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Abstract: Sleep disorders affect a great percergfijee population. The diagnostic of these dismdke usually made
by a polysomnography, requiring patient's hospittion. Low cost ambulatory diagnostic devices ican
certain cases be used, especially when there iserd of a full or rigorous sleep staging. In thégper,
several methods to extract features from 6 EEG rolanare described in order to evaluate their
performance. The features are selected using thqui Pearson correlation coefficient (Guyon and
Elisseeff, 2003), providing this way a Bayesian siféer with the most discriminative features. Thesults
demonstrate the effectiveness of the methods wridimate several sleep stages, and ranks the aever
feature extraction methods. The best discriminatias achieved for relative spectral power, slow avav
index, harmonic parameters and Hjorth parameters.

implement in the algorithms and combines a macro
and micro perspective of the overall epochs. It
should be highlighted that there is also some level

1 INTRODUCTION

About a third of the population suffers from sleep

disorders, including the obstructive sleep apnea
syndrome (Doroshenkaat al, 2007). The diagnosis

of such diseases is performed by a
polysomnography (PSG) which requires the
patient's hospitalization with costs and discomfort
for the patient. Ambulatory diagnostic devices may
have an important role in order to mitigate these
factors. The PSG consists on the acquisition of
various electrical biosignals including

electroencephalogram (EEG), electrooculogram
(EOG) and electromyogram (EMG). The signals are

segmented into epochs of 30 seconds and assigne

to a sleep stage by an expert (Ibeal 2007). This
is a tedious and time consuming task. Automatic

sleep stages classification (ASSC) is therefore an

attractive solution. However, the general opinisn i

that most of the experts do not rely on ASSC
software, because they usually present a low
performance (i.e. present a high level of

disagreement). One of the main reasons is due to

the high variability between subjects which makes i
difficult to obtain robust models for classificatio
The expert uses sometimes heuristics difficult to

of disagreement between experts.

This work describes part of an apnea detection
system to be used in ambulatory situations by
patients at home. It does not intend to substituge
PSG, but only to determine primarily if the patient
is sleeping at the occurrence of the apnea episode,
and secondly to determine in which sleeping stage i
did occur. The stage classification relies only on
EEG signals. This paper investigates several featur
extraction methods to compare their performance
aiming to achieve improved results in the following

dsleep detection stages: wake (W) vs. sleep (S),
NREM (NR) sleep vs. REM (R) sleep, NREM N1
vs. NREM N2 + NREM N3, NREM N1 + NREM
N2 vs. NREM N3, NREM N1 vs. NREM N2,
NREM N2 vs. NREM N3 and NREM N1 vs. REM
sleep (lberet al 2007). Moreover, a feature
selection method based on the squared Pearson
correlation coefficient (Guyon and Elisseeff, 2003)
henceforth designated R-square criteria, is applied
with the purpose of finding a reduced set of
discriminative features. These features are used to
provide additional information to the expert, and
also to automatically classify each sleep stagé wit



some degree of certainty. The classification is 2 DATABASE
performed by a Bayesian classifier using 2-class

detection. Scoring sleep is done according to rules pata from all-night PSG records were provided by
of the American Academy of Sleep Medicine the Laboratory of Sleep froentro Hospitalar de
(AASM) Manual for Scoring Sleep (lbeet al Coimbra The PSG was recorded by the model
2007), an actualization of the rules of Rechts@raff Somnostar Pro from Viasys at a sampling frequency
and Kales (Rechtschaffen and Kales, 1968). of 200 Hz. The database comprises seven patients
According to AASM Manual, sleep is divided into  (five males and two females) with ages between 27
five stages: wake, NREM (Non Rapid Eye and 64 years old (mean = 50 years; standard
Movement) sleep (N1, N2 and N3) and REM deviation = 12.88 years). Only six EEG channels
(Rapid Eye Movement) sleep. Considering only \ere used: F3-A2, C3-A2, O1-A2, F4-Al, C4-Al
EEG signals, the wake stage is characterized by a and 02-A1. All recordings were segmented into
low amplitude alpha activity (8-13 Hz); N1 by a  epochs of 30 seconds and labelled by an expert.

low amplitude theta activity (3-7 Hz); in N2 the The dataset was initially composed by 6558
predominant frequencies are in the 0.7-4 Hz range epochs. In order to avoid the over-fitting in the
and there is the arising of sleep spindles and K- |earning and testing of algorithms, the number of
complexes; N3 presents at least 20% of the epochs gjeep epochs in the database was reduced to 3000,
with delta activity (<2 Hz) with amplitude greater  pajancing the distribution of epochs of different
than 75 uV; REM is characterized by frequencies sleep stages according to a normal night sleep
mostly between 2 and 6 Hz with low amplitude. gistribution as presented in Table 1. Since thepsle
Sleep staging based only on EEG presents some stages N2 and N1 are the ones with the highest and
difficulties because different stages such as wake, |owest occurrence during a normal night sleep,
REM and NREM N1 present similar patterns. The respectively, they were set as the stages with majo
ASSC has been addressed by many research groups.gnd minor number of epochs in the dataset,
In (Tanget al 2007), Hilbert-Hang transform and  respectively, and the other sleep stages have a
wavelet transform were applied to extract harmonic number of epochs between these limits.

parameters from EEG signals, (Heseal 2001)
implemented a semi-automatic method based on k-

. . e Table 1: Full and reduced datasets.
means clustering algorithm. (Ebrahieti al, 2008)

used neuronal networks and wavelet packet Sleep NREM
coefficients to discriminate between different plee Stages  Wake N1 N2 N3 REM
stages. Doroshenkat al. (2007) have developed a d;gs'et 1293 784 2431 1154 896

classification algorithm based on Hidden Markov Reduced

Models using only EEG signals. (Zoubek al, dataset 560 410 760 520 750
2007) have used feature selection algorithms @ fin
the relevant features extracted from PSG signals.
Schwaiboldet al (2003) have implemented a neuro-
fuzzy algorithm to model the rules of Rechtschaffen 3 AUTOMATIC SLEEP SCORING

and Kales. Although some studies show good

performance, they are very limited to specific The classification methodology is illustrated in
groups of patients and it has not been possibléoyet  the block diagram presented in figure 1. The EEG
create generalized models that provide results signals are filtered and segmented. Different types
accepted by the experts. Moreover, it remains oOf features extraction are used. These features are
difficult to discriminate between certain sleep then selected using the correlation criteria R-sgua

stages using only EEG signals. measure in order to provide the classification estag
EEG Signal Feature Extraction Classification
RSP
Patient Database Swi
Pre-Processin Harmonic Parameters e e Bayesian Classifier
g Parameters of Hjorth LDA
Patient Testing . Entropy Decision Tree
Notch f'“ef Skweness & Kurtosis
Butterworth filter R-square
J/ Segmentation & /
A\

Figure 1: Classification methodology.



a Bayesian-based classifier, with the most

Some spectral bands can be highlighted over

discriminative ones. The training process uses data slow wave bands by means of slow wave index

from a pool of patients and some data from the
patient being monitored, namely, the wake recorded
epochs before the patient fall asleep. This wag, th

wake model can be improved. Moreover, the wake

epochs can be used for calibration of sleep stages.

The performance analysis of the of feature
extraction algorithms was done through ten-fold
cross validation. The patients’ database is
partitioned into ten groups with the same number of
epochs from each sleep stage. Nine of them are
used to perform the models of classification angl on
for testing. This process is repeated 10 timesguain
different group for testing.

4 FEATURE EXTRACTION AND
SELECTION

In ASSC, the EEG is traditionally analyzed in
frequency domain because, according with AASM
Manual, each sleep stage is essentially distingdish
by some spectral properties. However, temporal
analysis provides also useful information. For each
EEG channel, 34 features were extracted using
several methods as described in the following.

Spectral analysis provides some of the most
important features. For each sleep epoch, an
autoregressive method solved by the Yule-Walker
algorithm was applied to estimate the power
spectral density (PSD) (Yilmaet al 2007). The
spectrum is divided into ten frequency sub-bands as
represented in Table 2. For each sub-band, the
relative spectral power (RSP) was computed. This
parameter is given by the ratio between the sub-
band spectral power (BSP) and the total spectral
power, i.e., the sum of all 10 BSP sub-bands. This
normalization is important to increase classifioati
robustness during the recording session.

Table 2: Spectral sub-bands used in RSP computation.
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(SWI) defined by the following ratios:

DSI = BSR,,,/( BSR,.+ BSR.) 1)
TSI= Bsaeta/( Bsgalta-'- BSAEF:W’) (2)
AS|= BSR,./( BSR.+ BSR.). 3)

where DSI, TSI and ASI stand for delta-slow-wave
index, theta-slow-wave index and alpha-slow-wave
index, respectively (Agarwalt al, 2001).

Harmonic parameters allow the analysis of a
specific band in the EEG spectrum. They include
three parameters: center frequenty, (bandwidth
(f,) and spectral value at center frequen&y),(
defined as follows (Tangt al, 2007):

f, f,
fo= > Pulf) / D Pulf) (4)
f, f,

»
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Sfc = Pxx(fc)’ (6)

where, P,(f) denotes the PSD, which is calculated
for the frequency bandd{f,} (see Table 2).

The Hjorth parameters provide dynamic
temporal information of the EEG signal.
Considering the epock the Hjorth parameters are
computed from the variance a&f vark), and the
first and second derivatives’, x” according to
(Ansari-Aslet al, 2007)

Activity = var(x) (7)
Mobility = 4/var(x')/var(x) (8)
Complexity= \/ var(x")xvar(x)/var(x) .  (9)

The entropy gives a measure of signal disorder
and can provide relevant information in the
detection of some sleep disturbs. It is computed
from histogram of the EEG samples of each sleep
epoch, according with (Zoubet al, 2007)

>N (N
Entropy=-> —~In| — |,
py=-2— (nj

i=1

(10)



wheren is the number of samples within the sleep 5 BAYESIAN CLASSIFICATION

epoch,N is the number of bins used in computation
of histogram anah; is the number of samples within
theith bin.

The skewness is a measure of symmetry. The
kurtosis is a measure of wether the data are peaked
or flat relative to a normal distribution. Defigin
thekth order momenin, as (Zoubelet al, 2007)

=23 (0-3). (11

wheren is the number of samples of an epoch and

whe

The conditional density function of the claisss

modelled as a multivariate distribution under

gaussian assumption

P(Y | 1,%)= Kexp(—(Y—yi)Tzi‘l(Y—yi)/z)
(16)

re,

(17)

K =1/ ((2n)”/ s, |j/2),

Y is thefeature vector resulting from concatenation

y is the mean of these samples, the skewness andof the extracted featureg; and2; are respectively,

kurtosis are given by

skewness n13/rr12 x \/E (12)

and
kurtosis=m,/m, xm, . (13)

Features are usually selected by wrapper or
fiter methods using sequential approaches. The
results from wrappers methods are dependent of the
choice of the classification algorithm. Our option
fell on an R-square filter approach which is
independent of the classifier, based on the Pearson
correlation coefficient defined as (Guyon and
Elisseeff, 2003):

cov(X,Y)

1/vaﬂx 5vaﬂYi ’

where X andY represent two random distributions
of samples, and cov and var designates covariance
and variance, respectively. Consideriggndy; as

the sample values of featurdabelled with class 1
and class 2, respectively, the valgi) for the
featurei is given by:

0= (14)

> = X) (M — Y)
\/2:21(ka _2)22::1( Yk _y)z

where x and y; represent the mean valuexpfind

y; of the m samples. The R-square, computed as
R(i)%, provide a level of discrimination between the

two classes. High values of R-square indicate large
inter-class separation and small within-class
variance. The R-square provides a feature
discrimination ranking.

R(i) =

- (19)

the mean and covariance matrices computed for

each classw, from the training data. The Bayes
decision function is written as:

W) = argmax{{a, p(Y [w )P(w )}, a8)
{A1 p(Y | Wz)P(Wz )}}

whereP(w) is theith class prior probability and;

an adjustment parameter to control the rate otfals

positives and false negatives (Heijdsral, 2004).

6 RESULTSAND DISCUSSION

The feature extraction process provides a vector of
204 features, 34 features per each EEG channel: 10
RSP, 3 SWI, 15 harmonic parameters, 3 Hijorth
Parameters, 1 entropy feature, 1 skewness and 1
kurtosis. Next, the features are sorted in a
decreasing order of level of discrimination by
applying the R-squared based selection approach.
Figure 2 shows the percentage of disagreement for
wake/sleep detection between our ASSC system
and expert classification (i.e. the percentage of
epochs for which the automatic classification dfe
from manual classification made by the expert), as
function of the number of features, i. e., the nstho
discriminative features with n 1,...,52. The
disagreement values are obtained from a ten-fold
cross validation. The lowest disagreement value
was reached using the first 19 ranked features.
Table 3 presents the results for each binary
classifier, using 1, 2, 3, 19 most discriminative
features and all 204 features. Selecting the rateva
features reduces the number of features used in the
ASSC leading to an increased robustness of the
classifiers.

The feature selection also enables to identify the
type of features and channels that lead to higher
discrimination results for each 2-class discrinonat
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Figure 2: Percentage of disagreement vs. number of
features used in wake vs. sleep classification.

Table 3: Percentage of disagreement obtained usi2g
3 and the 19 most discriminative features and @4 2
features.

1 2 3 19 204

Wvs. S 11,4 10,7 838 7,0 16,7

R vsNR 225 214 195 156 308
N1vs. N2/N3 15,1 15,7 157 10,6 725
NI/N2vs.N3 15,7 14,7 146 155 303
N1vs N2 21,9 226 185 156 63,9
N2 vs. N3 19,0 18,2 16,7 17,7 39,8
N1lvs. R 255 24,7 244 250 64,7
Mean 18,7 183 16,9 153 455

(Table 4). As it can be seen, the feature entropy
(Ent), Skewness (Skw) and kurtosis (Krt) never
appear in the 20 most discriminative features. On
the other hand, the most frequents are the RSP and
harmonic parameters. Analyzing the origin of the
20 most discriminative features for each case, the
parameters of Hjorth (PHj) are most evident in
N1/N2 vs. N3 and N2 vs. N3, but they have no
weight in R vs. NR and N1 vs. R. The harmonic
parameters are more frequent in W vs. S, N1 vs.
N2/N3 and N1 vs. N2, but are not relevant in R vs.
NR, N1 vs. N2/N3, N2 vs. N3 and N1 vs. R. For the
RSP and SWI, they have a similar number of
features in all discriminations, except for N1 &s.
where the RSP has several features with good
discrimination, and for N1 vs. N2, where SWI does
not assume any importance. Analyzing the EEG
channels, it can be seen that O1A2 (O1) and O2A1
(02) are the most relevant in discrimination wake
vs. sleep; F3A2 (F3) and F4A1 (F4) in REM vs.
NREM; and C3A2 (C3) and C4A1 (C4) in N2 vs.
N3. In the remaining discriminations, they all have
a relatively uniform distribution, except in N1 \R,

in which the channels O1A2 and O2A1 do not have
any type of contribution. Figure 3 shows the type o

features and channels that lead to higher
discrimination results, taking all discriminators
together. Summarizing, the best ranked

discriminative features never include entropy

features, skewness or kurtosis. These paramers ar
related to the signal shape. However, since the EEG
signal patterns are very random, it is difficult to
obtain useful information from these parameters.

Instead, the set of most discriminatory features
between sleep stages was composed mainly by RSP
and Harmonic Parameters. This result emphasizes
the fact that the spectral analysis has more
discriminative information than temporal signal
analysis as already concluded in (Hesel 2001;
Tanget al, 2007).

Table 4: Number of feature type and channels withe
20 most discriminative features.

g 2
o L § g 2 2 | _
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pd pd
RSP 5 4 6 6 5 6 13 45
swi 3 2 2 2 0 4 4| 17
8 wp 9 14 8 3 12 2 3| 51
2l PHf 3 o0 4 9 3 8 0| 27
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Figure 3: Number of times that each group of fezgand
each channel appears in the 20 most discriminative
features

On the other hand, all the 6-six EEG channels
provide useful features for sleep staging
discrimination. Analyzing the results for each loé t
binary classifiers, there is greater disagreemaent i
the case of N1 vs. R sleep. This situation relties
the fact that, in terms of EEG, the patterns priesen
in these two stages are very similar. Finally, a



decision tree was implemented based on 2-classto the patient. Further sessions can then use these

detection, as represented in Figure 4. At each step

new level was introduced from a wake/sleep to all
stages classification. The results were compared
with and without feature selection (Table 5). The
improvements from feature selection are evident.
The results obtained with our ASSC system are

comparable to the ones obtained in other methods

based on EEG only described in literature (zowdtek
al, 2007; Doroshenkogt al, 2007).

Level 1

Figure 4: Decision tree based on 2-class detection.

Table 5: Disagreement obtained with using 19 most
discriminative features and all 204 in 2, 3, 4 &nsleep
stages classification.

Diasagr eement (%)

Classfication All Features 19
2 Class 36 7
3 Class 62 18
4 Class 83 22
5 Class 83 29

7 CONCLUSIONS

In this paper, the use of several feature extractio
methods was investigated in the context of EEG-
based sleep staging. The first conclusion was that
the most discriminative features were determined
by RSP, SWI, Harmonic Parameters and Parameters
of Hjorth. All the 6-EEG channels provide useful
information. On the other hand, the application of
the feature selection method improved, in general,
the process of discrimination by selecting theodet
features that provided a lower percentage of
disagreement. One of the biggest problems in
automatic sleep staging based on EEG is the
similarity between patterns of different sleep stag
such as REM and NREM N1. This can be improved
recurring to other biosignals, such as EOG and
EMG. Another problem in ASSC is the high level
of variability between patients. Using an
ambulatory system, the patient can perform periodic
recordings at home. This way, the first session can
be fully analysed by the expert. The labelled data
can be used to obtain classification models specifi

robust user-dependent models. This approach is
under research presently.
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