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Abstract—Spatial filtering is an important technique used in
electroencephalography to enhance signal-to-noise ratio and to
reduce the data dimensionality. In the context of Brain-Computer
Interfaces, the Common Spatial Patterns method is widely used
for classification of motor imagery events, however it is not very
often used for classification of event related potentials such as
P300. In this paper we show that Common Spatial Patterns is
an effective approach to improve P300 classification rates. It is
proposed a Bayesian methodology for feature combination that
overcomes the limitations of the feature method used in motor
imagery. Also, a method for channel selection based on inter-
channel coherence is proposed, reducing the number of channels
and improving the classification results.

I. INTRODUCTION

Brain computer Interface (BCI) based on P300 event related
potential (ERP) proved to be an effective communication
channel for people affected by severe motor disabilities. The
first P300-based BCI was proposed by Farwell and Donchin
[1] and since then, their seminar work as been followed by
many other researchers. EEG signals are characterized by a
very poor spatial resolution and the signal of interest has a
very low signal-to-noise ratio. Working toward an effective
BCI motivates the researchers to investigate methods that
can increase communication bandwidth (ideally with single-
trial) and reduce the channel dimension. To reach these goals,
spatial filtering plays an important role and is an indispensable
processing step for the feature extraction and pattern classifi-
cation. Spatial filters can accentuate the signal of interest and
at the same time attenuate the ongoing EEG and the non-EEG
artifacts. In [2], the authors compare reference filter methods
such as Common Average Reference, Small Laplacian and
Large Laplacian with conventional ear reference, and show
the improvement obtained with these spatial filters. They act as
high-pass spatial filters that enhance local activity and decrease
the distributed activity.

A different approach named Common Spatial Patterns
(CSP) was proposed by Koles [3]. It was applied in clinical
electroencephalography for localization of sources of specific
neurophysiologic components and to extract high frequency
spike and sharp wave components from the EEG of neurologic
patients. The CSP method is based on the simultaneous
diagonalization of two real symmetric matrices proposed by
Fukunaga [4]. The simultaneous diagonalization allows the

decomposition of raw EEG signals into two discriminated
patterns extracted from two populations (classes) simultane-
ously maximizing the variance of one class and minimizing
the variance of the other class. At the same time, a dimension
reduction is achieved which is an important step for posterior
classification.

This method has been successfully applied in BCI research
for extraction and enhancement of ERD/ERS (Event Related
(De)Synchronization) and Readiness Potential features associ-
ated with motor imagery paradigms [5], [6], [7]. Some variants
of CSP were already proposed for the multiclass problem [8]
[9]. A survey on CSP methods can be found in [10].

There are however very few applications of the CSP method
on the detection of Event Related Potentials (ERP) such as the
P300. As a relevant work, we point out the work in [11] where
an extension of the CSP method is suggested, namely the
Common Spatio-Temporal Patterns (CSTP). This approach in-
corporates time-delay embedding and non-centered covariance
matrices into CSP to extract more prominent spatio-temporal
patterns.

We propose here the application of standard CSP combined
with a new approach of feature combination based on proba-
bilistic models of spatial filtered data embedded in a Bayesian
classifier. It is shown that CSP can be effectively used on
P300. Also, we show that coherence can be used for channel
selection enhancing pattern discrimination and simultaneously
achieve a reduction of the required number of channels.

II. METHODS

A. Common Spatial Patterns

Within the P300 oddball principle context, we consider two
spatio-temporal matrices Xt and Xnt with dimension N ×T ,
where N is the number of channels and T is the number
of samples of the time series epoch of each channel. The
matrix Xt represents the P300 potential evoked by the target
event and Xnt represents the ongoing EEG for non-target
events. The CSP method is based on the principal component
decomposition of the the sum covariance R of the target and
non-target covariances

R = Rnt + Rt (1)



where Rt and Rnt are the normalized N ×N spatial covari-
ances computed from

Rt = XtX
′
t

tr(XtX
′
t)

Rnt = XntX
′
nt

tr(XntX
′
nt)

(2)

where ′ represents the transpose operator and tr(A) represents
the trace of A.

The spatial filters are estimated from the overall set of trials
gathered during training. Therefore it is used the average of
the normalized covariances trials

Rt = 1
Nt

∑Nt

i=1 Rt(i) Rnt = 1
Nnt

∑Nnt

i=1 Rnt(i) (3)

where Nt and Nnt are the number of target and non-target
trials in the training set. The averaged covariance matrix R is
factored through the application of the PCA as follows [12]

R = Rt + Rnt = AλA′ (4)

where A is the orthogonal matrix of eigenvectors of R and
λ is the diagonal matrix of eigenvalues of R. A whitening
transformation matrix W

W = λ−
1
2 A′ (5)

transforms the covariance matrix R to I (identity matrix)

S = WRW′ = I. (6)

Applying the whitening transform to each individual class, we
obtain

St = WRtW′ (7)

Snt = WRntW′. (8)

From the above three equations it is straightforward that

St + Snt = I (9)

Performing a PCA factorization to (7) and (8) then

St = AtλtA
′
t Snt = AntλtA

′
nt (10)

From (9) and (10)
At = Ant (11)

and
λt = I− λnt. (12)

It means that both class patterns share the same eigenvectors
and the respective eigenvalues are reversely ordered. The
eigenvector with largest eigenvalue for one class has the
smallest eigenvalue for the other class and vice versa. The first
and last eigenvector are optimal eigenvectors to discriminate
the two classes. Defining At and Ant as the first and last
eigenvectors with dimension N×1 the following spatial filters
are designed

Ht = A
′
tW (13)

Hnt = A
′
ntW. (14)

The spatial filtered data is given by

Y = HX. (15)

Fig. 1. Models obtained during training for projected data of target and
non-target epochs.

B. Features and Classification

Usually, the features used for classification in motor imagery
are the ratio between the variance of one filtered projection
and the sum of the variances of all filtered projections. This
method is suitable for motor imagery because the band power
of µ and β rhythms are the main features. In the case of P300
pattern, the most important feature is the temporal structure
and not the variance of the signal.

We present here a different method that relies on probabilis-
tic models designed for each projected data and that therefore
takes into account the temporal structure of P300 pattern. This
procedure is described in Fig. 1. Four different models are
obtained from the spatial filtering projection of target and
non-target related potentials. For each projected sequence a
conditional probability is computed, namely

p(xft|M1) p(xfnt|M2) p(xft|M3) p(xfnt|M4)
(16)

where the vector xf represents the filtered projection. Let
define wt and wnt respectively the class of target and non-
target events. The posterior probability p(wi|X) (i = t, nt),
i.e., the probability of a non spatially filtered data pattern
XN×T belong to class wi is obtained through the Bayes rule
[13]

p(wt|X) =
P (wt)p(xft|M1)p(xfnt|M2)

p(X)
(17)

p(wnt|X) =
P (wnt)p(xft|M3)p(xfnt|M4)

p(X)
(18)

where p(X) is the unconditional density of x and
P (wt), P (wnt) are the prior probabilities of each of the
classes. The conditional probability p(xf |M) is computed
from the likelihood function under a gaussian distribution
assumption

p(xf |(µ, Σ)) =
1

(2π)n/2|Σ|1/2
exp(− (xf − µ)T (xf − µ)

2Σ
)

(19)
where µ and Σ are the mean and covariance matrices computed
for each class.

C. Coherence

Coherence gives a linear correlation between two signals as
a function of the frequency. In the context of neurophysiology,
it is used to measure the linear dependence and functional
interaction between different brain regions. In this study,



Fig. 2. P300 arrow paradigm. Each symbol is flashed during 100 ms and
the time between flashes is 200 ms

coherence was used to select channels with strong inter-
correlation. The goal is to reduce the number of channels
for CSP filtering, and simultaneously improve or preserve the
classification results obtained with a larger group of electrodes.
Mathematically, the estimated coherence between signals x
and y is computed by the magnitude squared coherence [14]

k2
xy(f) =

|〈Sxy(f)〉|2
|〈Sxx(f)〉||〈Syy(f)〉| (20)

where Sxx(f) and Syy(f) are respectively the power spectra
of x and y, and Sxy is the cross-power spectrum. The spectra
is estimated from the average (〈.〉) of the periodogram over
the set of trials.

III. PARADIGM, DATA ACQUISITION AND CLASSIFICATION

A. Paradigm

The Paradigm is shown in Fig. 2 and was already pre-
sented in [15]. It is composed by 8 direction arrows, a stop
square, a ON/OFF switch and 5 small squares with no special
meaning. The paradigm was specifically designed to steer a
robotic device, however the symbols can be used for other
interpretations. Each symbol is randomly flashed with uniform
distribution, therefore the event target occurs once on each 15
flashes providing an oddball paradigm.

B. Data Acquisition

Three healthy subjects participated at the experiments. The
subjects were seated in front of a computer screen at about 60
cm. The EEG activity was recorded from 12 Ag/Cl electrodes
at positions Fz, Cz, C3, C4, CPz, Pz, P3, P4, PO7, PO8, POz
and Oz according to the internacional extended 10-20 standard
system using a g.tec cap. The electrodes were referenced to
the right mastoid and the ground was placed at AFz. The
EEG channels were amplified with a gUSBamp (g.tec, Inc.)
amplifier, bandpass filtered at 0.1-30 Hz and notch filtered at
50 Hz and sampled at 256 Hz. All electrodes were kept with
impedances under 5KΩ.

Several sessions of 80 target epochs and 1120 non-target
epochs were recorded. Each session takes about 4 minutes.
These data sets were used for training and testing.

Fig. 3. Magnitude square coherence between channels. Channels are ordered
from 1 to 12 according to Fz, Cz, C3, C4, CPz, Pz, P3, P4, PO7, PO8, POz
and Oz. High level colors represent a high level of coherence.

C. Preprocessing and Classification

Each epoch has a duration of 1 second and is synchronized
with the start of the event stimulus. The EEG signal is low-
pass filtered by a 4th order Butterworth filter with 7 Hz cut
frequency. Each epoch is normalized to zero mean and unit
standard deviation.

After preprocessing of each individual channel it was
applied an r-square measure (between target and nontarget
epochs) for each instant time of the epoch-window using all
collected epochs. This measure provides a level of discrimi-
nation between target and nontarget and therefore can be used
to select the best time-window features (time segment within
the 1 second epoch) and the best channels. The magnitude
square coherence is computed to evaluate the degree of linear
dependence between the 12 channels as shown in Fig. 3.
From this color map it is possible to select a cluster of
contiguous channels that evidence a strong inter-correlation
(it was defined a threshold value of 0.9 for frequency in
the range 0.5-7 Hz). The black square represents a possible
cluster satisfying this threshold criteria, which corresponds to
channels CPz, Pz, P3 and P4 . Spatial filter CSP is then applied
to this group of channels. Selecting the best time-window
features, the conditional probabilities in (16) are computed
through (19). The estimated class is reached using the Bayes
decision function through the posterior probabilities (17) and
(18) associated to each class.

IV. RESULTS

The top of Fig. 4 shows the average and standard deviation
of the P300 pattern of the best channel (in this case P07)
over 80 target epochs (blue) and 720 nontarget epochs (red).
The overlapping of the two classes is a measure of how low
is the discrimination between them. Also it is important to
see that the standard deviation is almost constant over the
time sequence. The bottom of Fig. 4 represents the average
and standard deviation of CSP filtered data. The blue color
represents the projected target epochs using filter Ht and
red color the projected nontarget epochs through the filter
Hnt. The plot shows clearly that the CSP filters separate the
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Fig. 4. Top: best channel mean and standard deviation over the set of target
trial (blue) and nontarget trials (red); down: average and standard deviation
of CSP filtered data from CPz, Pz, P3 and P4 channels.

two classes. Note however, that the current plot is the ideal
situation where each epoch class is projected with filters that
maximizes and minimizes the respective classes. In practice
we will have to use the four models shown in Fig. 1 and not
only two models.

Table I shows the achieved classification results with 3
subjects. Classification tests were performed using the best
channel, the filtered CSP projections using all 12 channels
and the filtered CSP projections using the channels selected
through coherency. The use of CSP filter reduces the error
rate when compared with single channel classification. In case
of subject S2 the improvement of classification is not so
significant. Actually, for this subject the individual channels
showed a low target vs. nontarget discrimination. For subjects
S1 and S3 the use of the selected channels demonstrates a
better performance than the use of all channels which can
confirm that CSP has a better performance when used with
channels linearly correlated.

V. CONCLUSION

The presented work shows that CSP is a good spatial
filter approach for the classification of P300 patterns. The
probabilistic models of the spatial filtered data, embedded in
the Bayesian classifier, represent reliable features. Also, it is
proved that strong inter-channel correlation is an important
factor that can enhance the discrimination provided with CSP
filters. The achieved offline results are significative when
compared with state of the art (e.g. see [1] and [11]).

TABLE I
ERROR RATE CLASSIFICATION (%)

trials method Subjects
S1 S2 S3

1
best ch 18.3 18.4 11.22
CSP all ch 15.0 14.2 10.1
CSP sel. ch 15.0 18.5 8.3

2
best ch 12.5 10.6 6.5
CSP all ch 10.2 8.0 3.0
CSP sel. ch 10.0 12.8 2.8

5
best ch 3.0 6.0 2.7
CSP all ch 1.9 5.4 1.0
CSP sel. ch 1.2 5.4 0.5
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