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Abstract
Patients in a completely locked-in state (CLIS) lose the ability to
control all voluntary muscles, including eye-movements. Although
they remain aware of their surrounding environment, they are un-
able to communicate. Brain-computer interfaces (BCIs) offer the
last resort for communication by using brain signals to establish
a direct channel between the brain and an external device such
as a computer. However, achieving effective BCI communication
with CLIS patients has proven very challenging. In a previous study,
we conducted experiments over ten months with a CLIS patient
showing significant variability in BCI performance over sessions.
This variability can stem frommultiple factors including fluctuating
levels of arousal, consciousness and vigilance, which are difficult to
directly assess in the patient. In this study, using the data collected
over the ten months, divided into good and poor performance ses-
sions/epochs, we search for neurophysiological biomarkers that
could correlate with the BCI performance variability. Several fre-
quency domain metrics are tested, such as power spectral density
(PSD), the power law exponent (PLE), the delta-alpha ratio (DAR),
and the power ratio index (PRI). Results indicate statistical differ-
ences between the two conditions (good vs poor BCI performance)
in the PLE index (p<0.05 in the Wilcoxon rank sum test). Addition-
ally, exploratory tests with a convolutional neural network, EEGNet,
showed the potential to discriminate good and poor performance
with a balanced accuracy of 84.1%. The overall results are relevant
for determining the optimal times for a patient to use BCI, thereby
enhancing communication efficacy.
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1 Introduction
Patients in the completely locked-in state (CLIS), either due to stroke
or neurodegenerative diseases such as amyotrophic lateral sclerosis
(ALS), are unable to volitionally control their movements. While
patients in late stages of ALS including those in locked-in state (LIS)
are still able to use eye tracking technology to communicate, they
lose this ability when entering CLIS. Brain-computer interfaces
(BCIs) attempt to bypass the usual neuronal motor pathways by
interpreting brain signals acquired through methods such as elec-
troencephalography (EEG) or intracortical implants, thereby creat-
ing an alternative communication system via a computer. BCIs have
been applied to patients in CLIS; however, a continuous, reliable
communication channel for these patients is yet to be established
(see [4, 12] as examples of moderate success).

Martens et al [11] suggest that patients in CLIS may suffer from
declining awareness and have episodes of low arousal. These alter-
ations could be the cause of the lack of BCI control by this clinical
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population. Wu et al [16] performed a multiscale approach anal-
ysis of consciousness in a CLIS patient. By applying a multiscale
sample entropy, multiscale permutation entropy, and multiscale
Poincaré plots to electrocorticogram signals, the authors showed
the possibility of correctly identifying periods of consciousness.
Other studies show the altered and fluctuating levels of arousal and
their implications for the difficulty in establishing communication
with CLIS patients [1, 17].

In our previous study [2], a patient in CLIS was followed over a
period of ten months conducting 31 sessions. During this period,
nine BCI variants were tested in an attempt to establish communi-
cation with the patient. The BCI performance showed significant
variability over sessions even when the same variant of the BCI
was used, and a great variability of responses to stimuli within the
same session. This led us to conclude that BCI performance has
been greatly affected by patient’s mental state possibly related to
attention and arousal at the time of operating the BCI.

The current study aims to assess whether it is possible to iden-
tify neurophysiological biomarkers that can be correlated to BCI
performance. To do this, a frequency analysis was conducted, us-
ing quantitative EEG metrics that may characterize altered EEG
rhythms related to attention and arousal [14, 16] during sessions
where BCI performance was worse. Additionally, a convolutional
neural network, EEGNet, was used in an agnostic manner, enabling
the model to independently identify patterns and features. This
approach was used to assess the feasibility of predicting good vs
poor performance.

2 Methods
2.1 Participants and recorded datasets
The analysis performed in this study uses data from our previous
study [2], which involved testing nine BCI variants with different
visual, audio and hybrid visuo-auditory stimuli on a single CLIS
patient over a period of ten months. The participant was a 54-year-
old female CLIS patient with ALS, with a functional rating scale-
revised (ALSFRS-R) score of 1. In the initial experiments, the patient
had no eyelid movement control nor vertical movement control,
possessing only a slight horizontal eye movement which she used
to communicate ‘Yes’ responses. She lost this remaining ability
a couple of months after the initial experiments. For comparison,
three of the BCIs were also tested by a control group of 5 able-bodied
participants. For detailed information, see [2].

The EEG data was acquired with a 16-channel g.USBamp acquisi-
tion device (g.tec medical engineering GmbH, Schiedlberg, Austria)
at a sampling rate of 256 Hz from 16 g.Ladybird electrodes (Fz, Cz,
C3, C4, CPz, Pz, P3, P4, PO7, PO8, POz, Oz, FPz, FCz, FC1, and FC2)
placed according to the extended international 10-20 system. The
signals were filtered by a band-pass filter between 0.1 and 30 Hz and
a notch filter at 50 Hz to eliminate the powerline interference. Data
were acquired, processed, and classified in real-time in a Highspeed
online processing Simulink framework.

For the current study, the recorded calibration datasets were
separated into two datasets: datasets related to good BCI perfor-
mance, defined as those which had an online classification accuracy
of 70% or above, and poor performance datasets, which had an
online classification accuracy of less than 70%. Overall, there were

7 BCI sessions with good performance and 18 sessions with poor
BCI performance. The EEG data were further filtered using a 4th-
order Butterworth high-pass filter, with 0.5 Hz cut-off frequency as
artifact components were found below this frequency.

2.2 BCI paradigms
The BCI paradigms consisted of visual, audio and hybrid interfaces
based on the P300 event-related potential. Each interface consisted
of 7 Portuguese words that related to the patient needs (see Figure 1,
where the word ‘STOP’ is overlapped by the face stimulus). The
visual component suffered iterative designs until a grid layout (two
lines, four columns) was achieved. Each cell of this grid had one of
the Portuguese words written. The stimulus to select the word was
either a male face, as shown in Figure 1, overlapping the word or
a face of a family member of the patient. The audio components
were the spoken version of the 7 Portuguese words 1. Although
having 7-symbols, only Yes and No could be selected, which was
made to improve BCI communication feasibility. See details in [2].

Figure 1: Visual component of the standard face interface
tested with the patient and the control group. Participants
were instructed to mentally count the number of times the
face blinked over the desired word. During the hybrid inter-
face, the words were presented to the participants via the
computer screen (visual component) and earphones (audio
component).

2.3 Neurophysiological metrics
The neurophysiological analysis focused on frequency features
where it is expected to contain information related to arousal, such
as the delta-alpha ratio (DAR), and the power ratio index (PRI),
which indicate the relationship between the slow and fast frequen-
cies and are commonly used in outcome prognosis prediction in
hemorrhagic stroke patients [7–9]. Moreover, the power-law ex-
ponent (PLE) was included to reflect the non-periodic broadband
nature of EEG signals, which has been used as a biomarker to detect
levels of consciousness [5, 17]. These metrics were applied to the

1See demonstrative videos at https://home.isr.uc.pt/~gpires/videos/BCI4ALL/videos.
html
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continuous EEG signal of the recorded datasets for the two condi-
tions: good vs poor BCI performance. The first step was applying
the Welch method to the continuous EEG signal to obtain a reliable
power spectral density (PSD) estimation. The obtained PSD was
then used for computing the subsequent metrics presented in this
study.

The Welch method was applied by segmenting the time-series in
M Hanning windows of N = 256 time-samples of length, with a 50%
overlap. The number of points for the FFT (NFFT) was 256 (the same
of N ) and the sampling rate was 256 Hz, leading to a frequency
resolution of 1 Hz. The PSD of an EEG signal x is estimated from
the average M modified periodograms, 𝑥𝑚 :

𝑃𝑆𝐷 (𝑥) ≡ 𝑆𝑥 (𝑘) =
1
𝑀

𝑀−1∑︁
𝑚=0

𝑃𝑥𝑚 (𝑘), 𝑘 = 1..𝑁 𝐹𝐹𝑇 − 1 (1)

with
𝑃𝑥𝑚 (𝑘) = 1

𝑁𝐹𝐹𝑇
|𝐹𝐹𝑇 (𝑥𝑚) |2 (2)

From visual inspection of the resulting spectra, noisy channels were
removed from the data to avoid biasing the analysis. The power
spectral densities were further divided into delta (1-4 Hz), theta (4-8
Hz), alpha (8-13 Hz), and beta (13-30 Hz) frequency bands to com-
pute the delta-alpha ratio (DAR) and the power ratio index (PRI).
The power law exponent (PLE) was computed using the PSD data
between 1 and 30 Hz. These metrics are presented in the following
sections. The differences between good and poor performance con-
ditions were then statistically evaluated by applying the Wilcoxon
rank sum test.

2.3.1 Power law exponent. The power law exponent (PLE) also
known as the spectral exponent [6] is a measure of the variation
of the power spectrum across frequencies. It is known that the
aperiodic brain activity follows a distribution given by 1/𝑓 𝛽 , where
𝛽 is a characteristic parameter of brain activity. This parameter is
easily calculated from the slope of the PSD when represented in
log-log space. The spectral exponent (𝛽) is obtained as follows:

𝑙𝑜𝑔(𝑃𝑆𝐷 (𝑓 )) = 𝑙𝑜𝑔( 1
𝑓 𝛽

) = −𝛽𝑙𝑜𝑔(𝑓 ) (3)

𝛽 = − 𝑙𝑜𝑔(𝑃𝑆𝐷 (𝑓 ))
𝑙𝑜𝑔(𝑓 ) (4)

The 𝛽-PLE is obtained by applying a linear least squares regression
to the PSDs of the EEG data. This 𝛽-PLE provides the slope of the
PSD and helps interpret the overall PSD behavior, as it is computed
from the entire EEG frequency range.

2.3.2 Delta/alpha ratio. The delta/alpha ratio (DAR) [7] is used
to assess the degree of EEG slowing. DAR is known to decrease
in elderly population and people with neurological disorders. It is
calculated from:

𝐷𝐴𝑅 =
𝑟𝛿

𝑟𝛼
(5)

where r𝛿 is the relative power of the delta band, obtained by dividing
the average power in the delta frequency band by the average power
between 1 and 30 Hz, and r𝛼 is the relative power of the alpha band,
obtained by dividing the average power in the alpha frequency
band by the average power between 1 and 30 Hz.

2.3.3 Power ratio index. The power ratio index (PRI) [3] (also
named as (delta + theta)/(alpha + beta), DTABR) evaluates the ratio
between slow and fast EEG waves following the expression:

𝑃𝑅𝐼 =
𝑟𝛿 + 𝑟𝜃
𝑟𝛼 + 𝑟𝛽 (6)

with r𝛿 , r𝜃 , r𝛼 , r𝛽 being the relative power between the differ-
ent frequency bands, obtained by dividing the frequency band’s
absolute power by the total power (1 to 30 Hz).

2.4 Automatic Prediction of BCI Performance
with EEGNet

To investigate the feasibility of automatically predicting patient
BCI performance, we employed EEGNet [10], a well-established
convolutional neural network (CNN) designed for EEG classifica-
tion. EEGNet is specifically structured to extract both temporal and
spatial features from EEG data, consistent with the conventional
pipeline for EEG classification [13]. The data is input as raw data
after normalization to zero mean and standard deviation of 1 (z-
score). EEGNet was used without prior assumptions about which
specific features might be relevant for predicting BCI performance.
Instead, EEGNet was ‘allowed’ to identify patterns and features on
its own, without bias towards any particular set of features.

Using the same datasets used for neurophysiological analysis,
categorized into good BCI performance and poor BCI performance,
the data from non-target events was selected, excluding P300 target
events to ensure that predictions were influenced solely by ongoing
EEG activity. In total, the good performance data consisted of 4536
non-target epochs, while the poor performance data comprised
14904 non-target epochs. Each EEG epoch had dimensions of 𝑁𝑐ℎ ×
𝑇𝑠𝑎𝑚𝑝 , where 𝑁𝑐ℎ represents the number of EEG channels (16) and
𝑇𝑠𝑎𝑚𝑝 denotes the number of samples per EEG epoch (256 samples,
corresponding to one second).

3 Results
Twenty-five datasets (each one corresponding to one session) from
the CLIS patient were analyzed. Seven datasets correspond to the
good performance condition and the remaining eighteen corre-
spond to the poor performance condition. For the control group
(15 datasets, three from each participant), there was no division
between good and poor performance since all the sessions with
healthy participants had online classification accuracies above 70%
(online averages were 88.0%, 92.0%, 98.0%, for the three tested BCI
variants). Power spectral density analysis, power law exponent
analysis, delta-alpha ratio and power ratio index analysis were
performed.

3.1 Neurophysiological comparison between
good and poor performance

In this section, the different neurophysiological metrics proposed
in the methods’ section were analyzed. The results for the good
performance condition (sessions with online classification accu-
racy above 70%) were compared with the results from the poor
performance condition.
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(a) (b)

Figure 2: Power spectral density of the CLIS patient obtained from electrode (a) Fz, and (b) Cz. The stars * indicate the frequency
ranges where statistically significant differences between good and poor performance conditions were found (p<0.05 in the
Wilcoxon sum rank test).

3.1.1 PSD comparison. The Welch PSD was obtained for all chan-
nels and sessions. The results from channels Fz and Cz are repre-
sented in Figure 2a and 2b, respectively. There is a peak in power
around 7 Hz for all channels. Channel Fz shows statistically signifi-
cant differences between the two conditions in the theta and beta
bands (p<0.05 in the Wilcoxon rank sum test). In PO7, a statistical
difference is found only in the theta band. Channels C3, CPz, Cz,
FC1, FPz, Oz, P4, and POz, presented statistical differences in the
beta band. No statistically significant differences were found in the
remaining channels.

3.1.2 Power band comparison. The PSDs obtained for both good
and poor BCI performances were divided into the delta, theta, al-
pha, and beta frequency bands. The values within each band were
averaged to obtain the average power band. Figure 3 shows the
average power band for the two conditions at electrodes in the
central region (C3, C4, CPz, and Cz). Our analysis did not reveal
statistically significant differences between the good and poor per-
formance groups for any combination of channel-frequency band
(p<0.05 in the Wilcoxon rank sum test), although a tendency to-
wards higher average power in central electrodes for the good
performance condition can be observed in Figure 3.

3.1.3 PLE comparison. The 𝛽-PLE was calculated for each channel.
The distribution of PLE values was evaluated for good and poor
performance, first for each individual channel and then by com-
bining the values from all electrodes. The distribution results for
all channels are presented in Figure 4a. The median 𝛽-PLE values
were 1.74 for good performance and 1.65 respectively poor perfor-
mance. Statistically significant differences were found between the
two conditions when considering the combination of all electrodes.
When evaluating channels individually, the median values of PLE
for the good performance condition were higher than for the poor
performance, but these channel-by-channel differences were not
statistically significant.

3.1.4 DAR comparison. Similarly to the previous approach, the
DAR was computed first for each channel and then across all chan-
nels. The median DAR value for the good performance group con-
sidering all channels was 2.99, whilst the median value for the poor
performance group was 3.12, although no statistically significant
differences were found between the two conditions (p<0.05 in the
Wilcoxon rank sum test). The results are depicted in Figure 4b.
The channel-by-channel approach also did not show significant
differences between the two conditions.

3.1.5 PRI comparison. The comparison between good and poor
performance conditions was computed for each individual channel
and then across all channels. The results are presented in Figure 4c.
The median value of the PRI for the good performance and poor
performance were respectively 4.37 and 4.08, yet no statistical sig-
nificances were found.

3.2 Neurophysiological comparison between
patient and control group

For the neurophysiological comparison between patient and con-
trol group, the patient’s good and poor performance data were
combined and then compared to the control group’s data (all good
performance). The results are displayed in Figure 5. We found that
the PSD was higher in the control group, with statistical differences
for all frequency bands except for the alpha band (p<0.05 in the
Wilcoxon rank sum test). The 𝛽-PLE was lower in the control group
than in CLIS, with statistically significant differences in channels
C3, C4, Cz, FC1, FC2, FCz, Fz, and P3 (p<0.05 in the Wilcoxon rank
sum test), indicating a steeper slope of the 1/𝑓 𝛽 , plot in the log-log
space for the CLIS data. The DAR is lower in the CLIS patient across
all channels, with significant differences found in channels CPz, Cz,
FC1, FC2, FCz, FPz, Fz, P3, P4, PO8, and Pz (p<0.05 in the Wilcoxon
rank sum test). This result aligns with the PSD analysis, where a
decrease in delta band power was identified, while the alpha power
remained similar to that of healthy participants. Lastly, the PRI was
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(a) (b)

(c) (d)

Figure 3: Band powers of the CLIS patient obtained at the central region (in electrodes C3, C4, CPz, Cz) for the (a) delta, (b)
theta, (c) alpha, and (d) beta bands. No statistical differences were found between the good performance group and the poor
performance group (p<0.05 in the Wilcoxon sum rank test).

also lower in the CLIS patient across all channels, with significant
statistical differences being found in channels Cz, FC1, FCz, FPz,
and Fz (p<0.05 in the Wilcoxon rank sum test). From these results,
it can be inferred that most of the differences between the control
group and the CLIS patient occur in the frontal and central brain
regions.

3.3 EEGNet Prediction Results
EEGNet was used to investigate the feasibility of automatically pre-
dicting patient BCI performance by discriminating between good
and poor performance. The dataset, consisting of 4536 samples
for good performance and 14904 samples for bad performance, as
described in Section 2.4, was randomly split into training (50%),
validation (25%) and testing (25%) sets. EEGNet was trained on the
training data and validated on validation data, and finally tested on
unseen testing data. The model was initially trained using single
EEG epochs (𝑁𝑒𝑝 = 1). Subsequently, these results were compared
with those obtained from combining multiple EEG epochs, specifi-
cally 3, 6 and 54 epochs. The combination involved concatenating

the epochs in the time dimension. For 6 epochs, this was equivalent
to a complete trial (as the BCI paradigm includes 7 symbols: 1 target
and 6 non-targets), and 54 epochs correspond to a full trial of 9
repetitions (9 × 6), which were used during online operation and
calibration. Due to the class imbalance, the results are reported in
terms of balanced accuracy, precision, recall and F1 scores (see Ta-
ble 1). The best balanced-accuracy result was 84.1% with a precision
of 93.4% for one EEG epoch. EEGNet achieved worse results for a
larger number of concatenated epochs indicating difficulty in han-
dling the high input dimension. For example, for the concatenation
of 54 epochs, the EEG input dimension was 16 × 13824 where 13824
corresponds to 54 × 256 time samples. The models were trained on
an NVIDIA GeForce RTX 3060, with CUDA 11.2 and cuDNN 8.1.0,
using Tensorflow and the Keras API.

4 Discussion
In this study, we analyzed data recorded from a CLIS patient while
controlling a BCI over a period of 10 months. Given the significant
variability of BCI performance across sessions and within sessions,
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(a) (b)

(c)

Figure 4: CLIS patient distributions for (a) PLE, (b) DAR, and (c) PRI. Statistically significant differences between good and poor
performance conditions were found for PLE combining all channels (p<0.05 in the Wilcoxon rank sum test).

Table 1: EEGNet results for automatically predicting good vs poor BCI performance with different number of EEG epochs (𝑁𝑒𝑝 ).

EEG epochs (𝑁𝑒𝑝 ) Accuracy (%) Balanced Accuracy (%) Precision (%) Recall (%) F1 (%)

1 87.1 84.1 93.4 89.6 91.5
3 86.5 79.6 89.3 93.3 91.3
6 (1 round) 85.6 68.0 85.0 99.1 91.5
54 (1 trial) 80.0 75.1 86.2 86.2 86.2

we aimed to identify neurophysiological biomarkers correlated with
BCI performance. Our results indicate that the PLE correlates the
BCI performance outcomes, while the DAR and the PRI do not sig-
nificantly change between poor and good performance conditions.
We also compared the patient’s EEG data with that of a healthy
control group. It was observed that the patient’s EEG PSDs were
lower in all frequency bands except for the alpha band. The beta
PLEwas increased, while the DAR and PRI were lower in the patient
compared to the control group.

The 𝛽-PLE was higher for the CLIS patient than for the healthy
control group, which agrees with findings from [17]. That study also
demonstrated higher 𝛽-PLE values during deep sleep compared to
wakefulness. However, our results showed a lower 𝛽-PLE for poor
BCI performance, contradicting the initial hypothesis that poor BCI
performance could be related to lower vigilance and awareness
levels. This may indicate that the patient was in a wakeful state. It
is noteworthy that the analysis in [17] was conducted on resting
state data, while ours was conducted with data collected during BCI
operation, making the analyses not fully comparable. Overall, the
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(a) (b)

(c) (d)

Figure 5: Control group vs CLIS patient analysis in channel Cz. a) Power spectral densities for the different sessions in dotted line
and average for each group in continuous line, with statistical differences for each frequency bin signaled with *. b) Distribution
of the PLE values calculated in each session. c) Distribution of DAR values calculated in each session. d) Distribution of PRI
values calculated in each session.

𝛽-PLE has proven to be a versatile metric that allows a global view
of the PSD’s behavior. For instance, an increase in power at slower
frequencies is not mandatorily associated with a higher value of
PLE, due to its dependence of the full frequency spectrum, with
intermediate and higher frequencies being able to attenuate the
slope associated with the 𝛽-PLE, reducing its value. EEG studies
have shown EEG power decrease in CLIS patients across all fre-
quency bands [14]. Yet, our study only confirms decreased power in
the delta, theta and beta frequency bands, with alpha band power
showing no statistical differences between the CLIS patient and the
healthy control group. Again, these differences may be related to
the fact that the mentioned study was conducted on resting-state
EEG data, whereas our study was conducted on task-based BCI
data, limiting direct comparison between studies.

Although the DAR and the PRI are not usually applied in CLIS
patients –they are more commonly used in stroke patients as a
prognostic tool [7, 9] – these metrics simply relate the different

power bands, quantifying the degree of EEG slowing. There was
no evidence of statistical differences in DAR and PRI between poor
and good performance conditions for the CLIS patient. However,
there was a significant difference in these metrics when compared
to the healthy control group, indicating a lower power of the delta
band for the patient.

The application of EEGNet to automatically predict good vs poor
performance yielded promising results. With a balanced accuracy
of 84.1% and a precision of 93.4%, the classifier effectively distin-
guishes between the two conditions, demonstrating high certainty
in predicting good BCI performance. While these results are en-
couraging as they can be used to enhance real-time BCI operation,
and could be used to complement the neurophysiological analysis,
they should be approached with caution and further evaluation in
terms of interpretability and online application is necessary.

The study was exploratory but provided insightful information
that encourages us to extend it. The study was conducted with
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a single CLIS patient and therefore cannot be generalized to the
CLIS population. Future studies should include more patients, and
explore other metrics, such as the Lempel-Ziv complexity [15, 17],
or metrics based on functional connectivity analysis between the
different brain regions during the BCI training task. Future analysis
should also include data analysis within sessions to assess temporal
fluctuation of neurophysiological states.

5 Conclusion
This exploratory study showed that 𝛽-PLE correlates with BCI per-
formance in data acquired from one CLIS patient. It also revealed
differences in the PSD of the CLIS patient compared to the healthy
control group. Future work should aim to include more CLIS pa-
tients to generalize these findings. Additionally, exploring other
metrics, such as dynamic functional connectivity, or Lempel-Ziv
complexity, could provide insight into predicting BCI performance.
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