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Abstract : The ability of an intelligent system to recognize the user’s emotional and mental states is of considerable 

interest  for human-robot interaction and human-machine interfaces. This paper describes an automatic 

recognizer of the facial expression around the eyes and forehead based on electrooculographic (EOG) 

signals. Six movements of the eyes, namely, up, down, right, left , blink and frown, are detected and 

reproduced in an avatar, aiming to analyze how they can contribute for the characterization of facial 

expression. The recognition algorithm extracts time and frequency domain features from EOG, which are 

then classified in real-time by a multiclass LDA classifier. The offline and online classification results 

showed a sensitivity around 92% and 85%, respectively. 

1 INTRODUCTION 

Emotion is a complex process that characterizes 

the human feeling and it is associated with a specific 
pattern of physiological activity (Schacter, 2009). It 

is fundamental in human behaviour, since it has 
influence in the personality, disposition, motivation 
and interaction between people. Emotion can be 

expressed through:  facial expressions such as 
surprise, fear, disgust, anger, happiness and sadness; 
the sound of the voice; the body posture and the 

arousal of the nervous system, for example, rapid 
heartbeat and breathing and muscle tension (Ekman 

and Friesen, 1975). Machine emotional intelligence, 
i.e., the ability of an intelligent system to recognize 
the user’s emotional state and interact accordingly, 

is an interesting aspect that can improve the human-
machine interaction. This topic has received 
increasing attention by the research community. 

Ekman and Friesen proposed an universal facial 
expression which is independent to human cultures 

and origins. The first computer-based recognition 
system of facial expression appeared later in 1990s 
(Mase, 1991; Terzopoulus and Waters, 1993). Most 

of these studies classify facial expression or vocal 
emotion based on a single data modality, such as 

static image or speech and video sequences (Black 
and Yacoob, 1997; Bartlett et al., 1999; Nwe et al., 
2001; Cohen et al., 2003; Buenaposada et al., 2008; 

Verma and Singh, 2011). Bimodal approaches, 
combining the two modalities, image and speech, 

were also proposed in (Huang et al., 1998; De Silva 
and Ng, 2000; Emerich et al., 2009). Recognition of 
hand gestures, body pose and body motion can 

improve the robustness of emotion recognition 
(Busso et al., 2004; Castellano et al., 2008; Metri et 
al, 2011).  

Image-based recognition of facial expressions is 
very sensitive to illumination, image quality, 

human's position and movements. Approaches based 
on biosignals such as electromyography (EMG) and 
electroencephalography (EEG) have been proposed 

recently. In (Hamedi et al, 2011), a method based on 
surface EMG (sEMG) is used to recognize five 
different facial gestures (rest, smile, frown, rage, and 

gesturing ‘notch’ by pulling up the eyebrows). In 
(Koelstra and Patras, 2013) a multi-modal approach 

combining facial expressions, recorded by a frontal 
camera, with EEG signals was proposed for the 
generation of affective tags. Electrooculography 

(EOG) can also be used for detection of eye 
movements, providing useful information to 
characterize facial expressions. Although the EOG is 



 

used in a variety of applications including clinical 
and human machine interfaces (Barea et al., 2002; 

Shayegh and Erfanian, 2006; Duchowski, 2007; 
Banerjee et al., 2013), its use in emotion recognition 
has been up to now not very significant. 

Electrocardiography (ECG), galvanic skin response 
(GSR) are some other sensors useful to characterize 

emotion (Monajati et al., 2012; Kurniawan et al., 
2013). Biosignals provide proprioceptive 
information that is impossible to detect with video/ 

speech/gesture, and therefore are a good 
complement to these sensing systems. Moreover, 
biosignal acquisition systems are affordable and can 

measure simultaneously several types of biosignals. 
Despite all these advantages, current biosignal 

electrodes are still somehow intrusive, 
uncomfortable, unaesthetic and difficult to setup, 
which justifies their low widespread use. Yet, new 

wearable devices with dry electrodes are emerging 
(Barea et al., 2011).  

This paper is focused on the detection of EOG 

signals to recognize facial expressions from the eyes 
and forehead region. The work herein described is 

part of a system to detect discrete emotional/mental 
states (Figure 1), which integrates EEG/EOG/ EMG 
and GSR signals, for human-machine 

interface/interaction purposes. The system will be 
used to adapt robot behaviour according to human 
emotional/mental state. In particular, the EOG 

detector recognizes the movements up, down, right, 
left, blink and frown, which are then reproduced in 

an Avatar. Most of the researches related with the 
eye’s movement do not analyze frown movements. 
We introduce it here since it brings information for 

detecting anger or surprise.  

2 METHODOLOGY  

Figure 2 shows a block diagram of the proposed 
online classification system: 1) the raw EOG signals 

from vertical and horizontal channels are filtered in 
the band of interest; then 2) a sliding window is used  

Figure 1: Overview of the system to detect discrete human  
emotion/mental states for human-robot  
interface/interaction.  

to automatically detect the onset of a movement; 3) 
features are extracted; and finally 4) features are 

classified in up, down, right, left, blink or frown. A 
multiclass linear discriminant analysis (LDA) is  
used to classify the 6 movements.  

2.1 Data Acquisition 

EOG measures the potential difference between 
the cornea and the retina which varies from 0.4 to 1 
mV changing with eye’s orientation (Malmivuo and 

Plonsey, 1995). EOG signals can be used to measure 
vertical and horizontal eye movements by placing 

the electrodes in specific positions (see Figure 3). 
Four electrodes were mounted in a bipolar 
configuration: left and right electrodes in the outer 

canthus to detect horizontal movements (EOGh) and 
below and above the eye to measure vertical 
movements (EOGv). EOG signals were recorded 

with a g.MOBIlab bioamplifier, at a sampling rate of 
256 Hz.  

Five healthy subjects with ages between 23 and 
28 years old performed a training session which 
consisted on the repetition of the six movements. 

Participants seated in front of a computer, and 
followed the movements of a moving ball that 
moved in four directions: right, left, up and down. 
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Figure 2: Algorithm structure of the proposed EOG online detector. 
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The remaining movements were instructed by 

messages displayed at the screen, namely "frown 
forehead” and "blink". Each movement was 
performed during 2 seconds with a rest interval of 2 

seconds. A full sequence of movements is completed 
in 24 seconds. A training dataset containing 40 
repetitions of the same movement (40x6 data 

segments), was used to train the classifier for online 
operation. The computational time for obtaining the 

classification models is less than 10 seconds   

2.2 Pre-processing and Onset 
Movement Detection 

EOG signals are often affected by noise coming 
from the electrode-skin contact, muscular artifacts 

and powerline. To reduce these interferences, EOG 

signals were filtered in the band of interest using a 

notch filter at 50 Hz and a 4th-order Butterworth 
band-pass filter with lower cutoff frequency of 0.2 
Hz and a higher cutoff frequency of 30 Hz. While in 

the training session, the user is instructed to perform 
a specific movement, during the free online 
operation, the onset of each movement must be 

automatically detected before being class ified. This 
is achieved by applying a sliding window approach, 

dividing the EOG signal in non-overlapped 
segments of 1-second. Each segment is sampled 
yielding a data vector 𝑋 = 𝑋1⋃ 𝑋2 … ⋃ 𝑋8 

composed of eight 𝑋𝑗 subintervals, each with 32 

samples (Figure 4). To adjust its position to capture 
the entire movement, the absolute maximums are 

computed for each subinterval. If the maximum 
value of a subinterval (vertical and horizontal 

 
                                                 (a)                                                                                   (b)  

Figure 3: a) Setup for data acquisition using the g.MOBIlab + system with vertical channel (Ch V+/-) and horizontal 
channel (Ch H +/-). b) Picture of experimental setup with: (1) electrodes (2) IMU (3) avatar, (4) g.MOBIlab +.  

 

Figure 4: Sliding window to detect up movement  (vertical EOG signals). 

 

 



 

channels) exceeds a given threshold (adjusted after 

the training session of each individual) and it is more 
than the other subinterval, the center of the window 

is shifted to this subinterval. The rules to detect a 
movement (Mov) are formally presented below.  

 

𝑀𝑜𝑣 = {
𝑦𝑒𝑠,    𝑖𝑓   𝐴𝑀𝑣 >  𝑇𝑣  ∪  𝐴𝑀ℎ >  𝑇ℎ

𝑛𝑜,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                  
 

(1) 

  

where 𝑇𝑣 is the vertical threshold, 𝑇ℎ is the 
horizontal threshold,  𝐴𝑀𝑣 and  𝐴𝑀ℎ are the absolute 

maximum of vertical and horizontal channel 
respectively calculated as: 

 

   𝐴𝑀𝑣𝑗 = max(|𝑋v𝑗|)   jϵ {1,…, NS} (2) 

 

𝐴𝑀ℎ𝑗 = max(|𝑋h𝑗|)   jϵ {1,… ,NS} (3) 

 

      𝑇𝑣 = 0.7 × [
1

𝑁𝑣𝑚

∑ max (|𝑋v𝑖|)

𝑁𝑣𝑚

𝑖=1

] 
 

(4) 

 

        𝑇ℎ = 0.8 × [
1

𝑁ℎ𝑚

∑ max (|𝑋h𝑖|)

𝑁ℎ𝑚

𝑖=1

] 

 

(5) 

 
where NS = 8 is the number of subintervals, 𝑁𝑣𝑚 is 

the number of vertical movements and 𝑁ℎ𝑚 is the 

number of horizontal movements performed during 
training sessions. The vertical threshold (equation 4) 

is 70% of the mean of the absolute maximum value 
of the up and down eye movement recorded from 
vertical channel. The horizontal threshold (equation 

5) is 80% of the mean of the absolute maximum 
value of the right and left eye movement recorded 

from horizontal channel. The center of the window 

is the subinterval with the maximum absolute value. 

2.3 Feature Extraction 

After the detection of the onset of a movement, a 
feature extractor is applied to the segment of 256 

samples. As we can see in Figure 5, when the 
subject blinks his/her eyes, there is a higher positive 
peak and a weaker negative peak in the vertical 

channel. The same occurs when the subject frowns 
his/her forehead, but with a smaller amplitude. 

When the subject moves the eyes to the right, a large 
positive peak and a small positive peak occur 
respectively in the horizontal and the vertical 

channel. The opposite effect appears when the 
subject moves the eyes to the left. There is a positive 
peak in the vertical channel when the subject moves 

the eyes up and a negative peak when the subject 
moves the eyes down. These time domain features 

are extracted using the maximum (Max), minimum 
(Min), total and partial average values. The total 
average (MedT) is the mean of the epoch and the 

two partial averages (MedP1 and MedP2) are 
respectively the means of the segment taking into 
account only the samples with amplitudes that are 

higher and lower than a given threshold. The 
thresholds were empirically set to +20 and -16, by 

experimentation. For each segment X the time 
domain features are computed as: 

 

𝑀𝑎𝑥 = max(𝑋) (6) 
 

𝑀𝑖𝑛 = min(𝑋) (7) 
 

 
                                        (a)                                                                             (b) 

Figure 5: Vertical (a) and horizontal (b) EOG signals for a sequence of six eye movements: blink, right  movement, left 
movement , frown, up movement and down movement, recorded during a training session.  



 

𝑀𝑒𝑑𝑇 =
1

𝐿
∑ 𝑋𝑖

𝐿

𝑖=1

 
 
(8) 

 

𝑀𝑒𝑑𝑃1 =
1

𝐿1

∑𝑋𝑖

𝐿1

𝑖=1

      ∀ 𝑋𝑖 > 20 

 

(9) 

 

𝑀𝑒𝑑𝑃2 =
1

𝐿2

∑ 𝑋𝑖

𝐿2

𝑖=1

      ∀ 𝑋𝑖 < −16 

 

(10) 

 
where L is the length of the segment X, L1 and L2 are 

respectively the number of time samples satisfying 
 𝑋𝑖 > 20 and  𝑋𝑖 < −16. The frown movement is 

also characterized by frequencies resulting from 
muscular contraction in the forehead. Therefore, 

features were also extracted in the frequency domain 
through a relative power measure for the frequency 
bands {10-15; 15-20; 20-25 and 25-30 Hz}, 

according to: 
 

𝑅𝑃𝑗 = 100 × [
𝑃𝑗

∑ 𝑃𝑖
30
𝑖=10

]      jϵ  {1,… , NB} 
 

(11) 

 
where RPj is the relative power for each frequency 

band, NB = 4 is the number of frequency bands, 𝑃𝑗 

is the power of band j, and 𝑃𝑖  is the power from 10 
to 30 Hz, i.e., the total power. The feature vector 

(FV) used for classification has a dimension of 18, 
corresponding to 9 features for each EOG channel: 

 
𝐹𝑉 = 

[𝑀𝑎𝑥𝑣 𝑀𝑖𝑛𝑣 𝑀𝑒𝑑𝑇𝑣  𝑀𝑒𝑑𝑃1𝑣  𝑀𝑒𝑑𝑃2𝑣  𝑅𝑃𝑗𝑣  

 𝑀𝑎𝑥ℎ 𝑀𝑖𝑛ℎ 𝑀𝑒𝑑𝑇ℎ 𝑀𝑒𝑑𝑃1ℎ  𝑀𝑒𝑑𝑃2ℎ 𝑅𝑃𝑗ℎ ]     (12) 

 

where the subindex v and h represent vertical and 
horizontal channel respectively.   

2.4 Classifier and Performance 
Measures 

EOG patterns representing each one of the 6 

classes are classified by a multiclass LDA (Duda et 
al., 2000). LDA is a generative classifier that finds a 
linear combination of features that separates the 6 

classes. To evaluate the performance of the 
classification, the following parameters  were 
computed: sensitivity (Sens), specificity (Spec) and 

accuracy (Acc) (Zhu et al., 2010): 
 

𝑆𝑒𝑛𝑠 = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 

 
(13) 

 

𝑆𝑝𝑒𝑐 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
× 100 

 

(14) 
 

𝐴𝑐𝑐 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
× 100 

 

(15) 
 

where TP is the true positive, TN is the true 
negative, FN is the false negative and FP is the false 
positive.  

3 SYSTEM FRAMEWORK 

In the current stage of the work, we used an 

avatar to mimic (replicate) the movements of the 
user. The virtual avatar was developed in Vizard

TM 

software. The 3D model of the head and expressions 
of the avatar are designed on Maya Autodesk

TM
. 

After importing the 3D models built on Maya to 

Vizard, the expressions are represented through a 
mix of different faces, reproducing the subject 
movements. The avatar receives a trigger code via 

UDP/IP each time a movement is recognized in real-
time (the number of movements was limited to a 

maximum of one per second). A wired XSENS 
sensor IMU (inertial measurement unit) is used to 
detect and replicate the movements of the head/neck 

of the user on the Avatar.  

4 RESULTS AND DISCUSSION 

The first step of the recognition system is the 
detection of the onset of a movement through the 

sliding window. False positive and false negative 
rates of 4.9% and 15.4 % were obtained. 

Table 1 shows the confusion matrix obtained for 

the offline classification of the six movements using 
the features in the time domain: maximum, 
minimum, total and partial average values. The 

results reveal that blink movement has the highest 
number of true positives, followed by the down and 

right movements. The greatest number of false 
positives and false negatives appears in the down 
and frown movements, respectively. Frown 

movement is mainly confused by down movements. 
Table 2 shows the confusion matrix using the 
combination of the features in time and frequency 

domains. Adding the relative power feature 
increases the true positive values of frown 

movement. Table 3 and 4 presents the accuracy, 
specificity and sensitivity values using the features 



 

in time domain and combining time and frequency 

features, respectively. Analyzing the results 
presented in Table 3 we observe that the blink 
movement has the highest sensitivity detection. On 

the other hand, the frown movement is the less 
accurately detected. The use of relative band power 

increases the sensitivity of the frown movement to 
12% and the average sensitivity about 2%. All 
movements have specificity values above 88%. The 

average sensitivity, specificity and accuracy are 
92.3, 98.5 and 97.4, respectively. From the five 
participants, the three with the highest scores 

completed also the online experiments. The 
performance of online classification is presented in  

Table 5. Subject 3 has the highest performance with 
sensitivity close to 90%. These results reflect also 

the false positive rate of the detection of 

movements’ onset, thereby slightly decreasing the 
overall classification performance. The sliding 
window was adjusted using a subject-dependent 

thresholds. We aim to improve the system in the 
near future to include generic thresholds obtained 

from a database of several subjects, thus improving 

Table 1: Confusion matrix of the offline classification system using only the features in time domain: maximum, 

minimum, and total and partial averages. 

 Movements 

A
u

to
m

at
ic

 

 Blink Frown Right Left Up Down 

Blink 191 11 2 3 1 2 

Frown 7 153 2 3 14 2 

Right 0 3 190 1 1 0 

Left  0 1 0 189 0 1 

Up 1 13 1 4 175 5 

Down 1 19 5 0 9 190 

Table 2: Confusion matrix of the offline classification system using relative power features in addition to 

maximum, minimum, and total and partial averages. 

 Movements 

A
u

to
m

at
ic

 

 Blink Frown Right Left Up Down 

Blink 191 11 2 2 1 2 

Frown 7 176 4 7 10 7 

Right 0 4 192 1 1 0 

Left  0 1 0 189 0 1 

Up 1 5 1 1 176 7 

Down 1 3 1 0 12 183 

Table 3: Overall offline classification results for maximum, minimum, total and partial average values as 

features. 

 Blink Frown Right Left  Up Down Average 

Sens 95.5 76.5 95.0 94.5 87.5 95.0 90.7 

Spec 98.1 97.2 99.5 98.9 97.6 96.6 98.1 

Acc 97.7 93.8 98.8 98.9 95.9 96.3 96.9 

Table 4: Overall offline classification results for maximum, minimum, total and partial average values and 

relative power as features. 

 Blink Frown Right Left  Up Down Average 

Sens 95.5 88.0 96.0 94.5 88.0 91.5 92.3 

Spec 98.2 96.5 99.4 99.8 98.5 98.3 98.5 

Acc 97.8 95.1 98.8 98.9 96.8 97.2 97.4 

 
 

Table 5: Online classification performance for each 

subject. 

 Sens Spec Acc 

Subject 1 86.9 97.5 98.0 

Subject 2 77.7 97.5 97.9 

Subject 3 88.1 98.8 98.9 

Average 84.7 97.9 98.3 

 



 

the robustness of the classification model.    
Blinks give relevant information for user state 

and emotion characterization, since activities that 
need thought and attention causes a decrease on 
blink frequency. Usually, greater blink rate indicates 

lower attention and fatigue (Andreassi, 2000). 
Frown movement is an expression that characterizes 

emotions like anger or surprise. These movements 
are accurately detected, thus the EOG signal can 
provide important cues for detecting emotions like 

fatigue, anger or surprise. Moreover, vertical and 
horizontal movements provide useful information to 
detect stress.  

5 CONCLUSION 

In this paper, six eye movements (up, down, 
right, left, blink and frown) are classified from EOG 
patterns and reproduced in an Avatar. This is an 

integrated part of a system being developed toward 
the recognition of human’s emotion for human-robot 
interaction. Offline and online sensitivity of the 

EOG classifier were around 92% and 85%, 
respectively, which are promising results.  

The next research steps will be the integration of 
EMG for facial expressions like smile, open/close 
mouth, and then the implementation of an emotion 

recognizer obtained from the combination of all 
detected facial expressions. 
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