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Abstract— A single trial electroencephalogram (EEG) clas-
sification system is proposed for left/right self-paced tapping
discrimination. Features are extracted from theta, mu and
beta rhythms and Readiness Potential (Bereitschaftspotential)
that precede the voluntary movement. Feature extraction relies
on regression fitting and wavelet decomposition. These two
approaches are compared through two linear classification
functions, a Fisher Linear Discriminant and a Minimum-
Squared-Error Linear Discriminant Function. We show that
discrete wavelet decomposition is an effective tool for both EEG
frequency component separation and feature extraction, and
therefore suitable for pre-movement left/right discrimination.
The algorithms are applied to the data set <selfpaced2s> of
the “BCI Competition 2001” with a classification accuracy of
96%.

I. INTRODUCTION

Discrimination of user intentions mind reading from EEG

sequences is a really challenging research field. For people

suffering from progressive neuro-degeneration that causes

loss of motor neurons leading to a complete paralysis such

as amyotrophic lateral sclerosis (ALS), Brain Computer

Interface (BCI) is a promising technique that can enhance

the quality of living of these patients. Extensive research has

been done in the classification of single-trial classification of

EEG sequences recorded with non-invasive techniques. In [1]

the current main BCI paradigms/experiments and associated

research groups are presented. One of the experiments, called

self-paced tapping, consists on the classification of pre-

voluntary movement of left and right hand fingers. Notwith-

standing the movement is actually performed, recorded data

do not include the movement moment. Patients suffering

from partial or complete paralysis still exhibit pre-voluntary

movement potentials and are able to control their Slow

Cortical Potentials (SCP) through motor imagery, suggesting

their potential use for BCI [2]. In this paper we propose

to discriminate the source of motor movements (left and

right hand fingers), based on features extracted from Bere-

itschaftspotential (BP) and Event Related Desynchronization

(ERD) in mu and beta rhythms of single trial EEG sequences.

This experimental paradigm has already been extensively

researched by some authors. Feature extraction, such as

Autoregressive models and Common Spacial Subspace De-

composition, and classification techniques based on Neural

Networks, Linear Discrimination and Kernel functions are
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discussed in [3], [4], [5] [6]. In [7], a new wavelet called

SNAP was designed to match neural activity underlying

the neuroelectric events. The coefficients resulting from this

wavelet were used as features for classification, presenting

better accuracy than with other known wavelets.

This paper makes a full frequency and time domain char-

acterization of BP and ERD rhythms, and presents wavelets,

specifically discrete wavelets, as an effective tool for fea-

ture extraction and component separation of neuroelectric

waveforms. Notwithstanding the wide use of wavelets in

several research areas, includig EEG analysis, they are not

commonly used as a tool for feature extraction specifically

in BCI. However, the non-stationarity properties of EEG

patterns require feature extraction techniques capable of draw

out temporal information. Wavelet based approaches have

such characteristics and also provide frequency information.

This approach provides a good classification accuracy when

compared with other feature extraction methods and requires

low computational speed. Two linear classifiers, a Fisher

Linear Discriminant (FLD) and a Minimum-Squared-Error

Linear Discriminant Function (MSE-LDF) confirm feature

effectiveness.

II. METHODOLOGY

A. Experimental Paradigm and Data set

The EEG data set was made available by [4] for the

NIPS*2001 (BCI) post-workshop competition. The experi-

ment (<selfpaced2s>) [8] is as follows. A subject is seated

in a normal chair with relaxed arms resting on the table and,

in a self-chosen order, presses a keyboard key with fingers

of either left or right hand (a complete description can be

found in [4]). Each single trial measurement was recorded

from 27 Ag/AgCl electrodes positioned according to the 10-

20 international system. The EEG sequences correspond to

data recorded from 1620 ms to 120 ms before the respective

key press. For a sampling rate of 100 Hz, this corresponds

to 151 data points. The data set is composed by a total

of 516 trials, corresponding to 219 labeled left events, 194

labeled right events and 100 test events. The data set test is

currently available with labels, but was not at the moment

of the competition.

B. Bereitschaftspotential and ERD

The Bereitschaftspotential (readiness potential) is a neg-

ative shift of Slow Cortical Potential that precedes the

voluntary movement. This is a DC negative shift that starts

to be more pronounced about 500 ms before the onset of

the movement [9]. For finger and hand movements, the BP

is characterized by a contralateral dominance, and is more
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obvious at the lateral scalp positions C3 and C4 of the

international 10-20 system, which corresponds respectively

to the left and right primary motor cortex [10] [3].

The amplitude decrease and increase of cortical rhythms

related to an external or internal event are known respec-

tively, as event related desynchronization (ERD) and event

related synchronization (ERS). The ERD oscillatory rhythms

start over the contralateral and ipsilateral sensorimotor area

shortly before the movement onset, contrarily to BP that

appears 1 s before.

C. Feature extraction

The BP DC shift only becomes apparent after averaging

a large number of trials. Fig. 1a) shows the average over

all trials of potentials measured in C1, C2, C3 and C4 scalp

positions. The contra-lateral dominance is more apparent in

channels C2, C3 and C4 and therefore suitable for left/right

discrimination. Simple functions of discrimination can be y =
C4−C3 or, using the three channels:

y =
C4+C2

2
−C3 (1)

The function (1) is used here like it was in [3], since it reveals

slightly better results in left/right discrimination. A pre zero-

mean normalization is applied in both cases. The function

applied to the average over all trials and to a single trial is

plotted in Fig. 1b). The single trial presents a large variance

when compared with the average, which hides the potential

shift. The power spectrum characterization reveals a contra-

lateral dominance and, as expected, the signal information

of the averaged trials is contained within the range DC-

5Hz (Fig. 1c)). On the other hand, in the single trial,

chosen at random, plotted in Fig. 1d), the DC-5Hz frequency

component exists, but it is no longer the main component.

The rhythms theta (4-8 Hz), mu (8-12 Hz) and beta (18-

24 Hz) prevail and the contra-lateral dominance is not clear

either in the overall average neither in the single trial. This

foresees a difficult detection of the BP. To investigate the

existence of ERD rhythms, the C3 and C4 averages were

respectively band-pass filtered with 10 Hz and 20 Hz center

frequencies (Fig. 1e)-g)). The frequency spectrum in mu and

beta rhythms denotes a contra-lateral power reduction, which

suggests a desynchronization. Time domain representations

of mu and beta rhythms depicted in Fig. 1f)-h) show a mu

desynchronization about 500 ms before the movement onset,

however there is an amplitude increase of beta rhythms.

Two approaches were followed to extract features for

classification.

1) Regression Model: It is proposed a regression model

that reflects the BP slow negative shift. Fig. 1b), which

evidencies this shift, is clearly fitted with a 2nd order

regression curve. For the single trial classification, it seems

adequate to extract the DC component1. Sequences resulting

from (1) were initially low-pass filtered by a 8th order with

4 Hz cutoff frequency and then fitted with the regression

1As it will be seen later this filtering does not provide better classification
accuracy.

model. The coefficients of the model are obtained through

a Least-Squares (LS) estimation. The algorithm is a batch

algorithm in that all the data is obtained and then processed

in one calculation. The measurement process is modeled as:

z = h(t,x)+ ε (2)

where (t,z) are pairs of measurements, h(., .) is the regression

curve and models the sensory system, and ε represents both

sensor noise and model error. In order to estimate the best

vector parameter x̂, all 151 observations (samples of the EEG

sequence) are used to minimize the residual ε . In matricial

form, the solution of the LS algorithm is [11]:

x̂LS = (HT H)−1HT z (3)

where H denotes the matrix that relates the measurements

to the unknowns. The regression curve is then the 2nd order

polynomial:

h(t,x) = x0 + x1t + x2t2 (4)

2) Wavelet Analysis: Wavelet analysis is a signal process-

ing technique that provides both temporal and frequency

information. The discrete wavelet transform (DWT) im-

plemented through the subband coding algorithm analyzes

the signal at different frequency and time resolutions [12].

The original signal is successively decomposed into detailed

and approximation components. Fig. 2 depicts the wavelet

decomposition process. The original signal is chosen to

have the last 128 samples of the EEG sequence, x[n]. This

sequence, which corresponds to a 100 Hz range, is convolved

with a low-pass filter h(n) (scaling filter) and then down-

sampled by a factor of two. The resultant coefficients are

designated cA1. The original sequence is also convolved with

a high-pass filter g(n) (wavelet filter) and then downsampled

by a factor of two. The resultant coefficients are designated

cD1. At this level 1 the signal is represented by half the

points and therefore has half the time resolution. All this

process is repeated until it reaches level 5. The resultant

coefficients are presented in Fig. 3. The top level plot is

the original signal corresponding to the overall trial trial

(1). The 0-3.125Hz range coefficients represent a coarse ap-

proximation of the signal that reflects the BP shift. Detailed

coefficients cD5, cD4 and cD3 include respectively theta, mu

and beta rhythms. These coefficients will be used as input

to the classifier.

D. Classification

This work presents two classifiers based on linear dis-

criminant functions (LDF) for left/right discrimination. The

decision regions are separated by hyperplanes. In the first

approach, a FLDA reduces each d−dimensional feature train

vector to a single measurement [13]. In the second approach,

a MSE-LDF computes the hyperplane directly in the space

of d−dimensional train vectors.

1) Fisher Linear Discriminant Analysis: FLDA constructs

a linear dimension reduction from the input vector x to a new

feature vector y:

y = WT x (5)
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Fig. 1. Average potentials over all trials: a) Scalp in independent channel positions C1, C2, C3 and C4 b) In the left, average ȳ = C̄4+C̄2
2

− C̄3; In the

right, single trial y = C4+C2
2

−C3; c) Power spectrum of the average over all trials; d) Power spectrum of a single trial; e) Power spectrum of mu rhythms
average; f) Time domain output of mu band-pass filter; g) Power spectrum of beta rhythms average; h) Time domain output of beta band-pass filter.
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Fig. 2. Wavelet decomposition with subband algorithm

where x = (x1|x2| · · · |xn) is the vector with all xi

d−dimensional samples (training vectors). For the present

two class classification case (H1,H2), the goal of the FLDA

is to maximize the intercluster distance between the two

classes and minimize the intracluster within a given class in

the new dimension space [13]. Let the within scatter matrix

be defined as:

SW = S1 +S2 (6)

where S1 and S2 are the scatter matrices:

Si = ∑
x∈Hi

(x−mi)(x−mi)
T

, i = 1,2 (7)

The between scatter-matrix is defined as:

SB =
2

∑
i=1

(m−mi)(m−mi)
T (8)

where mi is the mean of the samples in class i, and m is the

mean of all samples. The optimal vector W is obtained from

maximizing the criterion function:

J(W ) =
W T SBW

W T SWW
(9)

A solution is showed to be:

Ŵ = S−1
W (m1 −m2) (10)

Equation (10) is very similar with Bayesian classifiers in the

Gaussian case.

2) Minimum Squared Error: The criterion function of the

MSE-LDF involves all d−dimensional train vectors. The

problem is formulated as finding a solution of a set of linear

equations [14]:

Y = w.b (11)

where Y is a n× d̂ (d̂ = d + 1) matrix that represents the

set of d−dimensional features vector (ith row) and b is

the vector target that represents the desired response of the

discrimination function. Considering Y as nonsingular, the

MSE solution is:

w = (Y TY )−1Y T b (12)

III. RESULTS AND DISCUSSION

Labeled data consisting on 219 left events and 194 right

events were used for classification training. The 100 event

test set was used for testing the accuracy algorithm per-

formance. For correctness purposes and to avoid adjusting

parameters that could improve classification performance of

the data set, the choice of pre-processing parameters and

feature parameters was based without the use of the data set.

Notwithstanding this methodology, the results here presented

were obtained with the data set, allowing comparison of the

results with previous work.

A. Regression

To reduce the dimension of the feature vector for each

EEG sequence, a 2nd order regression is applied to fit the

data. The effect of different low-pass filter cutoff frequencies

(fc) is analyzed. A 8th Yulewalk recursive digital IIR low-

pass filter is used. The initial cutoff frequency f c = 4Hz

was chosen to demonstrate the BP, and the others to analyze

the influence of theta, mu and beta rhythms. Contrarily to

what it would be expected, best results were not achieved

for f c = 4Hz (Table I). This indicates that the slow shift

cortical potential in single trials is not readily apparent and

therefore has a large fit error. To improve the results, data

were fitted with a 3th order regression. Results are not

conclusive, however best results occurred for f c = 8Hz.

The BP is composed by two subcomponents. The first

component occurs from 1500 ms to 1000 ms before the

onset of the motor movement and is called the early BP.

The second subcomponent, called late BP, occurs about 500

ms before the onset of the movement, and is characterized

by a negative shift accentuation. These components are

visible in Fig. 1a). Taking advantage of this characteristic,

only data from the the last 500 ms (late BP) were used

for classification. The results improved, reaching a 96%

classification accuracy (Table II). Regression fitting of 2nd

order performed better than 3rd order, which indicates that

the slow negative shift is now more obvious.
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Fig. 3. Coefficients from wavelet decomposition. Original signal has 128
data points from (1) average, cD1 64 points, cD2 32 points, cD3 16 points,
cD4 8 points and cD5 and cA5 4 points (for all graphs, solid line represents
Right and point-solid Left).

TABLE I

CLASSIFICATION ACCURACY WITH REGRESSION FEATURES

Classifier

FLDA LDF-MSE

Regression order 2 3 2 3

Low-pass fc

no filter 91.03% 93.03% 93.16% 94.22%

4.0 Hz 91.15% 92.21% 93.28% 93.28%

8.0 Hz 93.03% 95.04% 92.21% 94.22%

12 Hz 91.03% 94.11% 93.16% 93.16%

22 Hz 91.03% 93.03% 93.16% 94.22%

TABLE II

CLASSIFICATION ACCURACY WITH REGRESSION FEATURES FOR LATE

BP

Classifier

FLDA LDF-MSE

Regression order 2 3 2 3

Low-pass fc

8.0 Hz 94.10% 95.16% 94.22% 94.22%

22 Hz 96.11% 95.16% 96.11% 96.11%

B. Wavelets

Rather than extract single frequency components, the

wavelet decomposition coefficients provides temporal infor-

mation about frequency bands around the frequencies of

interest (Fig. 3). A normal requirement of wavelet analysis is

that the wavelet shape look similar to the signal pattern to be

localized [7]. Here, the main purpose was to localize a slow

shift, therefore the choice fall in Daubechies wavelets (Db2

and Db4). Wavelet decomposition in Fig. 3 was obtained

with Db4 (results were slightly better than with Db2). Other

wavelets were tested but all with worst classification accura-

cies. From Fig. 3 it is observed that frequency components

above 50Hz have very small energy and are constant over

all EEG sequence, being considered as background noise.

Components within the 25−50Hz range (cD2) are also not

discriminative. Oscillatory beta components represented in

cD3 have more energy, however do not present significant

left/right discrimination. Oscillatory components mu and

theta described respectively in cD4 and cD5 show an obvious

discrimination information, specially cD5. Coefficients cA5

represent an approximation of the original signal, but are

better than a low-pass filtered representation of the signal

since they provide also data reduction, which improves

classification performance. As seen in Fig. 3, for an average

trial, the left/right discrimination is clear, and therefore cA5

was initially used for classification. The other coefficients

were also used as features for classification. Results are

presented in Table III. Combining the two better individual

features, cA5 and cD5, an accuracy of 95% was achieved.

C. Comparison

Table IV presents classification accuracies obtained by

other researchers following other feature extraction and

classification approaches, using the data set made available

by [4]. Best results (96.9%) come from the research group

who provided the data set. They used the 27 channels

which were lowpass filtered at 5 Hz. Features consist on

downsampled versions of the original raw EEG sequences,

therefore leading to a reduced feature vector dimension.

Several classification techniques were tested, namely Fisher

Discriminant (FD), Regularized Fisher Discriminant (RFD),

Sparse Fisher Discriminant (SFD), Support Vector Machines

(SVM) and k-Nearest-Neighbor (k-NN), all achieving very

good results. Other authors proposed feature extraction based

on stochastic properties [3], common spatial subspace de-

composition (CSSD) [15] and wavelet decomposition [16],

also with good accuracy results.

In our work a reduced number of recorded channels

(C2, C3, C4) was used with a simple normalization pre-

processing. The feature extraction, consisting on wavelet

decomposition, simultaneously provides low dimension fea-

ture vector through the DWT downsampling and temporal

information on each significant EEG rhythms as well as re-

spective energy. These characteristics are advantageous over

other methods because they provide several feature vectors

with low computation time which is suitable for real-time

applications. Since the feature vector is low-dimensional,
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TABLE IV

ACCURACY OF BCI TECHNIQUES IN PRE-VOLUNTARY MOVEMENT DETECTION USING THE DATASET PROVIDED BY [4]

Preprocessing EEG Channels Features Classification Accuracy References

0-5Hz bandpass

motor and
somatosensory

cortex (21),
frontal (5) and

occipital (1)

amplitude of
downsampled

EEG sequences

FD 96.7% [4]
RFD 96.9%
SFD 96.6%

linear SVM 96.4%
k-NN 76.9%

C2, C3, C4 average and
variance

Bayes’ rule 92% [3]

0-3Hz and
8-30Hz bandpass

and CSSD

18 channels
sensorimotor

cortex

output of spatial
filter representing

ERD and Readiness
potential

perceptron 95% [15]

C3, CP3, P3, C4,
CP4, P4

wavelet coefficients Gaussian SVM 91% [16]

good classification results are obtained with simple methods

such as FLDA without regularization.

TABLE III

WAVELET FEATURE SELECTION THROUGH CLASSIFICATION ACCURACY

Coefficients FLDA LDF-MSE

cA5 94.10% 93.16%

cD2 53.47% 54.78%

cD3 68.00% 68.00%

cD4 73.20% 73.20%

cD5 93.16% 93.16%

cA5&cD5 95.16% 95.16%

IV. CONCLUSION

Our single trial classification of EEG sequences for

left/right self-paced tapping discrimination has been success-

ful. Both regression fitting and wavelet decomposition proved

to be suitable feature extraction techniques. It was obtained

a 96% and 95% classification accuracy for regression and

wavelet methods, respectively. The FLDA and LDF-MSE

linear classifiers had similar performance. The good results

are encouraging, however the detection of upcoming events

without any synchronization cue is essential for an effective

BCI. The authors propose as future work to investigate this

topic. The temporal properties of the wavelets can give an

important contribution for asynchronous BCI.
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