quadrants.
Therefore, the detection of sides or quadrants of the speller
can contribute to improve BCI throughput and reliability. On
the other hand, this paper also aims to show that different
layouts and stimulation strategies of P300 visual paradigms
can be used to evoke other neurophysiological characteristics
that go beyond P300 ERPs.

II. METHODS

A. EEG data Acquisition

The setup of the LSC-4Q BCI consisted of a g.tec
g.USBamp bioamplifier used to record EEG signals from
12 electrodes (Fz, Cz, C3, C4, CPz, Pz, P3, P4, PO7,
PO8, POz and Oz) placed according to the international
extended standard system. The right or left earlobe was used
as reference and the AFz electrode as ground. The EEG
signals were sampled at 256 Hz and filtered using a 1-60
Hz bandpass filter and a 50 Hz notch filter.

B. LSC-4Q paradigm and neurophysiological analysis

1) P300 paradigm: Fig. 1 shows a printscreen of the
layout of the P300 BCI speller, which was introduced in
[10]. The speller was named lateral single character (LSC)
because the symbols flash individually and randomly, but

consecutive flashes always alternate between left and right
sides of the screen (Fig. 2a) with no inter-stimulus interval
(ISI). LSC comprises all the letters of the alphabet and the
’space’ and ’del’ symbols (28 symbols at all). The number of
rounds of each trial (Nrep) is usually adjusted individually
to each participant according to the user’s BCI performance.
The inter-trial interval (ITI) is set to 4 s, giving the user
enough time to shift his/her attention to the next desired
symbol. The overall time for one trial is:

TT = Nrep ×Ns × SOA+ CT + ITI (1)

where Ns = 28 is the number of symbols, SOA is the
stimulus onset asynchrony usually set to 50 or 75ms and
CT = 1s is the time associated with the last flash of the trial.
A new mode was added in which consecutive events alternate
sequentially between the 4 quadrants (Fig. 2c), called LSC-
4Q. The paradigm settings are exactly the same of LSC,
except that flash events alternate between quadrants. The
temporal diagrams of the flashing events of LSC and LSC-
4Q are represented respectively in Fig. 2b and Fig. 2d.

2) SSVEP side effects: Although the ISI is 0, since the
events alternate between the two sides of the screen, the
user sees a virtual TON -TOFF effect (virtual ISI) different
from 0. Associated to the virtual ISIs perceived by the user,
different SSVEPs are expected to be elicited as a side effect
of the P300 paradigm, at the following frequencies:

fSSV EP =


1

TON
, for all events

1
2TON

, for events of the same side
1

4TON
, for events of the same quadrant

(2)
For example, for a highlight time (TON ) of 50 ms, the
expected SSVEP frequency elicited from all events is 20 Hz
(1/0.05), while for side-events is 10 Hz and for quadrant-
events the frequency is 5 Hz. These frequencies are clearly
visible in the frequency spectrum of Fig. 3c obtained from
a representative recorded dataset. When searching for brain
inter-hemispheric differences and new neurophysiological
features, we found out that the 10 Hz signal suffered a phase
shift of 180◦ in opposite EEG channels, as observed in Fig.
3a for channels PO7 and PO8. This led us to check what
was being elicited by left/right events when the user was
gazing targets at left vs. right side. Fig. 3b shows that the
SSVEPs evoked by left events have a phase shift when the
user gazes left vs. right targets. Similarly, this shift can be
observed in 5 Hz SSVEP elicited in LSC-4Q mode, although
not in such a strong way. The plots were obtained from the
average of multiple event epochs (560 left events and 280
quadrant events of a recoded dataset of 2240 events). These
results showed that a phase could be detected associated with
the side or quadrant of the P300 target event. The following
section describes the detection methodology.

C. P300 detection

The P300 detector uses the classification framework pro-
posed in [14]. After preprocessing, the EEG signal is seg-
mented into 1 s epochs, XN×T , where N is the number
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Fig. 3. Average results obtained from a dataset with 2240 epochs,
considering a SOA of 50 ms. a) SSVEP recorded at channels PO7 and PO8
elicited from left events; b) SSVEP recorded at channel PO7 when user is
focusing left or right target; c) Frequency spectrum taking respectively all
events, left events, and quadrant events.

of channels and T is the number of time samples. The
features are extracted using a statistical spatial filter based
on a Fisher criterion beamformer (SF-FCB) that significantly
enhances the P300 signal-to-noise ratio. The EEG epochs
XN×T are projected into Y = W ′pX , where Wp is the
optimal spatial filter obtained from the calibration phase
using target and non-target events, and ′ represents the
transpose operator. Features are then selected and classified
with a Bayes classifier obtained from calibration (see details
in [14]). Figure 4 shows the overall classification pipeline
for P300 and phase detectors.

D. SSVEP-LSC-4Q phase detection

1) Epoch extraction: The SSVEP phase detector takes
the EEG epochs already segmented for the P300 classifier.
For Left/Right detection, the EEG epochs are grouped into
left/right events according to:
• Xll: left event epochs when target is at left;
• Xlr: left event epochs when target is at right;

where l,r superscripts refer to left and right respectively. It
should be noted that the left events are used as the reference
for the location of left and right P300 targets (it is always
assumed that the user is gazing the target symbol). The 4-
quadrant detection is implemented in two steps, left/right
detection and then up/down for the detected side, i.e., 2◦Q
vs 3◦Q and 1◦Q vs 4◦Q. Therefore the events are grouped
into quadrant events, according to:
• X22: 2◦Q event epochs when target is at 2◦Q;
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Fig. 4. Classification pipeline for the three approaches: standard P300,
P300 + side detection, P300 + quadrant detection.

• X23: 2◦Q event epochs when target is at 3◦Q;
• X11: 1◦Q event epochs when target is at 1◦Q;
• X14: 1◦Q event epochs when target is at 4◦Q;

were the superscripts refer to the quadrants. For the left
events the reference is the 2◦Q events and for the right events
the reference is the 1◦Q events. So the classification is always
binary for both LSC and LSC-4Q modes. For each of the
above groups, the average of all available epochs within a
trial is computed as:

X =
1

NreNev

Nrep∑
i=1

Nev∑
j=1

X(i, j), (3)

where Nrep is the number of event repetitions used in the
P300 paradigm (selected according to user performance) and
Nev is the number of left events (14 events) in LSC or
quadrant events (7 events) in LSC-4Q.

2) SSFCB feature extraction: The feature extractor is a
frequency domain version of the statistical SF-FCB called
spatio-spectral Fisher criterion beamformer (SSFCB) which
is applied to the averages obtained in (3). SSFCB first obtains
X̃N×F = DFT{XN×T }, where DFT stands for the Discrete
Fourier Transform and F is the number of frequency bins
(1 Hz resolution). The tilde symbol is used to refer to
the frequency domain. The spatio-spectral projection in the
frequency domain is given by

Ỹ = W̃HX̃.h̃ = W̃HZ̃ (4)



where W̃ is the spatial filter, the superscript H denotes the
Hermitian transpose, and Z̃ represents the spectrally shaped
components in the frequency domain. The spectral filter is
a weighting vector h̃ = [β(1) β(2) · · · β(T ′)], where
the coefficients β are adjusted according to the discriminative
frequency bands. In its simple form, which was used here,
the weights act as a mask where 1 is used for a discriminative
frequency and 0 for a non-discriminative frequency. The
spatial filter W̃ is obtained by maximizing the Rayleigh
quotient

J(W̃ ) =
W̃H S̃bW̃

W̃H S̃wW̃
. (5)

where matrices S̃b and S̃w are respectively the spatial
between-class matrix and the spatial within-class matrix,
computed from two classes (for example, in left/right de-
tection, one class corresponds to left events when the user is
focused on targets on the left and the other class corresponds
to left events when the user is focused on targets on the right).
The matrices are computed using the same expressions used
in the temporal domain (see [14]). The first projection of
the spatio-spectral filter is obtained in the frequency domain
from

ỹ = W̃ (1)′Z̃. (6)

3) Phase identification and classification: Considering
the frequency of the elicited SSVEP as fr, then the phase
shift φs of ỹ(f) is obtained directly in the frequency domain
from

φs = φ(fr) = ∠ỹ(fr) = arctan(
Im{ỹ(fr)}
Re{ỹ(fr)}

). (7)

The detected phases of every P300 round are then classi-
fied with a Bayes classifier. The class is detected using the
maximum a posteriori decision rule

ĉ = argmax{P (C1|φ(fr)), P (C2|φ(fr))} (8)

where P (Ci|φ(fr)) is the a posteriori probability of classes
i ∈ {l, r}, i ∈ {2◦Q, 3◦Q}, i ∈ {1◦Q, 4◦Q}, respectively
for left/right, and for 2◦Q/3◦Q and 1◦Q/4◦Q classifications.
That is, the P300 target is selected from the restricted events
on the side or quadrant detected.

III. EXPERIMENTS AND RESULTS

A. Offline analysis

The system was validated by 4 participants. Each par-
ticipant did a P300 calibration session, where they had to
attend the characters ’FYNLEUP-GWQJCXRH’ (16 char-
acters) which were successively provided at the center of
the screen. The calibration characters were selected to have
an equal number at each quadrant. For each character all
symbols were repeated 5 times (Nrep = 5). During each
calibration session (about 5 min) 2240 epochs were collected
(80 targets, 2160 non-targets, 1120 left and right events, and
560 events for each quadrant). These ground-truth data were
used to build the classifiers for P300, left/right and quadrant
detection. Two datasets were recorded, one for training and
the other for testing.
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Fig. 5. Polar graphs with phases detected for Nrep = 1, discriminating
left/right sides (top), and discriminating 1◦Q/4◦Q 2◦Q/3◦Q quadrants
(bottom).

Applying the procedure described in section II-D, we
obtained the phases detected for Left/Right sides, and the
phases detected for 1◦Q/4◦Q and 2◦Q/3◦Q quadrants. Fig.
5 shows the results for one participant considering Nrep =
1. The phases detected for left/right targets show a clear
phase discrimination of ≈ 180◦. The phases detected for
quadrant discrimination are more disperse and the phase
shift of 180◦ between left quadrants and right quadrants
is not so clear. Taking the two recorded datasets during
calibration, we analyzed the performance and generalization
of the classification methodology. One dataset was used for
training (SSFCB model and Bayesian classifier model) and
the second dataset was used for testing. The classification
accuracy was obtained for Nrep varying from 1 to 5, as
shown in Fig. 7. The results show that the left/right clas-
sification accuracy is 100% for Nrep = 1..5. The quadrant
classification accuracy reaches the maximum of 87% for
Nrep = 4, and is higher than 75% for the remaining Nrep.
The corresponding measured phases for Nrep = 5 were
plotted in Fig. 6 to understand the variability across sessions
and across participants. The first row shows the phases
measured considering the same dataset1 for training and
testing, while the second row shows the phases measured
using dataset1 for training and dataset2 for testing. There is
a difference of the mean phase across participants that can
reach 30◦ and it is observed a phase inversion for participant
P2. The phase difference measured for left and right targets
is high, but is not always 180◦. All participants exhibit a
phase shift between session1 and session2 reaching more



P1 P2 P3 P4

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

 

 

Target at left

Target at right

Train

Dataset1

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

 

 

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

 

 

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

 

 

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

Test

Dataset2

 

 

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

 

 

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

 

 

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

 

 

Fig. 6. Polar graphs with phases measured for left/right discrimination for the 4 participants (P1-P4). Top row shows the phases measured considering
the same dataset (dataset1) for training and testing, while bottom row shows the phases measured considering dataset1 for training and dataset2 for testing.
Phases were measured for Nrep = 5.
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Nrep = 1..5 (for each round of the P300 Paradigm). Results were obtained
offline considering one dataset for training and a different dataset for testing.

than 30◦ for some participants, which may have impact on
the generalization of the classifier. Although not plotted, for
the quadrant detection, it was observed that the measured
phases across sessions have a much higher variability than
for side detection, which explains the worse accuracy in Fig.
7.

B. Online performance

The 4 participants underwent an online experiment. In the
same conditions of the calibration, participants were asked
to spell the 20 character sentence ’OPEN-BCI-CLOUD-
WORLD’, with Nrep = 5. The feedback of the detected sym-
bols was based on the standard P300 speller (without phase
detection). However, the classification algorithms for the hy-

brids P300-lateral and the P300-4Q were also running and the
respective outputs were recorded. The results are displayed
at Table I. Results show that the lateral classification is
≥ 95% for 3 of the participants, but only 75% for participant
P2, which was lower than expected from the offline results.
Quadrant classification was on average 81.8%, which is in
agreement with what was expected from the offline results.
It should be noted that the 4-Quadrant accuracy comes from
the cumulative accuracy of Lateral accuracy and ’2◦Q vs
3◦Q’ or ’1◦Q vs 4◦Q’ accuracies. That is, as it is a two-step
classification, if the detected side is not correct, the quadrant
is necessarily wrong. Comparing the final output of the P300,
P300-Lateral, and P300-4Q detectors we observe that for
participants P1 and P4 the P300 classification was improved
by 15% and 5% respectively using the hybrid P300-Lateral
approach. For participant P3 the P300 accuracy was already
100% with no margin for improvement, but importantly the
P300-Lat kept this performance. For participant P2 the P300-
Lateral accuracy was worse than the one of P300. Overall
the P300-Lat approach improved the P300 detection in 2.5%.
The performance of the P300-4Q approach was always worse
than the P300 classification except for participant P4.

C. Discussion and Conclusion
This study investigated whether it is possible to detect

the side or quadrant of the P300-speller the user is gazing
at (where the target event is located), by controlling the
sequence of flashing events between sides and quadrants
of the paradigm layout. The goal was to detect the phase
of the SSVEP elicited by the ISI side effect of the P300
visual paradigm, without altering the paradigm nor adding



TABLE I
ONLINE ACCURACY FOR LATERAL, 4Q, P300, P300-LATERAL, AND

P300-4Q DETECTION.

Lateral 4Q P300 P300-Lat P300-4Q
P1 95.0% 70.0% 75.0% 90.0% 70.0%
P2 75.00% 75.00% 85.00% 75.00% 75.00%
P3 100.0% 87.5% 100.0% 100.0% 87.5%
P4 100.0% 95.0% 90.0% 95.0% 95.0%
Average 92.50% 81.88% 87.50% 90.00% 81.88%

other forms of stimulation. Detection of phase in SSVEPs
evoked by flickers coded in frequency and phase is currently
a common practice in SSVEP BCIs. Here, however, the
stimuli do not flicker in the same position, but instead in
different spatial random positions (according to the oddball
paradigm). The user is gazing the target event while stimuli
flash around that area. This increases the difficulty in eliciting
a SSVEP and in particular in detecting the associated phase,
when compared to typical flickering stimuli, and therefore is
more challenging.

The general methodological approach and in particular
the SSFCB spatial filter were effective for phase detection.
The offline analysis and results show that there is a clear
phase discrimination between the left and right sides, but
less pronounced between quadrants. By detecting the side
or quadrant efficiently, the P300 target event can be selected
from the smaller restricted number of events of the respective
side or quadrant. An improvement of the overall P300
classification occurs whenever there is a P300 detection error
and the P300 event is the one with the highest score in
the detected side or quadrant. However, if the side or quad-
rants are misclassified, the overall classification can become
worse. The online results showed that for the P300-Lateral
approach, two participants improved the performance, one
kept the performance (100%), and one participant got a
worse performance. These results show that this approach
is effective for almost all participants, but not for all. The
main limitation seems to be related to a shift of the reference
phase across sessions which decreases the generalization of
the classification models. The P300-Quadrant approach was
not effective, which is attributed to the higher variability
of the measured phase. Overall, these preliminary results
are promising and suggest that the P300-Lateral approach
can be used effectively in some participants to improve the
classification performance and reliability of the BCI. To fully
validate the method, more experiments are required with a
larger group, and further analysis is needed to understand
the phase variability across sessions. Other approaches can
be implemented combining the P300 scores with Lateral and
Quadrant scores instead of the simple two-step classification
presented here.

REFERENCES

[1] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and
T. M. Vaughan, “Braincomputer interfaces for communication and
control,” Clin. Neurophys., vol. 113, no. 6, pp. 767 – 791, 2002.

[2] R. E. Bauer G, Gerstenbrand F, “Varieties of the locked-in syndrome,”
J Neurol., vol. 221, no. 2, pp. 77–91, 1979.

[3] S. Barbosa, G. Pires, and U. Nunes, “Toward a reliable gaze-
independent hybrid bci combining visual and natural auditory stimuli,”
J. of Neurosc. Meth., vol. 261, pp. 47 – 61, 2016.

[4] C. Guger, R. Spataro, B. Z. Allison, A. Heilinger, R. Ortner, W. Cho,
and V. La Bella, “Complete locked-in and locked-in patients: Com-
mand following assessment and communication with vibro-tactile
p300 and motor imagery brain-computer interface tools,” Frontiers
in Neuroscience, vol. 11, p. 251, 2017.

[5] G. Mller-Putz, R. Leeb, M. Tangermann, J. Hhne, A. Kbler, F. Cincotti,
D. Mattia, R. Rupp, K. Mller, and J. d. R. Milln, “Towards noninvasive
hybrid braincomputer interfaces: Framework, practice, clinical appli-
cation, and beyond,” Proc of the IEEE, vol. 103, no. 6, pp. 926–943,
June 2015.

[6] S. Sadeghi and A. a. Maleki, “Recent advances in hybrid brain-
computer interface systems: A technological and quantitative review,”
Basic and Clinical Neurosc. J., vol. 9, no. 5, 2018.

[7] M. Wang, I. Daly, B. Z. Allison, J. Jin, Y. Zhang, L. Chen, and
X. Wang, “A new hybrid bci paradigm based on p300 and ssvep,”
J. Neurosc. Meth., vol. 244, pp. 16 – 25, 2015.

[8] E. Yin, T. Zeyl, R. Saab, T. Chau, D. Hu, and Z. Zhou, “A hybrid
braincomputer interface based on the fusion of p300 and ssvep scores,”
IEEE Trans. on Neur. Syst. and Rehab. Eng., vol. 23, no. 4, pp. 693–
701, July 2015.

[9] G. Pfurtscheller, B. Allison, G. Bauernfeind, C. Brunner, T. So-
lis Escalante, R. Scherer, T. Zander, G. Mueller-Putz, C. Neuper, and
N. Birbaumer, “The hybrid bci,” Frontiers in Neuroscience, vol. 4,
p. 3, 2010.

[10] G. Pires, U. Nunes, and M. Castelo-Branco, “Comparison of a row-
column speller vs a novel lateral single-character speller: assessment
of bci for severe motor disabled patients,” Clin. Neurophys., vol. 123,
no. 6, pp. 1168–1181, 2012.

[11] L. A. Farwell and E. Donchin, “Talking off the top of your head:
toward a mental prosthesis utilizing event-related brain potentials,”
Electroenceph. and Clin. Neurophys., vol. 70, no. 6, pp. 510–523,
1988.

[12] A. Cruz, G. Pires, and U. J. Nunes, “Double ErrP Detection for
Automatic Error Correction in an ERP-Based BCI Speller,” IEEE
Trans. on Neur. Syst. and Rehab. Eng., vol. 26, no. 1, pp. 26–36,
2018.

[13] C. Jia, X. Gao, B. Hong, and S. Gao, “Frequency and phase mixed
coding in ssvep-based brain–computer interface,” IEEE Trans. on
Biomed. Eng., vol. 58, no. 1, pp. 200–206, Jan 2011.

[14] G. Pires, U. Nunes, and M. Castelo-Branco, “Statistical spatial filtering
for a P300-based BCI: Tests in able-bodied, and patients with cerebral
palsy and amyotrophic lateral sclerosis,” J. of Neurosc. Meth., vol. 195,
no. 2, pp. 270–281, 2011.


