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Abstract

Brain computer interface (BCI) is emerging as a new communication channel for individ-

uals with severe motor disabilities. Yet, its effective application in real-world scenarios is

still limited by low communication rates and by other practical aspects. Notwithstanding,

the constant improvement on techniques for brain activity recording provides signals with

increasing signal-to-noise ratios, and the increase in computational power allows the use

of more complex signal processing techniques, in real-time. In electroencephalographic

(EEG) based BCIs, the recording technique used in this work, much can be done to

improve the performance of BCI systems and to overcome practical limitations, moving

toward its effective use in clinical and non-clinical applications. Therefore, the aim of this

thesis is to contribute with new signal processing methods and new visual paradigms in

the context of BCIs based on a neurophysiologic signal designated by ’P300 event related

potential’. Moreover, several related practical issues are addressed.

In particular, the improvement of communication rates has been accomplished by two

main approaches: 1) development of signal processing techniques based on statistical

spatial filtering; and 2) design of new visual paradigms/protocols. Improving these two

components simultaneously, significantly increases the accuracy and transfer rates of P300

BCIs. Regarding the development of statistical spatial filtering, several methods were pro-

posed in the time domain and in the frequency domain. The frequency domain approach

led to a spatio-spectral method combining simultaneously spatial and temporal filtering.

The performance of the proposed methods was assessed offline and online though exten-

sive experiments performed by able-bodied individuals and individuals with severe motor

disabilities. The results demonstrated the effectiveness of the proposed methods. Regard-

ing the design of new paradigms, a lateral single character (LSC) speller was proposed

to overcome several of the limitations of the standard row-column speller. Additionally,

it introduced a new neurophysiologic dimension besides P300, which is related to the

left vs. right visual presentation layout in the design of the paradigm. The effective

improvements regarding communication rates and P300 enhancement were demonstrated

by online experiments performed by able-bodied individuals and individuals with severe

motor disabilities.

Several other practical aspects were addressed, through the development of a gaze

independent P300-based BCI, and through the development of an asynchronous, subject

controlled, P300-based BCI. The gaze independent BCI makes possible its control without

moving the eyes, an important issue for individuals with severe ocular limitations. The

asynchronous BCI was proposed in the context of a robotic wheelchair steering, allowing
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an automatic subject dependent switch On/Off of the BCI.

We hope that this work has pointed to new directions on the application of statistical

spatial filters. Concerning visual paradigms, we hope that the novel proposed approaches

will be adopted and improved by more research groups.
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Resumo

A interface cérebro-computador (ICC) está a emergir como um novo canal de comunicação

para indiv́ıduos com deficiências motoras graves. Ainda assim, a sua efectiva aplicação

em cenários do mundo real é limitada pelas baixas taxas de comunicação e por outros as-

pectos práticos. Não obstante, a constante melhoria das técnicas de registo da actividade

cerebral fornece sinais com crescentes relações sinal-rúıdo, e o aumento da capacidade

computacional permite o uso de técnicas de processamento de sinal mais complexas em

tempo real. Em ICCs baseadas em eletroencefalografia (EEG), a técnica de registo uti-

lizada neste trabalho, existem muitas formas de melhorar o desempenho de sistemas ICC,

e de superar limitações práticas, caminhando assim em direcção à sua efectiva utilização

em aplicações cĺınicas e não-cĺınicas. Sendo assim, esta tese pretende contribuir com novos

métodos de processamento de sinal e com novos paradigmas visuais, no contexto de ICCs

baseadas num sinal neurofisiológico designado ’potencial evocado P300’. Para além disso,

são abordadas várias questões práticas relacionadas.

Em particular, conseguiu-se melhorar as taxas de comunicação através de duas abor-

dagens principais: 1) desenvolvimento de técnicas de processamento de sinal baseadas em

filtragem espacial estat́ıstica; e 2) concepção de novos paradigmas visuais / protocolos. A

melhoria simultânea deste dois aspectos permite aumentar significativamente a precisão

e as taxas de transferência de ICCs baseadas em P300. Quanto ao desenvolvimento de

filtragem espacial estat́ıstica, foram propostos vários métodos no domı́nio do tempo e

no domı́nio da frequência. A abordagem no domı́nio da frequência levou a um método

espaço-espectral que combina filtragem espacial e temporal. O desempenho dos métodos

propostos foi avaliado offline e online num extenso conjunto de experiências realizadas

por indiv́ıduos saudáveis e indiv́ıduos portadores de deficiência motora grave. Os resul-

tados demonstraram a eficácia dos métodos propostos. Em relação à concepção de novos

paradigmas, foi proposto um soletrador designado por ”lateral single character” (LSC),

para superar algumas das limitações do soletrador padrão de ”linhas e colunas”. Além

disso, este paradigma introduziu uma nova dimensão neurofisiológica para além do P300,

a qual está relacionada com a concepção esquerda vs. direita do paradigma em termos do

layout do est́ımulo visual. A efectiva melhoria das taxas de comunicação e do sinal P300

foi demonstrada por experiências online realizadas por indiv́ıduos saudáveis e indiv́ıduos

portadores de deficiência motora grave.

Foram abordados vários outros aspectos práticos, através do desenvolvimento de uma

ICC baseada em P300, independente do olhar do utilizador, e através do desenvolvimento

de uma ICC baseada em P300 com funcionamento asśıncrono, dependente da intenção
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do participante. A ICC independente do olhar torna posśıvel o seu controlo sem mover

os olhos, uma questão importante para indiv́ıduos com limitações oculares graves. A

ICC asśıncrona foi proposta no contexto da condução de uma cadeira de rodas robótica,

permitindo um modo automático de ligar/desligar a ICC.

Esperamos que este trabalho tenha apontado novas direcções na aplicação de filtros

espaciais estat́ısticos. Relativamente aos paradigmas visuais, esperamos que as novas

abordagens propostas sejam adoptadas e aperfeiçoadas por mais grupos de investigação.
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NB Näıve Bayes

NIRS Near-infrared spectroscopy

NN Neural networks

PBR Practical bit rate

PCA Principal component analysis

qNB Quadratic näıve Bayes
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”Knowledge is our destiny.”

Carl Sagan, in ”The Dragons of Eden”

1.1 Motivation

Human communication and interaction with surrounding environment are two of the

most important things for the human being on which depends its autonomy and survival.

Individuals who suffer from severe motor disabilities by neuromotor disorders, such as

amyotrophic lateral sclerosis (ALS) and cerebral palsy (CP), have their major communi-

cation abilities affected. Some of them suffer from total lack of motor control or very low

dexterity affecting head, limbs, eyes and speech. In neuromotor diseases such as ALS,

also known as Lou Gehrig’s disease, there is a progressive degeneration of lower and upper

motor neurons that lead to a progressive muscular weakness. Affected individuals may

ultimately lose the ability to control any voluntary muscle entering in a ”locked-in” state.

Brain computer interfaces (BCIs) emerge as a feasible type of human-computer and

human-machine interfaces that open a new communication channel to those persons,

without recurring to the conventional output pathways of peripheral nerves and muscles

[Wolpaw 2002]. The goal of a BCI is to translate brain activity, that has been volitionally
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induced by the user, into commands that can be used to control a computer or other

input devices. Individuals in a ”locked-in” condition are conscious and aware of the sur-

rounding environment and thus may use, through a BCI, brain activity to communicate.

For individuals who still retain a weak ability to control some part of the body, but whose

motor performance is very low, showing difficulty on controlling some standard interfaces,

such as as speech recognition, eye tracking, head tracking, and head or teeth switches,

BCI can be used as an alternative interface. Increasing the communication abilities of

these individuals by improving the accessibility to computers and means of locomotion

such as wheelchairs, gives them a higher level of independence and self-satisfaction, thus

enhancing their quality of life. Besides ”assistive communication”, BCI finds many other

applications seeking restoration or repair of human cognitive or sensory-motor functions.

Examples include the clinical applications such as the treatment of neurobehavioral dis-

orders such as attention-deficit and hyperactivity disorder (ADHD) in children and ado-

lescents, treatment of seizure disorders, neuro-rehabilitation for recovery from stroke and

traumatic brain injuries, and entertainment in game applications for healthy users.

From the first pioneering works of Vidal [Vidal 1973], who first introduced the term

”Brain-Computer Interface”, many BCI systems have been developed in particular in the

last decade. Nevertheless, today, the use of BCI is still very limited to experimental tests,

although some patients already use BCI regularly in their daily lives as a communication

device. Several issues have to be addressed to move toward a practical and effective BCI

system. Some of theses issues are addressed in the next section.

1.2 Challenges of EEG-based BCIs

BCI is a complex research area that integrates knowledge from different fields of neuro-

science, biophysics, psychology, computer science, and electrical engineering. Effective

BCI promises depend on the contribution and combination of all these interdisciplinary

fields, which all still face several major challenges. The BCI systems implemented in this

thesis are based on a non-invasive method that measures electroencephalographic (EEG)

activity from the scalp. One of the main challenges of EEG-based BCIs is to increase

their current low communication transfer rates (a few symbols per minute). EEG is char-

acterized by a very low signal-to-noise ratio (SNR). Thus, the decoding of user intentions

from brain patterns requires the application of signal processing and pattern recognition

techniques that can enhance the desired components and attenuate noise from EEG data.

The low SNR is due to several reasons, namely, the low amplitude of the signals, the
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poor spatial resolution and the high susceptibility to muscular and electrical artifacts.

Moreover, EEG signals are nonstationary and present inter-subject and within-subject

variability. Thus, the BCI must be calibrated individually whenever it is used. Several

usability issues are also relevant: BCI requires more attention and concentration than

standard interfaces; and BCI based on external stimuli may cause fatigue and discomfort.

These two issues limit longtime use of BCI. Moreover, some types of BCIs may require

long-term learning. Other aspects such as setup time needed to place the electrodes, due

to gel preparation and significant number of channels, and the unpractical and unnatural

electrode caps currently available are also difficulties to BCI use. Although some dry

electrodes are already available, providing a fast setup, these electrodes still exhibit lower

SNR when compared with wet electrodes (with gel). Finally, most of current BCIs still

work in synchronous mode, that is, the time periods for which the user wishes to control

the BCI system is determined by the application and not volitionally by the user. In

certain real-world scenarios (e.g., control of robotic devices), this limitation derails its

use, or restricts the use of BCI to permanent supervision of humans.

1.3 Goals and key contributions

There are currently three major neural mechanisms used in EEG-based BCIs: control of

sensorimotor rhythms, visual evoked potentials and P300 event-related potentials. This

thesis focuses on the implementation of visual P300-based BCIs toward their effective ap-

plication in real-world scenarios. The implementation of a P300-based BCI can generically

be divided in two parts: development of algorithms for signal processing and classifica-

tion; and design of the paradigm/protocol. By improving simultaneously these two parts

it is possible to greatly increase the accuracy and transfer rates of P300 BCIs. Moreover,

the simultaneous combination of different neurophysiologic features, induced by novel

paradigm strategies is a major contribute to increase performance accuracies. Other rele-

vant aspects for the practical application of P300-based BCIs were also addressed, namely

the reduction of calibration time, and the asynchronous control of BCI. The methodolo-

gies proposed were assessed online and offline in several case-studies with participation

of able-bodied individuals and individuals with motor disabilities suffering from disor-

ders such as amyotrophic lateral sclerosis (ALS), Duchenne muscular dystrophy (DMD),

cerebral palsy (CP) and spinal cord injury (SCI).

The following specific contributions were given in this thesis:

• Statistical spatial filters. The improvement of signal processing and classification
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methodologies are key issues to increase the transfer rate of P300-based BCIs. While

most of the research in this topic has been on the development of new classifiers, we

researched the application of optimum spatial filters (in the statistical sense). With

this approach, spatially filtered signals show a remarkable increase in SNR, which

improves classification performance. Taking as starting point a Max-SNR beam-

former, two spatial filters were implemented, a beamformer based on the Fisher

criterion (FC) and a spatial filter, the C-FMS method, combining sub-optimally

FC and Max-SNR beamformers [Pires 2011d]. In experiments with able-bodied

and disabled individuals controlling a Row-Column (RC) BCI speller, the C-FMS

method led to performance results above state-of-the-art. Additionally, FC beam-

former was extended from the time domain to the frequency domain, leading to a

spatio-spectral Fisher criterion beamformer (SSFCB). The combination of spatial

filtering with temporal filtering increased flexibility and classification performance.

• Novel visual paradigms. Visual paradigm design greatly influences the quality of

the evoked P300 potential. A new proposed paradigm, called lateral single-character

(LSC) speller, enhances the P300 component and increases classification accuracy.

The paradigm was compared with the standard RC speller, through extensive online

experimental tests performed by able-bodied and disabled individuals [Pires 2011b].

LSC showed an increased transfer rate when compared to RC with results above

state-of-the-art. Moreover, the paradigm design of LSC allows the combination of

P300 and SSVEP features, introducing a new neurophysiologic dimension related to

left/right stimuli presentation. Thus, LSC can still have a margin for improvement.

• Gaze-independent visual paradigm. In the last few years, the importance of

gazing a target stimulus to effectively control a P300-based BCI has been discussed.

This gaze dependence/independence issue is very relevant when the interface intends

to be controlled by individuals with severe limitations on ocular movements (e.g.,

advanced stages of ALS). This issue was addressed by proposing a two-level gaze

independent paradigm called GIBS (gaze independent block speller) [Pires 2011c].

Experimental tests showed that GIBS can be used without moving the eyes and

with effective transfer rates. A generic bit rate metric was proposed for two-level

paradigms, allowing bandwidth comparison with other paradigms.

• Asynchronous BCI control. A P300-based paradigm designed specifically to

steer a wheelchair was initially implemented [Pires 2008b]. We realized that the ef-

fective application of this interface required an asynchronous control of the BCI, i.e.,
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user had to be able to automatically switch On/Off the interface. With this purpose,

a 3-state paradigm was researched and implemented based on several approaches.

• P300-BCI assessment with cerebral palsy individuals. For the best of our

knowledge, this thesis is the only work to date where P300-based BCIs were tested

by a significant group of individuals suffering from cerebral palsy. This allowed us

to reach some preliminary results and assessment about the effective application of

BCI in this particular group.

As already referred, the requirement of a calibration of the BCI before each exper-

imental session is a limitative factor. We limited the calibration time of all proposed

P300-based BCIs to about 5 minutes, far below most current systems. Moreover, the

maximum number of electrodes was limited to 12, providing a realistic scenario.

Two additional contributions have also been given. The first was the development of

a Tetris game controlled by BCI, that can be adapted as a neurotherapy tool for children

with neurobehavioural disorders [Pires 2011a]. The second is an automatic detection

of P300 components evoked by subliminar visual tasks, which can be used in clinical

applications for vision [Teixeira 2011].

1.4 Thesis outline

The remainder of this thesis is organized as follows.

• Chapter 2. This chapter presents neurophysiologic background for basic under-

standing of our work. Moreover, a short state-of-the-art allows the reader to frame

the contributions of this thesis.

• Chapter 3. This chapter provides all technical and scientific aspects related to

the implementation and assessment of a P300-based BCI. It gives the necessary

background to understand the proposed methodologies in remaining chapters.

• Chapter 4. Basic description of classification methods is presented here. The

chapter describes methods effectively implemented offline or online along the thesis.

• Chapter 5. This is a core chapter. It formally presents the proposed spatial filters.

The methods are extensively assessed offline and online through a case-study with

able bodied and motor disabled participants. The methods are also assessed with

benchmark datasets.
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• Chapter 6. A new paradigm is presented: the LSC speller. Aspects designed to

eliminate typical limitations of P300-based spellers are described. The paradigm is

compared with the RC speller through extensive experimental tests performed by

able bodied and motor disabled participants.

• Chapter 7. This chapter presents the design and assessment of GIBS, a speller

addressing the gaze independence issue in P300-based BCI. Additionally, a new

metric is obtained specifically for this type of paradigm.

• Chapter 8. A paradigm specifically designed to steer a wheelchair is described.

Then, some approaches for asynchronous control are described.

• Chapter 9. This chapter draws some conclusions and suggest some future direc-

tions.

• Appendices C and D. These appendices present some satellite case studies that

were performed along this thesis with potential relevance for clinical application.



Chapter 2

Neurophysiologic background and

state of the art
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”I can’t put it into words. It’s just- I use my brain. I just thought it. I said, ’Cursor go

up to the top right.’ And it did, and now I can control it all over the screen. It will give

me a sense of independence.”

Matthew Nagle (C3 Tetraplegic, first person to use intracortical BCI in 2004)

This chapter introduces a BCI system, first starting by its definition and then generi-

cally describing its main functional elements. Recording methods, main neurophysiolog-

ical signals used in BCI and current potential applications are presented providing the

current state-of-the-art.

2.1 Introduction to BCI

2.1.1 Definition

The definition of brain-computer-interface (BCI) or brain-machine-interfaces (BMI) is not

unique and has changed along the last decades. Currently, the definition most accepted
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by the BCI community is the one given by Wolpaw [Wolpaw 2002]: ”A BCI is a commu-

nication system in which messages or commands that an individual sends to the external

world do not pass through the brain’s normal output pathways of peripheral nerves and

muscles”. For other words, user’s intent information is encoded only by means of brain

signals. The term ’neuroprosthesis’ is sometimes used interchangeably with the same

meaning of BCI, however, neuroprosthesis is a more generic term that differs from BCI

in two aspects. It can interact with any part of the the nervous system, i.e., with central

nervous system but also with peripheral nervous system (e.g. median nerve to control a

prosthetic hand), and it can provide inputs to the nervous system (e.g. retinal implant or

cochlear implant) [BrainAble 2010]. A BCI translates brain signals volitionally produced

by the user. These signals can be used to control a computer or a robotic device (e.g.

a wheelchair or a prosthetic device). Thus, BCI opens a new communication channel

to those who suffer from severe motor disabilities, unable to control muscular activity.

A generic view of a BCI system is presented in Fig. 2.1. According to the above BCI

definition, BCIs can fall into two classes, dependent and independent [Wolpaw 2002]:

Dependent BCI A dependent BCI considers that besides brain activity, muscular activity is

required to control the BCI. For example, in a BCI based on visual stimuli placed at

different screen locations, if the user has to move the eyes to one of the stimulus to evoke

a potential, then it is considered a dependent BCI. Despite the brain’s output channel is

EEG, the user requires extraocular muscle activity to gaze the stimulus. In this case, more

efficient interfaces could be used to monitor eye movements (e.g., eye-tracking camera).

Independent BCI On the other hand, an independent BCI, sometimes referred as a ’true’

BCI, does not depend in any way on peripheral nerves and muscles to generate the brain

activity. For example, the BCI based on a visual P300 evoked potential is considered

independent because the EEG signal depends only on the users’s intent, not requiring

gaze shifting.

People with severe motor impairments, lacking of all normal output pathways, may be

unable to control a dependent BCI. The importance of gaze shifting depends obviously

also on the design of the task and visual display, as well as on other exteroception and

proprioception characteristics of users [Allison 2008]. The dependence/independence BCI

classification is sometimes controversial or non-consensual, as it will be discussed in section

2.2. This issue will be addressed in detail in chapter 7.
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2.1.2 Signal acquisition

Several methods exist for brain signal acquisition, ranging from non-invasive to highly

invasive techniques. The biophysical nature of the signal source can be grouped in elec-

trophysiological, magnetic and metabolic. A summary of these measurement techniques

are briefly reviewed below comparing some of the main characteristics. Extended surveys

can be found in [BMBF 2005, Mak 2009].

2.1.2.1 Electrophysiological signals

Electrophysiological signals are usually classified according to their degree of recording

invasiveness. Three types are currently used in BCI: electroencephalographic (EEG),

electrocorticographic (ECoG) and intracortical.

Electroencephalography EEG is one of the most popular non-invasive methods. It was mea-

sured for the fist time by Hans Berger in 1929 [Jung 1979]. These signals are recorded from

the surface of the scalp. This method is very popular because the measurement devices are

simple, low cost, safe, and the measurement preparation is relatively fast. Only an abrasive

gel for skin cleaning and a conductivity gel are used to improve the conductivity between

the scalp and the electrodes. These are usually placed at standard positions according to

the 10-20 international system or extended positions of this standard (Fig. 3.6). However,

EEG presents some limitations, namely, limited frequency range, low spatial resolution,

and susceptibility to several types of artifacts. An EEG electrode measures the potentials

resulting from the summation of the synapses of millions (ensemble) of neurons under the

area beneath the surface of the electrode. However, due to volume conduction in the skull

and scalp, the electrode receives also EEG signals from surrounding regions up to 10 cm

[Srinivasan 1999]. This poor spatial resolution results on a mixing of brain components

coming from different neurophysiologic sources. Furthermore, the skull attenuates signals

(amplitudes in the order of 10 − 20µV ), in particular, in frequencies above 50 Hz. The

presence of neurophysiologic artifacts, such as cranial muscular activity, eye movements

and blinks, as well as external electromagnetic interferences, further degrade the quality

of the signals. The combined effect of these noise sources leads to a recorded signal with

a relative low signal-to-noise ratio (SNR).

Electrocorticographic ECoG is measured under the skull either outside the dura mater

(epidural) or under the dura mater (subdural). Thus, the placement of the electrodes

requires an intracranial invasive surgical procedure. The elimination of the insulating

effect of the skull and scalp significantly improves the spatial resolution (tenths of mil-

limeters), the attenuation effects (amplitudes in the order of 50 − 100µV ), and reduces
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the presence of artifacts. This leads to a higher SNR and a wider frequency range (0-500

Hz) when compared to EEG recordings. Experiments with ECoG-BCIs have been made

in patients with epilepsy who undergo the temporary placement of electrodes for moni-

toring and localization of seizure foci prior to surgical procedure [Schalk 2008]. The BCI

experiments are made during the periods of monitoring, typically of 2-3 weeks. Studies

in [Schalk 2004, Leuthardt 2006] show that patients are able to perform 2D control of a

cursor in a computer screen with little amounting of training.

Intracorticography Intracortical recordings require the implantation of microelectrodes in the

brain. They measure local field potentials (LFP) and neural action potentials (spikes).

However, this highly invasive procedure carries serious risks of infections for patients. Fur-

thermore, it is difficult to maintain stable long-term recordings and the technical require-

ments of single-neuron recordings are high. For these reasons, intracortical BCI have been

studied mainly in monkeys [Carmena 2003] and very few in humans [Kim 2008]. Some

experiments show monkeys performing reach-and-grasp tasks in 3D (three-dimension) by

means of a 6DOF (degrees of freedom) robot arm [Carmena 2003]. In [Kim 2008], a

tetraplegic human, using neural activity recorded from the motor cortex, acquired the

ability to control a computer cursor in 2D (position and velocity).

Despite the great quality of the signals of invasive approaches, their current use in

BCI for clinical applications is quite limited. Therefore, scalp recorded EEG remains one

of the most used methods, presenting successful results in clinical applications and other

areas as shown in the following sections and from our own achievements in this thesis.

2.1.2.2 Magnetic and Metabolic signals

Magnetoencephalography Magnetoencephalography (MEG) is a non-invasive method that

detects magnetic fields induced by electrical currents in the active neurons. The magnetic

field strength is very small (< 10−12 Tesla) and therefore, extremely sensitive devices are

necessary to detect them. MEG has a temporal resolution similar to EEG, but a higher

spatial resolution and wider frequency range. It has been used in some experimental BCI

studies [Mellinger 2007]. However, despite the attractive characteristics, MEG requires

expensive bulky equipment and shielded environment, making impracticable its clinical

use.

Functional Magnetic Resonance Imaging Functional magnetic resonance imaging (fMRI)

measures metabolic activity through blood oxygen level dependent (BOLD) signal. Com-

pared to EEG it has a better spatial resolution, however it presents a poor temporal

resolution, in the order of seconds, i.e., BOLD signal is observed only a few seconds after
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Figure 2.1: Generic representation of functional elements of a BCI system (figure inspired
in [Mak 2009]). Signal recording from the surface of the scalp (EEG), intracranial over the
cortical surface (ECoG), and within the brain (intracortical); Signals are processed and
classified in real-time and then translated into control commands; These commands can
be used for communication (e.g. speller devices), to control robotic devices for locomotion
(e.g., wheelchair) or prosthetic devices (e.g., orthotic hand (Oregon TalonTM)), for game
control (e.g., used as neurotherapy), and for neurorehabilitation (e.g., recovery of damaged
brain regions). A BCI system always requires the feedback (e.g., visual, auditive or tactile)
of the actions.

the neural activation. This temporal resolution strongly limits BCI applications. Notwith-

standing, as a proof-of-concept, researchers successfully achieved real-time BCI operation

[Weiskopf 2004].

Near-infrared spectroscopy Near-infrared spectroscopy (NIRS) is a recent non-invasive tech-
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nique that measures the cortical activity through optical methods. Near-infrared light,

light with a wave-length in the range of 700 − 1000 nm, penetrates the scalp, suffering

changes in light absorption and reflection according to BOLD changes. The performances

of current fNIRS-based BCIs are much inferior to EEG [Coyle 2007]. However, unlike the

MEG and fMRI, this technique is portable and inexpensive and therefore might be an

alternative in the future.

2.2 Neural mechanisms used in EEG-based BCI

There are currently three major neuromechanisms to control EEG-based BCIs: control

of sensorimotor rhythms (SMR), visual evoked potentials (VEP) and P300 event-related

potentials (ERP). In the first approach, users learn to control sensorimotor rhythms by

performing mental tasks, such as motor imagination (e.g., imagination of hand movement).

In the second approach, BCI is controlled by a neurophysiologic response to some type

of visual stimulus. The third approach relies on the response to an infrequent event

occurring randomly within frequent standard events (oddball paradigm). These events

can have different modalities such as visual, auditive or tactile. These three approaches

were all experimentally tested at ISR during this thesis. A brief description is given below

and a comparison of the methods is provided in Table 2.1.

Sensorimotor rhythms Sensorimotor rhythms are recorded over the sensorimotor cor-

tex (see Fig. 2.1). The main neurophysiologic features are related to the desynchro-

nization and synchronization (ERD/ERS) of sensorimotor rhythms µ (8-12 Hz) and

β (18-25 Hz) [Pfurtscheller 1998, Fabiani 2004]. These rhythms typically decrease

(ERD) during a motor movement or on its preparation, and increase (ERS) during

motor relaxation (see Fig. 2.2a)). Individuals can learn to control SMR by per-

forming sensorimotor tasks. By exploring the topographic map of the motor cortex,

distinct regions can be activated by selecting specific tasks for imagination, for in-

stance, imagination of left hand vs. right hand or foot vs. hand [Pfurtscheller 1998],

or even with different types of movements for the same limb (e.g., rotation vs. flex-

ion of wrist) [Vuckovic 2008]. Due to the low spatial resolution of EEG, the number

of discriminative brain patterns is usually limited to 3-4 [Naeem 2006]. Individuals

must train to learn to control their rhythms, which can take several days, weeks or

months. However, some people are unable to achieve this control. Visual feedback

acts as reinforcement to increase the learning rate.

During SMR control, a motor related potential (MRP) occurs reflecting the prepa-
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ration of a movement. This potential is characterized by a slow negative shift,

designated by readiness potential (RP) or Bereitschaftspotential, that occurs before

the onset of the movement [Cui 1999] (see Fig. 2.2b)). This MRP can be used by

itself to control a BCI or in combination with SMR [Blankertz 2006].

Visual evoked potentials A visual evoked potential is an exogenous response to a vi-

sual stimulus. It is considered an early component of an event related potential

(ERP), i.e., it occurrs within the 100 ms after the onset of the stimulus (e.g., com-

ponent N100 in Fig. 2.2d)). The response, recorded at visual cortex (see Fig. 2.1),

depends mainly on the physical attributes of the stimulus. To control a VEP-based

BCI, the user has to direct the gaze to the target stimulus. Therefore, these BCIs

are considered dependent BCIs. Compared to SMR and P300, this type of interface

usually presents higher communication rates, however, if the user can deftly move

the head or eyes, other standard alternatives can be used instead (e.g. head-tracker

or eye-tracker). Initial tests with more than two decades [Sutter 1992] showed that

subjects were able to control a speller device based on VEPs produced by 64 brief

visual stimuli. Currently, most of the approaches are based on steady state vi-

sual evoked potentials (SSVEP), which are potentials evoked at the visual cortex

as response to stimuli flickering at rates above 6 Hz [Gao 2003] (see Fig. 2.2c)).

Recently, other VEPs have been researched for BCI, namely the motion-onset VEP

(mVEP), a visual motion response of the higher visual system [Liu 2010]. Although

VEP-based BCIs are considered dependent BCIs, in [Kelly 2005] covert attention

was used for online SSVEP BCI control, and recently in [Allison 2008] some evi-

dences were reached showing that overlapping stimuli can evoke changes in SSVEP

activity sufficient to control a BCI, not requiring gaze shifting. However, conclusive

results require further validation.

P300 P300 is an endogenous positive polarity component of an ERP that is elicited

by a relevant (target) event in an oddball paradigm (2-state condition where

an expected but infrequent event occurs among standard events (non-target)).

The stimuli can be a visual, auditory, tactile or somatosensory [Sanei 2007].

P300 waveform is typically characterized by its peak amplitude, latency, and

spatial distribution. It occurs typically at a latency of approximately 300 ms

after the onset of the stimulus and has a greater centroparietal distribution

[Comerchero 1999, Friedman 2001, Donchin 2000] (see Fig. 2.2d)). It is also some-

times referred has P3b in contrast to P3a. This one has a greater frontocentral distri-
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bution and is produced by an infrequent and novel (not expected) nontarget event (3-

state oddball paradigm) [Comerchero 1999, Friedman 2001]. While VEPs are auto-

matically evoked by external stimuli and depend mainly on their physical attributes,

late ERPs such as P300 depend on volitional intent of the user, strongly depending

on internal cognitive processes. P300 ERPs vary according to stimulus modality,

stimulus probability, inter-stimulus interval, task-relevance, decision making, selec-

tive attention, expectancies and relative perceptual distinctiveness among stimuli

[Polich 2007, Rohrbaugh 1974, Polich 1996, Comerchero 1999, Heinrich 2008]. An

ERP elicited by an oddball paradigm exhibits other components besides the P300

(Fig. 2.2d)). Early components such as the N100 VEP, are automatic responses

to sensory input (visual cortex) and subsequent deflections such as P200 reflect

early stimulus evaluation and feature detection [Luck 1994]. The N200 component

reflects attention, classification and spatial search tasks related to deviant stimuli.

P300 reflects broad recognition and memory-updating processes [Patel 2005]. To

elicit a P300 potential, users are not required to gaze the target stimuli. Therefore

P300-based BCIs are considered independent. However, to perceive the occurrence

of the event, users may need to slightly direct gaze to a target stimulus. For exam-

ple, symbols that appear at the visual periphery may be unattended by the user.

Thus, users may have to move their eyes to re-locate the target in the foveal region.

These and other related issues will be addressed in more detail in chapters 6 and

7. The term P300-based BCI has also been questioned because besides the P300

component, other components (e.g., N200) have a contribution to BCI performance

(see chapter 6). Treder et al. (2010) have suggested to use the name ERP-based

BCI instead of P300-based BCI.

See table 2.1 for a summary of generic advantages and disadvantages of the above

three neuromechanisms. In addition to the aforementioned approaches, slow cortical po-

tentials (SCP) have been used in BCI until recently [Birbaumer 2000, Hinterberger 2004].

SCPs are very slow positive and negative shifts (up to 10 s) of EEG, usually associated

with cognitive tasks. The investigation of these potentials for BCI has been gradually

abandoned due to its very low transfer rate and because of the user intensive training.

However, this approach has been used for neurotherapy (e.g., control of epyleptic seizures

and attention deficit disorders) [Birbaumer 2006].
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Figure 2.2: a) Event related desynchronization during a motor imagination task (µ
rhythm). Cue instant indicates the instant when the user starts the SMR control
[Pires 2008a]; b) Readiness potential (Bereitschaftspotential) measured at channel C3.
It is a slow negative shift occurring before a finger movement (keyboard press) at instant
0 s [Pires 2007]; c) Frequency spectrum of SSVEP responses to 15Hz and 16Hz flicker
stimuli, measured at channel Oz [Ribeiro 2009]; d) Example of a typical P300 event re-
lated potential elicited by the LSC paradigm (see chapter 6), measured at channel Cz.

2.3 BCI applications

In the last decade, the research work in EEG-based BCI significantly increased. Ev-

ery year, dozens of interesting works are published. We present here only some

representative works regarding main BCI applications, milestones and trends. See

[Blankertz 2010, Mak 2009, Birbaumer 2006] for more extensive surveys. Our review is

limited to BCI works based on EEG.

BCI applications can broadly be divided in: 1) communication; 2) control of assistive

robotic devices; 3) neurorehabilitation; 4) neurotherapy; and 4) non-medical applications.

Communication - The restoration of communication for people who are ’locked-in’ or suffer

from severe motor disabilities has been the main topic in BCI research. Several speller
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devices have been developed allowing disabled persons to sequentially select letters of the

alphabet.

The first speller device was the RC visual P300-speller, introduced by Farwell and Donchin

[Farwell 1988]. The paradigm is based on a 6×6 matrix of letters where rows and columns

flash randomly (see chapter 3). Since then, one of the most interesting evolutions of

the RC speller was the checkerboard speller which extends the rows/columns concept

[Townsend 2010]. P300-based communication systems have been successfully used by

individuals with neuromotor diseases and motor disabilities resulting from stroke and

spinal cord injuries [Kubler 2008]. Typical average rates of P300-spellers achieved by

able-bodied individuals are in the range of 20 − 25 bpm. Bit rates achieved by disabled

persons strongly depend on the level of disability. Very recently, a commercial P300 speller

for general audience has been made available by g.tecr company [gtec 2009]. ERP-BCIs

based on auditory stimuli are being currently researched as an alternative for patients in

advanced stages of ALS who show severe eye restrictions (e.g., complete ’locked-in’ sate)

or individuals with visual impairments [Furdea 2009, Guo 2010, Hohne 2011].

The SSVEP neuromechanism has also been used as a speller device. Several approaches

are described in [Wang 2006, Cecotti 2010] showing average bit rates in the range of 30−45

bpm for able-bodied individuals (no results are reported with disabled patients). These

bit rates are achieved by systems where users have to gaze the targets (dependent BCIs).

SMR have been used to control a cursor on a screen with movements in 1D, 2D and

3D [Wolpaw 2004, Neuper 2006, McFarland 2008a, McFarland 2010]. After some train-

ing, users learn to control SMR through motor imagination tasks, acquiring the skills to

select letters or icons associated to specific control tasks. Reported studies show success-

ful results with patients in advanced stages of ALS, despite the low transfer rates (less

than 2 symbols/min). Besides visual feedback, auditory feedback can be provided when

individuals have visual impairments [Nijboer 2008].

The regulation of SCP has been used in one of the earliest speller systems, the thought

translation device (TTD) developed in Birbaumer’s lab [Birbaumer 2000] [Kübler 2001].

Users control a cursor that selects letters by performing binary decisions. Despite the

successful results reported with ALS individuals, this neuromechanism offers very low

transfer rates and requires long-term training [Birbaumer 2006].

Wheelchair steering - Paralyzed individuals bounded to a wheelchair and unable to control

standard interfaces may benefit from BCI to restore their mobility. However, this imple-

mentation faces many challenges. First, the BCI has to function asynchronously, i.e., the

user decides when to send a command and not the system itself. Therefore, a ’non-control’

state should be detected additionally to steering commands. Second, since the number
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of decoded symbols per minute is very low, usually less than 10 commands per minute,

wheelchair manoeuvres have to be provided by a semi-autonomous navigation system that

receives sparse commands from user. Millan performed the first experiments in this field,

controlling a mini-mobile robot [Millan 2004]. Since then, several experiments have been

performed toward brain-actuated wheelchairs, using SMR [Tanaka 2005, Galán 2008] and

P300 [Iturrate 2009, Rebsamen 2010], addressing the asynchronous operation issue. The

success of these systems strongly depend on mobile robot advances.

Environmental control - In the actual societies, the concept of ambient assisted living

(AAL) has an increasing social importance. The control of simple environmental domestic

devices through BCI can substantially increase the level of independence of home-bounded

individuals who suffer from severe motor disabilities. In [Gao 2003], SSVEP controls an

infrared remote-controller that actuates multiple external devices, such as TV, video tape

recorders, or air-conditioners. A complete AAL system was designed in [Cincotti 2008].

The home environment was tested by several motor disabled patients who could con-

trol external devices such as neon lights and bulbs, TV, motorized bed, acoustic alarm,

doors and telephone. These devices were commanded by selecting icons in a computer

screen through modulation of SMRs. A P300 neuromechanism was also used to control

an apartment in a 3D virtual environment [Bayliss 2003].

Neuroprosthetics - Neuromotor prostheses can allow tetraplegic individuals or amputees to

restore some movement abilities. Due to the low transfer rates provided by BCI, this is a

very challenging research area. Yet, successful invasive and non-invasive applications have

been reached [McFarland 2008b]. In [Pfurtscheller 2000], a tetraplegic patient using an

SMR-based BCI, learned to control an electrical driven hand orthosis, restoring its hand

grasp function. Functional electric stimulation (FES) of hand muscles controlled by SMR

was also applied to restore hand grasping [Pfurtscheller 2005]. Tasks such as the control of

a 3D cursor or the control of a robotic arm are more complex. These tasks usually follow

two approaches: ’goal selection’ or ’kinematic control’ [McFarland 2008b]. The second

approach is very demanding, since it requires the BCI to provide continuously 3 control

signals (one per dimension). This approach has been used mostly in intracortical BCIs

with tests in monkeys [Taylor 2002], while the less demanding ’goal selection’ has been

used mostly in non-invasive BCIs [McFarland 2008b].

Neurorehabilitation - It was shown in [Daly 2008] that neurotherapy based on BCI can be

used in parallel with standard motor therapies to help stroke patients to recover injured

neuromuscular functions. The underlying idea is that BCI might be used to induce brain

plasticity activity. According to [Daly 2008], learning to regain motor control can be

performed following two strategies: 1) by providing visual feedback of EEG activity, users
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are asked to regulate SMR activity [Daly 2006]; or 2) by translating the EEG activity to

activate a device that assists movement [Daly 2009]. Learning strategies have to be used

adequately, otherwise abnormal motor function can be even exacerbated.

Neurotherapy in behavioural disorders - Neurofeedback, i.e., the real-time feedback

of brain activity, has been used for some time to ameliorate ADHD in children

[Monastra 2005, Gevensleben 2009]. For instance, in ADHD, EEG rhythms related to

attention can be translated into game commands, e.g., control the altitude of a plain or

similar tasks [Wang 2011]. In the example, a child who is asked to maintain the altitude of

the plain above a threshold level, is actually controlling its attention level. These systems

are today an effective alternative to pharmacologic treatments. Same neurofeedback prin-

ciples can be used for therapy in autism, dyslexia, tourettes, to control seizure frequency

in people with epilepsy, or for neuroreahabilitation as described above.

Non-medical - BCI techniques can be applied for non-medical purposes for healthy people.

EEG monitoring for car accident prevention, monitoring of performance capabilities, work-

load evaluation and cognition evaluation, are examples of applications that can have posi-

tive outcomes in our daily lives [Blankertz 2010]. Game-control based on BCI is currently

used in research context [Pineda 2003, Reuderink 2008, Tangermann 2008, Finke 2009],

however it will be for sure present in our daily lives, in a near future.

2.4 Conclusion

Although invasive BCIs may potentiate higher transfer rates and a broader range of

real-world applications, several researchers state that current non-invasive BCIs can

provide performances comparable to that achieved by invasive methods [Daly 2008]

[McFarland 2010]. The main limitative factor for the effective use of BCI in real-world

scenarios is its low transfer rate. Moreover, the control of robotic and environmental

devices require an asynchronous participant controlled operation, not available in most of

the systems. From the three neuromechanisms used in non-invasive BCIs (P300, SSVEP

and SMR), SSVEP presents the higher transfer rates. However, because SSVEP is gaze

dependent, this option has been discarded from most of the clinical studies. P300-based

BCIs show transfer rates substantially higher than that achieved with SMR-based BCIs

in clinical studies with severe motor disable patients [Nijboer 2010]. However, when a

continuous control is required, stimuli-based BCIs may not be the most suitable, since

they only provide discrete commands in time. The choice of a neuromechanism to control

a BCI should take several aspects into consideration: user’s limitations, user comfort,
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specific requirements and usability of the application.



Chapter 3

P300-based BCI: Material and

methods

Contents

3.1 Standard Row-Column P300 Speller . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Paradigm description . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.2 Classification architecture . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Bit rate metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Offline evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Software framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Motor disabilities of participants . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1 Amyotrophic lateral sclerosis . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.2 Duchenne muscular dystrophy . . . . . . . . . . . . . . . . . . . . . . 33

3.4.3 Cerebral palsy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.4 Spinal cord injury . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

”Information is the resolution of uncertainty.”

Claude E. Shannon

This chapter describes the complete design of a P300-based BCI system. It provides

the background and materials necessary to the remaining chapters. Although this chapter
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focuses the standard Row-Column speller (RC), the underlying architecture is common to

any other P300-based BCI. All aspects associated with a P300-based BCI are explained,

namely, paradigm/protocol, terminology, synchronization and performance metrics. The

software framework that was developed for the implementation of the P300 systems is

succinctly described.

Additionally, a description of the disorders of disabled individuals who took part in

experiments is provided.

3.1 Standard Row-Column P300 Speller

The RC speller, introduced by Farwell and Donchin in the eighties [Farwell 1988], was the

first BCI system based on P300. Nowadays, this paradigm is still the P300 system mostly

used for spelling and remains a benchmark for system comparison. Our implementation

follows the original RC paradigm, despite some slight modifications, such as the set of

symbols and the flashing presentation.

3.1.1 Paradigm description

The layout of the RC speller paradigm is a 6 × 6 matrix that comprises the alphabet

letters and other useful symbols such as the ’spc’ and ’del’, which are used respectively

to separate the words and to delete misspelled letters (see a screenshot in Fig. 3.1a)).

The rows and columns of the matrix flash randomly according to an oddball paradigm.

The user mentally selects a letter. The target event corresponds to the row or column

that includes the symbol mentally selected (relevant stimuli), while all other rows and

columns correspond to non-target (standard) events (see screenshots of successive events

in Fig. 3.1b)). Target events are supposed to elicit a P300 component. The detected

symbol is obtained from the combination of the target row and target column. From

the 12 events (6 columns and 6 rows), two are relevant targets, thus target probability

is (1:6). The rows and columns are flashed (highlighted) by changing the color from

gray to white. To increase flash perception the size of the symbols are slightly increased

by ≈ 15% when highlighted. The interval between the onset of two consecutive stimuli

(stimulus onset asynchrony, SOA) and the inter-stimulus interval (ISI) are both adjustable

(Fig. 3.1)c)). In most of the experiments, SOA and ISI were respectively set to 200

ms and 100 ms. A sub-trial consists of a round of 12 events as shown in Fig. 3.1c).

Since the SNR of the EEG signal is very low, it is usually necessary to combine several

sub-trials to correctly detect the targets. The number of sub-trials is settled before the
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online operation, however some approaches can be used to automatically adapt/adjust

the number of event repetitions according to user performance in the course of the online

experiment [Lenhardt 2008, Jin 2011b]. The recorded EEG must be synchronized with

the onset of each event, and labeled with the code of the respective event. The data

segment associated to each event is called an epoch which has a duration of 1 second

in our experiments (Fig. 3.1c)). An interval between trials (inter-trial interval, ITI) is

required to allow the user to switch the attention focus for a new symbol mentally selected.

The terms symbol/character/letter are sometimes interchangeably used always with

the same meaning.

3.1.2 Classification architecture

Before the online operation, a P300-based system requires a calibration phase, from which

EEG is recorded and labeled according to the event types (target and non-target). During

this phase, the user mentally selects pre-defined letters, which are sequentially provided

at the top of the screen. The labeled data (ground truth) are used to train, in offline, the

feature extractors, the feature selectors and the binary classifiers models, as illustrated

in Fig. 3.2-Top and are then applied online (Fig. 3.2-Bottom). A P300-based system

comprises two types of classification. A binary (two-class) classification and a C-class

classification for character recognition (the number of classes is the same as the number

of symbols). These two classifiers are applied sequentially:

Binary classifier: taking the models obtained for target and non-target epochs, the

binary classifier is applied to each data segment (epoch) associated to an event, and

detects whether or not it contains a P300 component.

C-class classifier: the outputs of the previous binary classifications are combined to

find the most likely target events. The output class and respective score of each

event is used to find the character mentally selected. This decision module plays

an important role in the P300 system and may significantly improve the online

accuracy. The implementation also depends on how the sub-trials are combined.

An approach is detailed in section 5.4.4.

In particular for the RC speller, the number of symbols (classes) is given by (Nev/2)
2 where

Nev is the number of events. For a 6×6 matrix, Nev = 12 and thus the symbol recognition

is a 36-class classifier. It should be stressed out that random level accuracy is 2.7% for

Ns = 36 symbols. After the C-class classifier, a word prediction can further be applied
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Figure 3.1: a) Screenshot of 6 × 6 matrix speller paradigm; b) Screenshots of successive
events; c) Top: temporal diagram defining SOA and ISI. Bottom: temporal diagram
showing epochs extracted from the continuous EEG data stream.

driven by dictionaries (intelligent writing) [Ahi 2011]. Thus, usually the accuracies are

provided for the binary classifier and for the character recognition classifier.

3.2 Performance metrics

To assess the performance of a BCI system, several evaluation criteria have already been

proposed (see a survey in [Schlögl 2007]). A BCI system encompasses many parameters

related to its underlying paradigm, which includes the amount of encoded information,
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Figure 3.2: Classification architecture of a P300-based BCI system. Top: offline training
to obtain feature extractor models, selected features, and classifier models. Bottom: for
the online recognition, the binary classifiers are applied to each event, and then their
output scores are combined to identify the mentally selected symbol.

the required time for selecting a symbol and its detection accuracy. The ultimate goal

of a BCI is to provide an effective communication channel. Thus, the gold standards to

evaluate a BCI performance should be the online accuracy and the online bit rates. Only

these evaluation criteria can attest the effective application of BCI in real world scenarios.

Offline classification accuracy (or error rate) is a powerful measure to train classifiers, but

it only gives an estimation of the potential online performance [Townsend 2010]. While

some research works show impressive offline results, they lack of rigor for two reasons: 1)

the results concern the binary classification only, omitting the C−Classification part; 2)

the offline binary classification use inappropriate accuracy metrics. This section describes

and discusses the online metrics and the offline evaluation criteria used in this thesis.

3.2.1 Bit rate metrics

Wolpaw et. al introduced a metric to compute the information transfer rate (ITR) of a

BCI system [Wolpaw 2000]. The formula can be obtained from Shannon’s [Shannon 1948]

theory by modeling the BCI system as a noisy communication channel (see Fig.3.3). The

average mutual information, I(X;Y ), between the intention of the user and the detection
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Figure 3.3: BCI system modeled as a communication channel. Simulation of an online
experiment with 3 errors in 10 characters (70% accuracy).

made by the BCI system is given by

I(X;Y ) = H(X)−H(X|Y ) (3.1)

whereH(X) is the source entropy andH(X|Y ) is the information lost in the noisy channel,

i.e., it represents the classification error rate of the BCI system. Assuming a BCI with Ns

possible choices (number of symbols) which are equiprobable, and an online classification

accuracy of Pac, then I(X;Y ) ≡ B, measured in bits/symbol, is given by (see Appendix

A.1 for a derivation of this formula)

B = log2(Ns) + Pac log2(Pac) + (1− Pac) log2
(1− Pac)

(Ns − 1)
. (3.2)

Taking the rate of possible selections per minute rs (symbols per min, SPM) then the

ITR is expressed by

ITR = rsB. (3.3)

The rs rate is obtained from

rs =
60

Nrep × (Nev × SOA) + ITI
. (3.4)

This metric is currently widely used by the BCI community as a benchmark metric

for performance comparison, particularly in P300-based BCIs. The ITR reflects simul-

taneously the accuracy, the number of symbols per minute and the amount of encoded

information. However, the use of this metric for the assessment of a BCI should always be

accompanied with the online accuracy. Metric (3.3) can be fallacious because low levels

of accuracy may provide reasonable bit rates while at the same time be unacceptable for

an effective communication [Sellers 2006a]. For example, in Fig. 3.3, a simulation of an
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online experiment spelling ”I-LOVE-BCI” with 70% accuracy, shows that the detected

sentence is nearly unintelligible. Nevertheless, for this classification accuracy the ITR is

more than 12.5 bpm (see graph in Fig. 3.4).

Actually, ITR does not take into account the correction of errors and therefore it

can not provide a realistic metric of the overall BCI performance. Several authors

[Townsend 2010, Dal Seno 2010] realized that ITR is not the most suitable metric and

argue that a more practical and generic metric is needed to assess and compare BCIs.

A metric that takes into account the correction of misspelled letters is more suitable be-

cause it clearly expresses the effect of online classification accuracy. The time needed to

correctly spell a letter can be obtained by computing the average number of tries, Nr

until the letter is correctly spelled. Every time an error occurs, two additional selections

are required (one for deleting and one for re-spell). This can be seen as a communication

protocol for error recovery controlled by the user. The Nr value is computed following an

approach similar to that found in [Dal Seno 2010] and [Townsend 2010]. Assuming that

user wants to correctly spell N symbols, then, taking the probability of failure (error pe)

and associated overhead, the number of required selections is

N + 2(N)pe + 2(2Npe)pe + 2(2(2Npe)pe)pe + · · · = N
∞∑
i=0

(2pe)
i. (3.5)

The series converge to
N

1− 2pe
(3.6)

as long as pe < 0.5. Otherwise, the required number of selection tends to infinite, i.e., the

user will never be able to correctly spell a sentence. Rearranging the above equation, in

terms of classification accuracy (Pac = 1 − pe), instead of the error rate, we obtain the

number of tries, Nr from

Nr =

N
1−2(1−Pac)

N
=

1

1− 2(1− Pac)
. (3.7)

The practical bit rate (PBR) is then obtained from

PBR =
rs
Nr

log2Ns, (3.8)

where log2Ns is the source entropy, H(X). A comparison between the ITR and PBR is

shown in Fig. 3.4 taking respectively (3.3) and (3.8). The simulation was made for a
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Figure 3.4: Bit rate comparison between ITR (3.3) and PBR (3.8) varying according to
classification accuracy. The simulation was made for a RC speller, 36 choice, Nrep = 5,
ISI = 200 ms and ITI = 0.

6× 6 matrix (Ns=36 symbols), with Nrep = 5, ISI = 200 ms and omitting the ITI. For

example, for a 50% classification accuracy, the PBR is 0 bpm, while the ITR is 7.40 bpm.

Despite this significative ITR value, user would never be able to correctly spell a sentence.

In the other hand, assuming no correction, spelling is not intelligible below certain levels

of classification accuracies. Approaching Pac = 100%, the values converge as expected.

It is further required to present a suitable formula to measure the online accuracy

Pac. Since it is possible to correct a symbol, and the correction (’del’ symbol) is itself a

selection, both spelled and correction symbols must be taken into account, thus

Pac = 1− Ne

Nc +Nce

(3.9)

where Ne is the number of misspelled characters/symbols, Nc is the number of characters

of the sentence and Nce is the number of corrected errors with ’del’.

Section 7.2.2 in chapter 7 extends the practical bit rate metric (3.8) to a novel 2-level

speller (GIBS).

3.2.2 Offline evaluation

3.2.2.1 Accuracy

The offline binary classification accuracy can provide an estimate of the online BCI per-

formance. In P300-BCI, this measurement has to be carefully analyzed, because target

and non-target classes are highly unbalanced. This occurs because the probability of one

class is much smaller than the other one. For that reason, the performance measures have
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to be selected appropriately. Considering the information of true positives (TP), false

positives (FP), true negatives (TN) and false negatives (FN), the common classification

accuracy is given by

Pa =
TP + TN

TP + FP + FN + TN
. (3.10)

Because of the unbalanced classes, this measure is not suitable as we shall see. Suppose a

target and non-target probability of 1/10 and 9/10, respectively. If the classifier classifies

all epochs as non-target, then the classification accuracy is 90%, despite it failed all target

epochs. Obviously, this measure is a poor indicator for online performance. This issue

is sometimes disregarded in some works. To deal with unbalanced classes, we propose a

balanced accuracy measure, which treats both classes with equal importance, that is

Pbal =
TPR + TNR

2
= 0.5

TP

TP + FN
+ 0.5

TN

TN + FP
(3.11)

where TPR and TNR denote respectively true positive rate and true negative rate. Equiv-

alently, the balanced error is given by

ebal =
FPR + FNR

2
(3.12)

where FPR and FNR denote respectively false positive rate and false negative rate. If

not stated otherwise, these two measures will be the standards to evaluate the offline

performance in the remaining chapters, and they will be sometimes simply referred as

classification accuracy and error rate. In a clinical case-study presented in appendix D,

the sensitivity and specificity are also used as performance measures

Sensivity =
TP

TP + FN
Specificity =

TN

TN + FP
. (3.13)

As a remark, note that the balanced accuracy (3.11) embodies simultaneously specificity

and sensitivity (3.13).

3.2.2.2 SNR

The SNR measure provides important and reliable performance information. From a

neurophysiological perspective, it assesses the ’quality’ of the ERP, by measuring the inter-

trial variability, and it quantifies the improvements achieved by the application of signal

processing techniques. From a classification perspective, our own observations clearly

indicate a direct relationship between SNR and classification performance (see chapter
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5). This observation makes SNR a good measure to train or tune signal processing and

classification algorithms. Considering a set of K target epochs y, the SNR is estimated

according to [Lemm 2006]

SNR(y) = 10 log
Vart(Ek[y])

Ek[Vart(y − Ek[y])]

= 10 log
Vart(ȳ)

Ek[Vart(y − ȳ)]
(3.14)

where Vart is the temporal variance of the ERP signal and E[·] is the expected value

estimated from all K epochs.

3.3 Experimental setup

Experiments consisted on calibration and online feedback sessions. During the calibration

sessions, the user of the BCI system is asked to perform a task, according to a visual

paradigm. The recorded data are labeled with class information (ground truth). These

data are used to train the classification models and then applied in online sessions. The

classification models are specific to each subject.

The experimental setup is presented in Fig. 3.5. An EEG amplifier and acquisition

system (gtecr product [g.tec ]) with 16 channels (scalable to 64 channels) was used for

data recording. The electrodes location for a 65 channel g.tec cap is shown in Fig. 3.6.

Depending on the experiments, EOG was also recorded in addition to EEG.

3.3.1 Software framework

The overall BCI system, including signal processing, classification and visual paradigms,

was implemented in a Simulinkr framework [Mathworks 2010a]. A P300-BCI system

requires a strict synchronization between recorded data and events, and encompasses

several other issues, as explained in section 3.1. Signal acquisition and real-time control

loop is made at 256 Hz rate. Recorded data is synchronized with stimuli events; the

delay between event generation and stimuli presentation is minimum and constant; signal

processing and classification algorithms are computed in real-time; and the control output

is immediately visualized. To ensure a real-time operation, a ’Highspeed’ Simulink driver

provided by g.tec was used. A generic Simulink model of the BCI system is shown in Fig.

3.7. Respective blocks are succinctly described as follows:
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Figure 3.5: Picture of the experimental setup at ISR.

’Acquisition driver’ block: the gUSBamp driver provides a hard real-time clock

through an hardware interrupt that drives the whole Simulink model. This en-

sures the model and respective blocks to update every time sampling [Guger 2009].

It reads the EEG flow sent from gUSBamp via a USB connection. The gUSBamp

block allows also the configuration of some hardware parameters such as selection

of sampling rate, pre-set filters, monopolar and bipolar montages, etc.;

’Preprocessing’ block: performs temporal filtering or other basic preprocessing;

’Event synchronization and classification’ block: implements the event generation

and synchronization, data buffering, epoch segmentation, and implements the algo-

rithms for EEG signal processing and classification;

’Visual paradigm’ block: implements the visual paradigms. The following were im-

plemented: RC speller, LSC speller, GIBS and Arrow paradigm;

Signal processing, classification and visual paradigms were programmed recurring to

Simulink S-functions [Mathworks 2010b]. An S-function uses a special syntax called

the S-function API (application program interface) that enables the interaction with the

Simulink engine. Temporal events generated in the ’Event synchronization & classifica-

tion’ block are fully parameterized (e.g. ISI and ITI). The classification algorithms are

directly embedded in the ’Event synchronization & classification’ block after they have

been trained offline in Matlabr. This means that no significant changes have to be made

between offline training and online implementation. At the end of each trial, the ’Event

synchronization & classification’ block sends the control output to the ’Visual paradigm’

block. The visual paradigms RC speller, LSC speller, GIBS and Arrow paradigm, are
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Figure 3.6: Electrode loca-
tions, according to the in-
ternational 10-20 extended
system, of the 65 channel
cap used in our experiments
(g.EEGcap). Bold circles in-
dicate the channels used in
most of the P300 experi-
ments.
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Figure 3.7: Main blocks of a general Simulink implementation of the BCI system, and
representation of User in the loop.

based on text and simple graphics and thus their implementation in S-functions was not

an issue. However, in case of a Tetris game paradigm, presented in appendix C, the

graphical part of Tetris required an enhanced artwork. Tetris graphics were implemented

externally to Simulink based on the Tcl/Tk high level language. The data communica-

tion between Simulink and the external application relied on a shared memory structure

(see [Pires 2011a] and [Casaleiro 2010] fore more details). This general Matlab/Simulink

framework provided flexible and efficient prototyping, allowing a fast implementation of
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signal processing and classification algorithms in Matlab and C language, and an easy

parametrization and reconfiguration of the visual paradigms.

3.4 Motor disabilities of participants

Fourteen subjects with motor impairments participated in the experiments described in

this thesis, namely, 7 subjects with amyotrophic lateral sclerosis (ALS), 5 subjects with

cerebral palsy, 1 subject with Duchenne muscular dystrophy (DMD), and 1 subject with a

spinal-cord injury (SCI). All participants gave informed consent, approved by the Cerebral

Palsy Association of Coimbra (APCC) and by the Hospitals of the University of Coimbra

(HUC), to participate in the study. The sessions with CP, DMD and SCI subjects took

place at the facilities of APCC, and the sessions with the ALS subjects took place at the

facilities of HUC. This section aims to briefly describe these motor disorders and to define

related terminology, providing the necessary background to the following chapters.

3.4.1 Amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis also referred as Lou Gehrig’s disease is a motor neuron dis-

ease (MND). It is a neurodegenerative disease that results in progressive degeneration of

lower and upper motor neurons in the brain and the spinal cord (central nervous system)

[Ioannis 1998]. Motor neurons are responsible to send the commands to voluntary muscu-

lar contraction. Thus, with the loss of motor neurons, muscles are unable to function, lead-

ing to muscle weakness and atrophy. ALS is classified as either of bulbar-onset, character-

ized by progressive dysphagia (swallowing difficulty) and dysarthria (poor speech articula-

tion), or of spinal-onset marked by peripheral neurologic features (muscle atrophy, cramps,

and fasciculations), and by spasticity (stiff muscles) [Leigh 1994, Fiorentino 2009]. In the

advanced stage of the disease, patients can progress to a locked-in state (LIS), with only

residual voluntary control, such as eye movement and blinks. In the end-stage of the

disease, patients may lose all motor control entering in a complete locked in state (CLIS)

[Kubler 2008]. The degree of disability is rated by a revised ALS functional rating scale

(ALSFRS-r) where 48 is normal and 0 a complete loss of functionality [Cedarbaum 1999].

3.4.2 Duchenne muscular dystrophy

Duchenne muscular dystrophy is a genetic disorder caused by a single gene mutation.

This mutation disrupts the production of a neuromuscular protein, which results in the
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gradual breakdown of muscle fiber [Cyrulnik 2008]. Symptoms usually appear in male

children before age 6. Children and adolescents with DMD evidence a progressive muscu-

lar weakness affecting all voluntary muscles and often exhibit cognitive deficits. Usually

by the ages of 12, children lose the ability to walk and are wheelchair dependent. In later

stages, DMD affects heart and respiratory muscles, and thus patients require artificial

ventilation and other types of support.

3.4.3 Cerebral palsy

Cerebral palsy is a non-progressive neurological disorder resulting from a brain injury

that occurs before cerebral development is complete [Krigger 2006]. The etiology can

be prenatal, perinatal, or postnatal. It is generically characterized by abnormal move-

ments and posture usually accompanied by dysarthria. The Surveillance of Cerebral Palsy

in Europe (SCPE) divides CP into three groups based on the predominant neuromotor

abnormality: spastic, dyskinetic, or ataxic, with dyskinesia further differentiated into

dystonia and choreoathetosis [Bax 2005]. CP is also classified by topographical pattern

of limb involvement, such as diplegia, hemiplegia, or quadriplegia [Jones 2007], however

a terminology indicating explicitly the number of limbs affected is now preferred. The

CP subtypes are briefly defined: spastic (hypertonia in the muscles that result in stiff-

ness); dyskinetic (involuntary movements, variable muscular tonus); dystonia (hypertonia

and involuntary movements); choreoathetosis, combination of chorea (irregular migrating

contractions) and athetosis (twisting and writhing); ataxic (poor balance and equilibrium

and uncoordinated voluntary movement). Frequently, subjects have associated cognitive

impairments. The symptoms and functional levels vary significantly among subjects. In

extreme cases, subjects have neither motor control nor communication due to cognitive

impairment. Many others are wheelchair bounded but retaining cognitive capabilities

sufficient to control adapted interfaces for communication. Other subjects have an almost

normal life, despite some motor limitations.

3.4.4 Spinal cord injury

A spinal cord injury (SCI) can be caused by trauma, disease or congenital disorders

[NIH 2011]. Depending on the level of injury, damage to the spinal cord can result in

paralysis of the muscles used for breathing, paralysis and/or loss of feeling in all or some

regions of the trunk, arms, and legs. Tetraplegia, caused by the damage of cervical

region (C1 through C7), is one of the most severe conditions in which the individual can
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experience a total loss of movement in limbs, torso and neck.
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”No free lunch theorem.”

(There is no overall superiority of a particular learning or recognition algorithm)

David Wolpert

This chapter describes state-of-the-art techniques currently used for classification of

event related potentials. Concepts and methodological issues related to implementa-

tion are also succinctly explained. A classification system is complex and deals with
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many issues. Its performance depends on feature extractors, feature selectors and clas-

sifiers. Several critical properties, ranging from feature non-stationarity, noise, outliers,

dimensionality, size of training sets, learning approach, bias-variance tradeoff, need to be

addressed. See a generic review in [Lotte 2007].

This chapter reviews some of the techniques that were tested offline or online in the

context of one or more of our proposed P300-based BCI systems, or in benchmark datasets.

4.1 Introduction

EEG has a substantial variability between subjects, within the same subject in the course

of different experimental sessions, or even within the same session due to psychophysi-

ological factors (e.g., fatigue). Thus, the performance of signal processing and machine

learning techniques can be greatly increased if they are fitted specifically to a subject

before an experimental session. Moreover, subject-specific (subject-dependent) models

significantly reduce the complexity of classification techniques. However, the main in-

convenience of subject-dependent models is that it needs a calibration before the online

operation of the system. This calibration involves two parts: 1) EEG recording session,

where user performs a task according to pre-defined cues, i.e., EEG data is associated

with true labels (ground truth); and 2) using the acquired labeled data, signal processing

and machine learning techniques find the features that optimize subject’s performance

for the task.This supervised approach (training from examples) is the most common in

BCI. The time required to perform the calibration depends on the type of classifier being

used. For example, some classifiers require a large amount of training data to obtain

good generalization to unseen data. Moreover, complex classifiers may require a long

time to learn and tune parameters. Obviously, the elimination of the calibration, i.e.,

a zero calibration-time, would be the ideal scenario. This approach requires a subject-

independent model obtained offline from a pool of subjects, and then an online adaptation

of the model to the user, through unsupervised learning. Although this issue has been

addressed in several offline studies, only a few have tested unsupervised learning online

with success. Implementations with only a small performance decay are described in

[Lu 2009] for P300-based BCI and [Vidaurre 2011] [Krauledat 2008] for motor imagery

based BCI. Similar unsupervised techniques can be applied to adjust user-specific model

in the time course of the session. In P300-based BCI contexts, session-independent models

are more meaningful than subject-independent models. However, in some contexts other

than BCI, such as applications for clinical diagnosis (e.g., case-study VI in appendix D),
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Figure 4.1: Main blocks of a generic classification system.

a subject-independent model is required because of the impossibility of prior calibration.

A classification system is generically composed by four main modules integrating

knowledge from signal processing and machine learning areas: 1) preprocessing; 2) fea-

ture extraction; 3) feature selection; and 4) classification; (see Fig. 4.1). Regarding the

classification system, this thesis contributes on new feature extraction techniques in the

spatial domain. Since this is a major theme of this thesis, chapter 5 is devoted entirely to

it. Feature selectors and classifiers were used in their standard form, despite some slight

rearrangements. Yet, the understanding and correct implementation of these techniques

were crucial to achieve the high performance levels of the proposed BCI systems. The

rest of this chapter succinctly describes state-of-the-art techniques for feature extraction,

feature selection, and classification, in the context of P300-based BCIs, all applied in this

thesis. Although the session-dependent issue was not addressed here, calibration time

was still of main concern. For all of the proposed paradigms, we limited the calibration

time to 5 min for the data recording session and less than 2 minutes to obtain classifi-

cation models. This calibration time is considerably less than those presented in some

reference studies using supervised learning, for example 30 min plus classifier training in

[Lenhardt 2008] and 9-12 min plus classifier training in [Townsend 2010].

4.2 Pre-processing and feature extraction

The classification of ERPs is a very challenging problem due to its high inter-trial vari-

ability and low SNR. Thus, the main goal of signal processing techniques is to increase the

SNR of ERPs and alleviate variability before classification. Basic temporal filtering, such

as low-pass, high-pass, band-pass and notch, are usually applied to EEG, to eliminate

signals that are outside the frequency range of interest, or to eliminate specific interfer-

ences (e.g., powerline). Different EEG derivations, such as common average reference

(CAR), bipolar, and Laplacian, act as spatial filters contributing also to an increased

SNR [McFarland 1997].
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Pre-processing using the above techniques might not be sufficient to provide adequate

features for classification, and therefore it is necessary to extract powerful discriminative

features. Feature extraction consists of linear or non-linear transformations which aim

to decorrelate/decompose features for denoising, maximize the discriminative power of

the features, or remove redundancy. At the same time, feature extraction reduces the

dimensionality of feature space, by mapping the input data into a lower dimensional space.

A low dimensional feature space avoids overfitting to training data, increases algorithm

robustness, and provides faster and more effective algorithm computation [Hall 2000].

Moreover, features are more easily interpreted, establishing potential bio-markers with

neuro-scientific meaning [Peng 2005].

Feature extraction methods can be applied in time, frequency, time-frequency and

spatial domains. [Bashashati 2007] presents an extensive survey on feature extraction

methods applied in BCI. In SMR and SSVEP BCIs, neurophysiologic features are re-

lated with rhythmic activity, and thus feature extractors are applied mainly in the

frequency domain. Spectral estimation based on parametric and non-parametric tech-

niques is applied on raw EEG data. Techniques include direct application of discrete

Fourier transform, periodogram based methods (e.g., Whelch), auto-regressive models

and wavelets (discrete and continuous wavelet transform (DWT, CWT)). In the other

hand, ERPs, such as P300 or MRPs, are components time-locked and phase-locked with

events, and therefore they are characterized by their temporal evolution. Some examples

of feature extraction techniques applied to P300 include peak picking, area, covariance

[Farwell 1988], matched filter [Serby 2005] and DWT [Donchin 2000]. However, in the

most common approach, the features are the amplitudes of the time samples at a given

interval, previously low-pass filtered and downsampled [Thulasidas 2006, Krusienski 2007,

Lenhardt 2008, Rakotomamonjy 2008, Hoffmann 2008a, Zhang 2008]. Downsampling, or

optionally averaging across small sub-intervals [Blankertz 2011], reduces the dimensional-

ity of feature space. The feature vector is composed of the concatenation of the features

of each recording channel. Considering a spatio-temporal data matrix representing an

EEG epoch X ∈ RN×T , where N is the number of channels and T is the number of time

samples (or the number of features after feature extraction or downsampling), then the

feature vector resulting of the concatenation is given by

x = [x
(1)
1 x

(1)
2 · · · x(1)

T x
(2)
1 x

(2)
2 · · · x(2)

T x
(N)
1 x

(N)
2 · · · x(N)

T ] (4.1)

which as a dimension 1×NT . This vector is referred here as spatio-temporal feature

vector. In the other hand, feature extractors applied in the spatial domain combine
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optimally signals recorded at different electrode locations. The projections resulting from

spatial filtering are concatenated building a spatial feature vector. The data matrix

X ∈ RN×T is transformed into a new matrix Y ∈ RN ′×T , where N ′ is the number of

spatial projections, typically with N ′ ≪ N , eventually N ′ = 1. This transformation

reduces significantly the feature dimensional space. While this spatial filtering strategy

is a common practice in BCIs based on SMR, with proved efficacy, it is not very often

in BCIs based on ERPs. In chapter 5, we show that spatial filtering is also effective for

ERP classification.

4.3 Feature Selection

To further reduce the dimension of the feature vector, extracted features are selected ac-

cording to their discriminative power. Although feature extraction and feature selection

both reduce feature dimensionality, they are quite different. While the former transforms

the features, feature selection only selects the features without transform them. Methods

for feature selection usually fall into two categories: wrappers and ’filters’ (or a combi-

nation of the two) [Peng 2005, Liu 2005, Guyon 2003]. The wrapper models evaluate the

features through the performance of a specific classifier. In the ’filter’-based approaches,

the features are selected (filtered) using measures that are independent of the classifica-

tion algorithms, yielding comparable classification errors for different classifiers. Filter

approaches are computationally more efficient and offer a better generalization since they

are independent of machine learning algorithms. Since we want to minimize the calibra-

tion time, the choice fell on filter methods. Two methods, r-square, r2, and minimum

redundancy maximum relevance (mRMR) were used in most of the experiments. Both

methods are based on sequential feature selection (SFS).

4.3.1 r2 correlation

The r2 coefficient is a second order statistic measure computed from the square of the

Pearson correlation coefficient r, that obtains the relevance of the features for a two-class

discrimination. Considering samples of two classes X and Y , coefficient r is obtained
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from

r(X,Y ) =
σX,Y

σX .σY

=

K∑
k=1

(Xk −X)(Yk − Y )√√√√ K∑
k=1

(Xk −X)2

√√√√ K∑
k=1

(Yk − Y )2

. (4.2)

The r2 coefficient returns a value ranging from 0 to 1. High r2 values denote large

inter-class variance and small within-class variances. The r2 is applied to each individual

feature returning a score that allows to sequentially rank the features according to their

discriminative power. Other measures such as Fisher score and Student’s t-statistic were

tested with similar results. Fig. 4.2 illustrates an example of the time instants of the 40

best ranked features selected with r2 superimposed over the average of 90 P300-target

epochs (using a dataset from LSC paradigm (chapter 6)). The same concept is extended

to spatio-temporal features.

4.3.2 Minimum redundancy maximum Relevance

A different method called minimum redundancy and maximum relevance (mRMR)

[Peng 2005] was also tested. This method tries to remove redundancy of the selected

features. Two criteria are simultaneously applied: relevance and redundancy. Relevance

gives a measure of correlation between the features and class labels while redundancy mea-

sures the statistical dependence between features. In the original method, both relevance
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Figure 4.2: Average of 90 P300 target epochs (raw signal without any preprocessing)
acquired at channel Pz. Circles represent the time instants of the 40 best ranked features
selected with r2 feature selector, superimposed over the amplitude of the time samples of
the ERP.
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and redundancy are computed through mutual information (MI). We slightly re-arranged

mRMR, using MI for redundancy measurement and r2 for feature relevance.

The optimum simultaneous maximization of relevance and minimization of redundancy

is obtained by maximizing the criterion

maxC(S)/R(S) (4.3)

where R(S) are the MI values computed for each combination of feature subsets within

a set of features S and C(S) are the r2 correlation values computed for each feature. In

practice, mRMR method is implemented as a sequential suboptimal approach. It first

ranks individual features according to relevance, from the highest to the lowest r2 value,

and then criterion (4.3) is achieved by iteratively selecting each feature according to

max
xl∈Ω−Sm−1

 C(xl)
1

m−1

∑
xk∈Sm−1

I(xl, xk)

 . (4.4)

The initial set Ω of features is divided into two subsets: a selected features set (Sm−1)

with m− 1 features and the remaining feature set (Ω− Sm−1). The first selected feature

is the one with the largest relevance. Next, the average redundancy between the selected

features and the remaining features is computed. The new selected feature is the one

which maximizes (4.4) and it is iteratively selected from (Ω − Sm−1). Although this

iterative process is computationally efficient, it is naturally more demanding than the r2

feature selector. We made a systematic analysis using several datasets obtained from some

of the proposed paradigms, which showed that mRMR has a slightly higher performance

than that of r2, at the cost of an increased computation time [Pires 2009b]. However, for

most of the online experiments, r2 was the preferred method to reduce the time of the

calibration phase.

4.4 Classification Methods

Many classification methods have been proposed in the context of P300-based BCIs.

A generic BCI review is presented in [Lotte 2007] and a comparison of several P300

classification methods in [Krusienski 2006]. Some popular methods used in P300-based

BCI are the linear discriminant analysis (LDA) or Fisher’s linear discriminant (FLD)
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[Lenhardt 2008, Hoffmann 2008b], the stepwise linear discriminant analysis (SWLDA)

[Farwell 1988, Donchin 2000, Krusienski 2008, Townsend 2010], the support vector ma-

chines (SVM) [Rakotomamonjy 2008, Thulasidas 2006, Kaper 2004] and the neural net-

works (NN) [Cecotti 2011]. Although modern and more powerful classifiers, such as SVM

and NN, show offline performance results sometimes above those achieved in state-of-the-

art, they have very small representation in online experiments. This is mainly because

model selection is very time consuming.

The detection of P300 evoked potentials is a binary classification problem, where P300

ERP associated to target events belongs to one class and EEG component associated

with non-target events belongs to another class. Importantly, is that the binary classifiers

provide scores for subsequent C-class symbol classifier (see section 3.1.2). Assuming x a

feature vector, then a linear discriminant function is obtained from

g(x) = w.x+ b (4.5)

where w is the weight vector and b is a bias term as depicted in Fig. 4.3 [Duda 2001]. To

estimate the hyperplane that separates the two classes, a machine learning algorithm has

to find w and b according to some optimization criterion. For a nonlinear separation, the

above equation is modified according to

g(x) = w.φ(x) + b (4.6)

where φ(·) is a kernel that transforms the feature vector x into a new dimensional space.

Classifiers can be broadly divided into generative and discriminative [Lotte 2007]. Gen-

erative classifiers learn the class models (e.g., LDA) while discriminative classifiers learn

the way to discriminate different output values (e.g., SVM and NN). These classifiers

are succinctly introduced below. Good general insights to machine learning, covering a

wide range of pattern classification can be found in the books of Duda [Duda 2001] and

Fukunaga [Fukunaga 1990].

4.4.1 Linear discriminant analysis

Under the restrictive assumptions of Gaussian distribution and equal covariance matrices

of the two classes, LDA is shown to be Bayes optimal [Duda 2001], i.e. it minimizes

the risk of misclassification of new samples drawn from the same distributions. Our own

experience indicates that these assumptions are nearly satisfied for most of the ERPs
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Figure 4.3: Linear decision hyperplane, where y = w.x + b = 0 separates the feature
space into class-1 (y > 0) and class-2 (y < 0).

datasets as seen in Fig. 4.4, and as verified in other works [Blankertz 2011]. Under these

assumptions it can be shown also that LDA is equivalent to FLD and to least square

regression [Duda 2001]. Considering the feature vector distribution p(x) ∼ N (µ,Σ), then

the optimal decision boundary has the form y = w.x + b = 0 where the weight vector is

obtained from

w = Σ−1(µ1 − µ2) (4.7)

where Σ is the covariance matrix and µ1 and µ2 are respectively the means of class-1

and class-2. For FLD, w is obtained by replacing Σ by Σw = Σ1 + Σ2, which represents

the within-class scatter matrix [Duda 2001]. LDA and FLD are computationally very

efficient.

4.4.1.1 Regularized LDA

When the number of training samples is small compared to feature dimensionality, over-

fitting problems may occur. If the number of features exceeds the number of samples, the

covariance estimates do not have full rank and therefore can not be inverted. As we have

seen in (4.1), the dimension of the feature vector can be very high. On the other hand,

as one wants to minimize the BCI calibration time, the amount of gathered data is small.

Additionally, the presence of muscular artifacts or strong noise induce the presence of

outliers in the datasets. Regularization can prevent overfitting and the influence of out-

liers, and controls the complexity of the models. A regularized classifier provides higher

generalization and robustness to outliers. One common approach of regularization is to
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Figure 4.4: a) Scatter plot of 2 best ranked features, for 90 target and non-target ERPs
obtained from a dataset of LSC paradigm (chapter 6). Class covariances are indicated
by the ellipse contour assuming Gaussian distributions (class-target with blue color and
class-nontarget with red color) and class means marked by bold points. The classes have
similar covariances; b) Histogram showing approximate Gaussian distribution of one best
ranked feature, obtained from 900 non-target epochs of the same dataset used in a).

find a better estimate of Σ. We will use a shrinking approach derived from [Duda 2001]

and arranged according to [Blankertz 2011]

Σ̃ = (1− γ)Σ + γνI (4.8)

where γ ∈ [0, 1] is a tuning parameter, and ν is given by trace(Σ)/d of Σ with d being

the feature dimensionality. This method is referred as regularized LDA (RLDA). When

γ = 0, RLDA transforms into unregularized LDA.

4.4.2 Stepwise linear discriminant analysis

SWLDA is one of the most popular methods used in P300 systems and with effec-

tive online performance results. SWLDA is a LDA classifier that simultaneously se-

lects the features to be included in function (4.5) [Krusienski 2008]. The weight vector

w = [w1 w2 · · · wNT ] is obtained from multilinear least-square regression. A for-

ward and backward stepwise regression is used to incrementally add or remove terms of

the model, according to their statistical significance. A term wi is included in the model if

the p-value (of an F-statistic) of the model is below a given threshold (thin). After a term

is included into the discriminant function, a backward regression is performed to remove

the least significant terms, having a p-value above a certain threshold (thout). Each term
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of w is set to zero if it is removed. The process is repeated until a predefined number of

terms is achieved or when the entry/removal of terms does not improve the model. The

two thresholds are the conditions to entry or remove the features. The features associated

with non-zero terms are the selected features.

4.4.3 Näıve Bayes

The näıve Bayes (NB) classifier is a particular case of the rule-based Bayes classifier,

which assumes independence between features. Despite this assumption, not actually

satisfied in most cases, NB model is easy to fit and works surprisingly well outperforming

other powerful methods in many situations [Rish 2001, Peng 2005, Ding 2005]. In a Bayes

classifier, the attribution of a vector x to a class wi, i ∈ {1, 2} is made according to Bayes

rule

P (wi|x) =
P (wi)p(x|wi)

p(x)
(4.9)

with

p(x) =
∑
i

p(x|wi)P (wi) (4.10)

where P (wi|x) is called the posterior conditional probability of class wi, p(x|wi) is the

conditional probability, and P (wi) is the prior probability. The learning problem consists

in estimating the p(x|wi) from the training samples. The conditional density function of

class wi is modeled as a multivariate distribution under Gaussian assumption

p(x|µi,Σi) =
1

(2π)d/2|Σi|1/2
exp(−(x− µi)

TΣ−1
i (x− µi)/2) (4.11)

where µi and Σi are the mean and covariance matrices computed for each class wi from

the training dataset. The posterior probability is usually computed taking the logarithmic

transformation

log(πi)−
1

2
log|Σi| −

1

2
(x− µi)

TΣ−1
i (x− µi) (4.12)

where πi is the prior probability P (wi). The discriminant function can be defined as

g(x) = P (w1|x)− P (w2|x). (4.13)

For a linear classifier the covariances are assumed to be the same for all classes Σ = Σi.

For different covariance matrix Σi for each class, the classifier assumes a quadratic form. If
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Σ is diagonal, then the features are assumed independent and we have the NB assumption

p(x|wi) =
d∏

j=1

p(xj|wi) (4.14)

where xj are the independent features of x. Assuming different Gaussian distributions,

then NB assumes a quadratic form, hereafter denoted as qNB. Compared to full covari-

ance, NB benefits from a more accurate estimation of the probability density function

(mean and variance) using a small amount of training data, since it is estimated for

individual features. Moreover, the method is computationally efficient and does not re-

quire regularization. The requirement of a small amount of training data, and a fast

model selection are two important characteristics to reduce the calibration time. De-

spite these favorable characteristics, only few relevant works have used NB in BCI. e.g.,

[Kohlmorgen 2004] for MRP classification. The NB assumption can be extended to the

spatial domain by fusing the information of several channels as we successfully made in

[Pires 2008b], generically expressed as

p(X|wi) = p(x(1) ∧ x(2) ∧ · · ·x(N)|wi) =
N∏
j=1

p(x(j)|wi) (4.15)

where x(j) is the feature vector associated to channel j ∈ {1 · · ·N} .

4.4.4 Support vector machines

While the above methods search to maximize the margin between the class means (gener-

ative classifiers), support vector machines (SVM) maximizes the margin between features

(discriminative classifier) [Vapnik 1995, Burges 1998]. Assuming training samples xk with

class labels yk ∈ {+1,−1}, then equation (4.6) can be rewritten as

yk(w.φ(xk) + b) ≥ 1− ξk (4.16)

where ξk ≥ is a slack variable to cope with overlapping classes (soft constraint). The

margin is given by 2/∥w∥, therefore to maximize the margin, the SVM optimization
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problem is given by

min
w,b

1

2
∥w∥2 + C

∑
k

ξk (4.17)

s.t. yk(w.φ(xk) + b) ≥ 1− ξk for k ∈ {1 · · ·K} (4.18)

where C is a tradeoff parameter (regularization parameter) that controls the compromise

between having a large margin with more misclassifications, or having a small margin

with less misclassifications, and K is the number of training samples. A strength of SVM

is that it can be transformed into a nonlinear classifier in an effective way. To construct

nonlinear boundaries, Kernels can be used transforming input features to a new features

space [Boser 1992]. During our experiments, we used only the Gaussian Kernel (radial

basis function, RBF)

K(xk,xj) = e
−∥xk−xj∥

2

2σ2 . (4.19)

This results in a nonlinear discriminant function

g(x) =
Ks∑
k

ykαkK(x,xk) + b (4.20)

where Ks is the number of support vectors, and αk are the Lagrangian multipliers used

to solve the SVM optimization problem. The parameters C and σ were selected through

grid search and checked with cross-validation. The learning algorithm to find the optimal

hyperplane was the sequential minimal optimization (SMO) [Platt 1999]. Solving these

problems can be very time consuming, especially when a large number of training examples

is used.

4.5 Conclusion

This chapter presented several relevant issues that have to be addressed in BCI classifica-

tion. Pre-processing and feature extraction are essential to increase SNR, and therefore

they play an important role to the performance and computational optimization of the

subsequent classifier. Feature extraction will be extensively addressed in chapter 5. Ma-

chine learning classifiers are undoubtedly a crucial step. The underlying concepts of some

techniques usually used in BCI and in particular in P300-based BCIs, were here described.

Our own experience shows that linear and simple algorithms are sufficient for P300 clas-

sification, as long as appropriate feature extraction methods are applied. This opinion
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is supported by many other researchers [Krusienski 2006, Blankertz 2011], and explains

why some methods such as SVM are sparsely used in practice in online BCIs. A com-

parative analysis made in the following chapter, section 5.5.1, clearly shows that with

optimum spatial filtering, simple linear classifiers provide performances similar to SVM,

without the increased complexity and computational cost of parameter tuning. Linear

classifiers are less flexible, but more robust than nonlinear ones, since they have fewer free

parameters to tune. For subject dependent models, the time to tune these parameters is

time consuming leading to long calibration periods. Moreover, generative classifier need

less training data [Martens 2010] and algorithms are easier and more effective to adapt to

dynamic changes of neurophysiologic features of subjects and therefore they can be more

easily extended to unsupervised learning [Daly 2008].
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”First you guess. Don’t laugh, this is the most important step. Then you compute the

consequences. Compare the consequences to experience. If it disagrees with experience,

the guess is wrong. In that simple statement is the key to science. It doesn’t matter how

beautiful your guess is or how smart you are or what your name is. If it disagrees with

experience, it’s wrong. That’s all there is to it.”

Richard Feynman (Nobel prize in Physics in 1965), Lecture to his students

In this chapter we propose and describe several novel statistical spatial filtering meth-

ods, and we show their importance for classification of event related potentials. Currently,

most of the P300 based systems use a so-called classical spatio-temporal classification.

Features are extracted from the time series of each channel and then concatenated form-

ing an uni-dimensional feature vector used for classification (see equation (4.1)). In most

cases, feature extraction is simply a process of decimation to reduce the dimension of the

feature vector. We use here an alternative approach, in which EEG channels are spatially

filtered in an optimum statistical sense, and then the spatial projections form the feature

vector for classification. From a pattern recognition perspective, a spatial filter is itself

a feature extractor applied in the spatial domain. The spatio-temporal and spatial ap-

proaches are schematically illustrated in Fig. 5.1. A comparison between them is given

in section 5.5. The advantages and strengths of spatial filtering approach are supported

both from a classification point of view, as well as from a neurophysiological perspective.

Results achieved in an extensive set of experimental sessions (referred as Case-study I ),

and in tests with benchmark datasets, are compelling and fully validate the proposed

methods.

5.1 Spatial filtering

5.1.1 State-of-the-art

There are three spatial filtering methods commonly applied in BCI: independent com-

ponent analysis (ICA), principal component analysis (PCA) and common spatial pat-

terns (CSP). Both ICA and PCA are mainly used on an unsupervised way: the for-

mer for separation of multichannel EEG data into statistically independent compo-

nents, and the second for dimensionality reduction [Lenhardt 2008] and denoising. Most

of the ICA applications have been in offline neurophysiologic analysis [Makeig 1999],

and for strong artifact removal, such as eye blinking, eye movement and muscular ac-

tivity [Jung 2000, Müller 2004]. Still, there are successful online and offline applica-
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Figure 5.1: Spatio-temporal approach vs. spatial approach. In the spatio-temporal ap-
proach the reduction of the dimensionality of feature space is made in the temporal domain
while in the spatial approach the reduction of the dimensionality of the feature space is
made mainly in the spatial domain (see text in section 5.5 for more detailed information).

tions of ICA in the context of P300-based systems, as one can see respectively in

[Serby 2005, Piccione 2006] and [Xu 2004]. The CSP method is a supervised technique

that relies on the simultaneous diagonalization of two covariance matrices, maximizing the

differences between two classes [Fukunaga 1970]. It was first applied in [Soong 1995] for

localization of neurophysiologic features and since then it has been mainly applied in mo-

tor imagery based BCIs [Müller-Gerking 1999, Ramoser 2000, Blanchard 2004, Li 2004,

Lemm 2005, Dornhege 2006], outperforming ICA and classical EEG re-referencing mon-

tages such as Laplacian derivations [Naeem 2006]. As concerns the effective use of CSP

for P300 detection, see [Krusienski 2007] for a variant of CSP called common spatio-

temporal patterns (CSTP) and [Pires 2009a] where a straightforward application of CSP

was proposed1. In [Rivet 2009] it is proposed the xDAWN algorithm, which estimates

spatial filters that find the evoked subspace by maximizing the signal-to-signal plus noise

ratio. In other contexts than BCI, other spatial filtering techniques have been proposed

specifically for ERP denoising [de Cheveigne 2008, Ivannikov 2009].

1CSP was our initial approach that gave rise to the proposed spatial filters presented in section 5.1.2.
Therefore the implementation of CSP is given in Appendix B.1
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5.1.2 Proposed methodologies

The proposed spatial filters are developed in a statistical beamformer framework based

on eigenvectors. Beamforming techniques originally appeared in the field of antenna

and sonar array signal processing [Van Veen 1988, Trees 2002] and are currently used in

many other areas including magnetoencephalography (MEG) and EEG source reconstruc-

tion/localization [Van Veen 1997, Sekihara 2001, Grosse-Wentrup 2009].

Firstly, we propose a beamformer based on the classical SNR maximization criterion

(Max-SNR) [Van Veen 1988]. The filter is obtained from the eigenvector that maximizes

the output ratio of signal and noise powers. The method works blindly, i.e., it does not use

geometrical information about the sensor array or the underlying sources. It requires the

estimation of covariances matrices associated with periods of the P300 signal, and periods

of only noise-plus-interference. Secondly, a beamformer based on the Fisher Criterion

(FC) is proposed following the same eigenvector-based principle used in Max-SNR. The

method extends the well known Fisher linear discriminant (FLD) to the spatial domain

using an approach similar to [Hoffmann 2006]. Third, the two beamformers are cascaded

in order to satisfy simultaneously in a suboptimum way both criteria [Fukunaga 1990,

Ch.10]. This spatial filter is henceforth designated C-FMS (cascade Fisher and maximum

signal-to-noise ratio). Forth, the FC beamformer is extended to the frequency domain

leading to a method that combines simultaneously temporal and spatial filtering, which

is designated by spatio-spectral Fisher criterion beamformer (SSFCB).

Max-SNR, FC and C-FMS spatial filters are experimentally assessed in this chapter in

the context of an experimental study made with the standard RC speller paradigm (Case-

study I ), while SSFCB is experimentally assessed in the context of two other paradigms

presented in chapters 6 and 8. Their offline performances are compared with those ob-

tained with best channel and with Laplacian spatial filtering. Two C−classmethodologies

are compared offline, one combining the average of the signal epochs and the other com-

bining the a posteriori probabilities. Online validation of the entire system methodology

was obtained by measuring the ITR, SPM and accuracy, in a case study with 19 able-

bodied participants and 5 disabled participants. The online experiments used the C-FMS

spatial filter, and the epoch average combination for the C − class character recognition.

The system requires a very short calibration time of about 7 minutes, specifically, 5 min-

utes to collect labeled data (calibration session) plus less than 2 minutes to obtain spatial

filters and classification models (Bayesian classifier).

Further validation using benchmark data sets of the BCI-competition 2003

[BCI-Competition 2003] is provided for state-of-the-art comparison of the proposed
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methodology.

5.2 Model: Assumptions and notation

An ERP is modeled as a random (stochastic) process from which we know a collection

(ensemble) of realizations of that process (Fig. 5.2). The realizations are obtained by

collecting the neuronal responses (epochs) to a given stimulus event. The process is

considered wide-sense stationary, i.e., assuming that the first and second-order statistics

(mean and variance) of the process are time-invariant. Moreover, it will be assumed that

the process follows a Gaussian distribution, which is generically defined for a scalar-valued

random variable x as

N (x, µx, σx) =
1√
2πσx

exp

[
−(x− µx)

2

2σ2
x

]
(5.1)

where µx and σx are the mean and the variance of the random variable x.

Let us start modeling our process, considering an EEG epoch X defined as a time

sequence of measures, X = [x(t1) x(t2) · · · x(tT )], where T is the number of time

samples and x(t) is a column vector with dimension N (number of EEG channels). There-

fore, each epoch is represented by a spatio-temporal matrix X ∈ RN×T with dimension

N × T (in our case, N = 12 channels and T = 256 samples). Target and non-target

epochs are represented respectively by X+ and X−, where the subscripts + and − stand

respectively for target and non-target.

Let us consider the target epochs modeled according to

X+,k = Sk +Vk (5.2)

where X+,k is the kth recorded epoch and Sk is the kth P300 signal, measured in the N

dimensional space. Vk contains activity from ongoing EEG, plus the interference from

not-attended flashes, plus white noise. Non-target epochs occur immediately before target

epochs and thus the activity should be similar to Vk. Hence, X−,k is modeled as the noise

and interference part of the measured target epochs

X−,k = Vk. (5.3)

Models (5.2) and (5.3) were experimentally sustained by means of a frequency anal-

ysis. It consisted of calculating and analyzing the FFT spectra over representative data
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Figure 5.2: Ensemble of realizations (epochs) of a random process. A temporal and spatial
view over a set of realizations. The symbols t, n and k stand respectively for time, channel
and realization.

collected from one session (180 target epochs and 900 non-target epochs) with RC speller.

Color maps in Fig. 5.3(a) and Fig. 5.3(b) represent respectively the FFT spectra of 90

target and 90 non-target epochs measured at channel Pz. The spectra for both condi-

tions, X+ and X−, present similar frequency distributions. This overlapping of spectra is

evidenced in the example of a single realization in Fig. 5.3(c). This shows, firstly, that

much of the non-target activity is contained in target epochs, and secondly, that tempo-

ral filtering is insufficient to remove noise from target epochs, and thus it should be used

carefully. Figure 5.3(d) presents the average of the FFT spectra of target and non-target

epochs. The average attenuates the spectrum of random components, and emphasizes the

spectrum of the P300 ERP and other uncorrelated interfering signals. A strong interfer-

ence at 5 Hz appears in the target spectrum (see Fig. 5.3(d)). This interference comes

from the rows/columns of the RC speller flashing with an SOA of 200 ms, i.e, 5 Hz (see

its effect in time domain in Fig. 5.4). These stimuli generate a steady state visual evoked

potential (SSVEP) at 5 Hz, and a 2nd harmonic at 10 Hz as well. This 2nd harmonic

affects target epochs with less impact because it does not overlap the spectrum of the

P300 ERP.
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Figure 5.3: FFT spectrum of a representative data set of one session (180 target and 900
non-target epochs) measured at channel Pz; (a) Color map of the FFT spectra over 90
out of the 180 target epochs; (b) Color map of the FFT spectra over 90 out of the 900
non-target epochs; (c) Example of one FFT of a single epoch (target and non-target); (d)
Average of the FFT spectra of all epochs (180 FFTs of target epochs and 900 FFTs of
non-target epochs).

5.3 Statistical spatial filters

A spatial filter is generically an weighting vector, w, that combines the data of N channels

at each time instant t

yj(t) =
N∑
i=1

wijxi(t) , j = 1, · · · , N (5.4)
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Figure 5.4: Average of 180 unfiltered target epochs and 900 unfiltered non-target epochs
recorded at channel Pz. The result evidences an oscillatory component with 200 ms period
in non-target epochs, which is also visible in target epochs.

where yj is the output projection obtained from input channels xi, which can be denoted

in the matrix notation from

Y = W ′X (5.5)

where ′ denotes the transpose operator, or in the expanded form
Y1

Y2

...

YN

 =


W11 W12 · · · W1N

W21 W22 · · · W2N

...
...

. . .
...

WN1 WN2 · · · WNN


′

.


X1

X2

...

XN

 . (5.6)

5.3.1 Max-SNR beamformer

The application of eigenvectors in statistical signal processing for low-rank modeling, i.e.,

for reducing the feature data space while keeping the intrinsic information, has been used

to determine optimum temporal finite impulse response (FIR) filters [Haykin 1996]. We

apply, in this first approach, the same concept to the spatial domain, by stating the spatial

filtering of P300 as a spatial denoising problem. The solution is an optimum beamformer,

based on statistical data, that maximizes the output SNR

SNR =
E[W ′SS′W ]

E[W ′X−X
′
−W ]

w W ′R+W

W ′R−W
(5.7)

where W is the weighting vector, E[·] represents the expectation operator, and the ma-

trices R+ and R− are the estimated covariance matrices for target and non-target. The
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maximum SNR is obtained by maximizing the discriminative Rayleigh quotient in (5.7).

The optimal W is the eigenvector associated to the largest eigenvalue. The solution is

achieved by finding the generalized eigenvalue decomposition that satisfies the equation

(see a formal demonstration in Appendix B.2)

R+W = R−WΛ (5.8)

where Λ is the eigenvalue matrix. The eigenvectors W are obtained from the eigenvalue

decomposition of (R−)
−1R+ provided that R− is nonsingular. The principal eigenvector

W (1) maximizes the SNR, and therefore the output of the beamformer is given by

y = W (1)′X. (5.9)

The N × T−dimensional measurement X is transformed into a 1-dimensional subspace,

1 × T . This reduction of the feature space is an important achievement for subsequent

classification.

The matrices R+ and R− are estimated from the average over the epochs within

each class, gathered during calibration sessions. Consider the N ×N normalized spatial

covariance for each epoch k given by Rk = XkX
′
k/tr(XkX

′
k), then, R+ and R− are

computed from

R+ = ⟨R+⟩ =
1

K+

K+∑
k=1

R+,k and R− = ⟨R−⟩ =
1

K−

K−∑
k=1

R−,k (5.10)

where K+ and K− are the number of target and non-target training samples. Regular-

ization of the covariance R− can be included according to

R+W = [(1− α)R− + αI]WΛ (5.11)

where α ≤ 1, can alleviate overfitting and improve class discrimination.

The Max-SNR solution (5.8) is similar to that obtained from CSP, which can also be

stated as a generalized eigenvalue problem [Tomioka 2007]. The Max-SNR beamformer

can be regarded as a particular case of CSP (see Appendix B.3 for a formal demonstration).
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5.3.2 FC Beamformer

The Max-SNR criterion relies on the ratio of signal and noise cross-powers. From a pattern

recognition perspective, other criteria can be investigated to implement a beamformer.

One of such criteria is the Fisher’s criterion (FC) [Duda 2001], which aims to increase

the separation between classes while minimizing the variance within a class (Fisher lin-

ear discriminant, FLD). This concept can be extrapolated to the spatial domain using

spatio-temporal data as it was done in Max-SNR (section 5.3.1). The FC takes into con-

sideration the difference between target and non-target spatio-temporal patterns. Then,

it is expected that the spatial filter maximizes the spatio-temporal differences, leading to

an enhancement of specific subcomponents of the ERP. The FC is given by the Rayleigh

quotient

J(W ) =
W ′SbW

W ′SwW
(5.12)

where Sb is the spatial between-class matrix and Sw is the spatial within-class matrix.

The optimum filter W is found solving the generalized eigenvalue problem

SbW = SwWΛ. (5.13)

The selected filter is the eigenvector associated with the largest eigenvalue, i.e., W (1), and

the spatial filter output is obtained by applying expression (5.9).

Taking the spatio-temporal matrix Xk (dimension N × T ) from each epoch k, the

matrices Sb and Sw are computed from

Sb =
∑
i

pi(Xi −X)(Xi −X)′ (5.14)

and

Sw =
∑
i

∑
k∈Ci

(Xi,k −Xi)(Xi,k −Xi)
′ (5.15)

where i ∈ {+,−} and, C+ and C− represent respectively the target and non-target classes,

and pi is the class probability. The average of the epochs in class Ci and the average of

all epochs are respectively denoted Xi and X, with

Xi =
1

Ki

Ki∑
k=1

Xi,k and X =
1

K

K∑
k=1

Xk (5.16)

where Ki is the number of epochs in class Ci and K is the total number of epochs. To
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increase generalization, Sw in (5.13) can be regularized according to

SbW = [(I − θ)Sw + θI]WΛ (5.17)

where θ is the regularization parameter that can be adjusted from training data to increase

class discrimination.

5.3.3 C-FMS beamformer

In order to satisfy both Max-SNR and FC, a cascade of the two spatial filters is proposed

using a suboptimum approach [Fukunaga 1990, Ch.10]. FC is applied first since it is more

discriminative than Max-SNR. The first transform is obtained from

Y = W1
′X (5.18)

whereW1 is the spatial filter computed according to (5.17) (subscript 1 denotes the filter of

the first stage of the cascade). The first feature vector is obtained from the first projection

y1 = W
(1)
1

′X. (5.19)

The feature vector y1 preserves the information about FC while the remaining components

in the (N − 1)−dimensional space are used for a second transform

Z = W2
′Y(2:N) (5.20)

where the spatial filter W2 is estimated according to (5.11) taking Y(2:N) data from the

1st stage of cascade (5.18). The first projection satisfies the Max-SNR criterion

z1 = W
(1)
2

′Z. (5.21)

The concatenation of the two projections

v = [y1 z1] (5.22)

maximizes both FC and max-SNR criteria in a suboptimum way.
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5.3.4 Frequency domain SSFCB

The FC beamformer is here extended to the frequency domain combining simultaneously

temporal and spatial filtering, leading to a new method henceforth called spatio-spectral

Fisher criterion beamformer (SSFCB). The importance of frequency in P300-BCIs has

been disregarded by most of the research community, yet, as seen in section 5.2, fre-

quency is quite informative. The main goal of SSFCB is to embed a spectral frequency

shaping into the spatial filter, which can be efficiently implemented if the overall method

is formulated in the frequency domain. Spectral shaping introduces an increased flex-

ibility to the feature extractor. It can be used simply as selective filter, working as a

low-pass, high-pass or band-pass filter, or it can be used as a shaping filter, by selecting

or weighting discriminative frequency features. The generic derivation of SSFCB follows

the same eigenvector principle of the above spatial filters. The block diagram represent-

ing the overall implementation is shown in Fig. 5.5. Let us first consider signals in the

frequency domain. For a finite discrete-time signal x[n], of length T time samples, the

discrete Fourier Transform (DFT) is defined as [Oppenheim 1999]

X(k) =
T−1∑
n=0

x[n]e−j(2π/T )nk k = 0, · · · , T − 1, (5.23)

and the inverse discrete Fourier Transform (IDFT) is defined by

x[n] =
1

T

T−1∑
k=0

X(k)ej(2π/T )nk n = 0, · · · , T − 1. (5.24)

The index k corresponds to kfs/T Hz, at a sampling rate fs. In a matrix notation, the

DFT equation can be computed as a linear transformation, X = Fx, where the (k, n)

elements of the transformation matrix F ∈ RT×T are 1√
T
e−j(2π/T )nk. For a real input

sequence, the DFT is conjugate symmetric, which means that the DFT elements are half

redundant. Thus, the DFT can be expressed only by the first T ′ = T/2 frequency bins.

The DFT is computed using the fast fourier transform (FFT), an efficient computation

algorithm. For sake of concise notation and to avoid confusion with time domain meth-

ods, vectorial and matrix representation in the frequency domain will be denoted with

the tilde symbol, i.e DFT(x) = x̃. The frequency domain representation of the spatio-

temporal matrix of a single EEG epoch X ∈ RN×T , defined in section 5.2, is given by

X̃ ∈ RN×T ′
. The spectral filtering is performed in the frequency domain by applying the
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Figure 5.5: Block diagram of the implementation of SSFCB.

DFT convolution theorem to each channel i

xi ~ h = x̃i · h̃ (5.25)

where h represents the filter, ’~’ denotes the convolution operation and ’·’ denotes a

pointwise multiplication. In the N dimensional domain, (5.5) is now stated as a spatio-

spectral projection in the frequency domain

Ỹ = W̃HX̃.h̃ = W̃HZ̃ (5.26)

where the superscript H denotes the Hermitian transpose, and Z̃ ∈ RN×T ′
are the spec-

trally shaped components in the frequency domain. The spectral filter is an weighting

vector h̃ = [β(1) β(2) · · · β(T ′)]. The coefficients β are adjusted according to the

discriminative frequency bands. In its simple form, the weights act as a mask where 1 is

used for a discriminative frequency and 0 for a non-discriminative frequency. The spatial

filter W̃ is obtained by maximizing the Rayleigh quotient

J(W̃ ) =
W̃HS̃bW̃

W̃HS̃wW̃
. (5.27)

Matrices S̃b and S̃w are obtained following the expressions (5.14), (5.15), (5.16), and

replacing X by Z̃ and the transpose operator ′ by the complex Hermitian transpose H.

The first projection of the spatio-spectral filter is obtained in the frequency domain from

ỹ = W̃ (1)′Z̃ (5.28)

and in the time domain from y = IDFT(ỹ). If coefficients β are all set to 1, h̃ =

[1 1 · · · 1], then there is no spectral shaping, and the method behaves as the spatial

filter in the time domain. In this case, spatial projections in the frequency domain coincide
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with those obtained in the time domain, since the DFT is a linear operator, and the scatter

matrices S̃b and S̃w preserve the energy according to Parseval’s relation

T−1∑
n=0

|x(n)|2 = 1

T

T−1∑
k=0

|X(k)|2 .

5.3.4.1 Spectral shaping coefficients

Coefficients of the spectral filter h̃ = [β(1) β(2) · · · β(T ′)] can be selected manually

by setting the values to ones or zeros, or can be tuned automatically. The manual selection

is equivalent to a on/off filter bank, in which, pre-defined non-discriminative bands are set

to 0. An algorithm for automatic selection of the coefficients, that adjusts simultaneously

spectral and spatial filters (automatic SSFCB), is discussed in chapter 8.

5.4 Case-study I - Spatial filtering approach in the

context of the RC speller BCI

The performance of Max-SNR, FC and C-FMS spatial filters were experimentally assessed

offline, and C-FMS was further assessed online, all in the context of an experimental study

made with the standard row-column speller paradigm. The experiments were performed

by able-bodied and motor impaired persons. A summary of the experimental protocol of

case-study I is in Table 5.1, and a succinct description is given in the following sections.

5.4.1 Participants

Nineteen able-bodied volunteers, three subjects with CP, and two subjects with ALS

participated in this study. Fourteen of the able-bodied subjects and the five disabled

subjects never had used a BCI before. Table 5.2 presents a summary of clinical data of

disabled subjects, as well as a description of their assistive interfaces used in their daily

lives. The three subjects with CP are confined to a wheelchair. Subject S20 steers the

wheelchair using an head-switch that selects the direction via a scanning interface, subject

S21 uses an adapted joystick controlled by the right foot, and subject S22 controls the

wheelchair with the chin. Subjects S23 and S24 present a bulbar-onset ALS whose main

signs are dysarthria and dysphagia. Subject S23 starts to evidence also muscular weakness

in superior limbs with distal predominance. Spoken communication with subjects S20-

S23 was hard, and impossible with subject S24. All patients presented normal cognitive
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Table 5.1: Case-study I : summary of experimental protocol

Recording
Channels: 12 Ag/Cl electrodes Fz, Cz, C3, C4, CPz, Pz, P3, P4, PO7, PO8,

POz and Oz (10-20 extended positions)
Reference: left or right ear lobe; Ground: AFz

Frequency sampling: 256 Hz
Preprocessing filters: 0.1-30 Hz bandpass filter and 50 Hz notch filter
Impedance: < 10KΩ

Paradigm protocol
Paradigm: 6× 6 matrix RC speller
RC parameters: SOA=200 ms, ISI=100 ms, ITI=3.5 s
Screen: 15” at about 60-70 cm

Participants 19 able-bodied, 3 CP and 2 ALS

Table 5.2: Case-study I - summary of clinical data of motor impaired subjects, and
interfaces currently used.

Subject/
Sex

Age Diagnosis Time
since di-
agnosis

Main signs / Main
functionality

Adapted interfaces
and assistive devices

S20/F 18 CP Posnatal Tetraparesis, dystonia
with spasticity and
dysarthria / Head control

Powered wheelchair:
head-switch connected
to a scanning interface;
Computer: head-switch
and head-tracking

S21/M 34 CP Perinatal Tetraparesis, dystonia
with spasticity, and high
dysarthria / Head and
right foot control

Powered wheelchair:
adapted joystick con-
trolled by right foot;
Computer: controls
mouse and keyboard with
the right foot

S22/M 46 CP and
discal hernia
C3-C4

Perinatal Tetraparesis, spasticity
and dysarthria / Head
control

Powered wheelchair: joy-
stick adapted to chin;
Computer: head-tracking

S23/F 67 Bulbar-onset
ALS (FRS-r
46)

7 years Dysarthria, dysphagia,
and muscular weakness in
upper limbs / -

-

S24/F 75 Bulbar-onset
ALS (FRS-r
40)

1 year High dysarthria and dys-
phagia / -

-

capabilities. The group of able-bodied volunteers was composed of 10 males and 9 females

with ages from 18 to 42 years old, averaging 30.1 years old.



66 Chapter 5. Statistical Spatial Filtering

5.4.2 Experimental protocol

Participants were asked to control the RC speller introduced in section 3.1. The experi-

ments took place on regular rooms in an environment with some noise and people moving

around, at APCC (CP subjects), HUC (ALS subjects) and at our laboratory facilities

(able-bodied subjects). The experiments consisted of a calibration phase and an online

phase. Before the calibration phase, the subjects were instructed to be relaxed and attend

the desired target, mentally counting the number of intensifications of target rows and

columns. The able-bodied and ALS subjects were seated on a standard chair, while the

CP subjects were seated at their own wheelchairs. A 15” computer screen was positioned

in front of the participants at about 60-70 cm. It was asked only to the able-bodied sub-

jects to avoid blinking and moving the eyes. During the calibration phase, the subjects

attended the letters of the word ’INTERFACE’ (9 characters) which were successively

provided at the top of the screen (Fig. 3.1). Each row and column was repeated 10 times

for each letter. Therefore, the data collected during the calibration phase consisted of 180

target epochs and 900 non-target epochs (5 minutes calibration). The EEG activity was

recorded with the g.tec gUSBamp amplifier according to setup in Table 5.1.

5.4.3 Offline classification results

For each participant, the classification models were obtained from one training data set

collected during the calibration session. A second data set, with the same amount of

data, was collected for testing, such that all offline results presented in this section were

obtained from unseen data.

The classification performance was assessed using the NB classifier in its quadratic

näıve form (qNB) (see section 4.4.3)

p(y|Ci) =

Nf∏
j=1

p(y(j)|Ci) =

=

Nf∏
j=1

1√
2πσi(j)

exp (−(y(j)− µi(j))
2

2σ2
i (j)

) (5.29)

where each feature j is assumed to have a normal distribution N (µi(j), σ
2
i (j)). The

number of features is defined by Nf , and Ci (i ∈ {+,−}) represents the target and non-

target classes. The a posteriori probability p(Ci|y) is computed from the conditional
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probabilities using the Bayes theorem:

P (Ci|y) =
P (Ci)p(y|Ci)

p(y)
. (5.30)

The prior probabilities P (Ci) are respectively 2/12 and 10/12 for target and non-target.

The class is detected using the following maximum a posteriori decision rule

ĉ = argmax{P (C+|y), P (C−|y)}. (5.31)

A trial is composed of several sub-trials, and thus the binary classifier must be applied

combining the epochs of all sub-trials associated to each event (see section 3.1.2). Two

approaches were followed. In the first, the spatial filter was applied to the average of

the K-epochs associated to each event and then the a posteriori probability was obtained

according to

P (Ci|y) ≡ P (Ci|
1

K

K∑
k=1

yk) , i ∈ {+,−}. (5.32)

In the second approach, the spatial filter was applied to single epochs and then the K-

posterior probabilities were combined according to

P (Ci|y) ≡
K∏
k=1

P (Ci|yk) , i ∈ {+,−} (5.33)

where P (Ci|yk) is the a posteriori probability for the epoch k and K is the number of

epochs (repetitions). Class detection was done in both cases using P (Ci|y) in (5.31).

Figure 5.6a) shows the classification error rate following the K-epoch average approach.

The error rate was obtained averaging the results of all 23 subjects (subject S21 did not

elicit a traceable P300 and was discarded from the analysis), i.e., using 23 × 180 =

4140 target epochs and 23 × 900 = 20700 non-target epochs. The plot shows results

of the 3 proposed spatial filters, and for sake of comparison, the results of Laplacian

(LAP) derivations, as well as the results concerning the channel presenting the highest

discrimination. The Laplacian method is a high-pass spatial filter that computes for

each electrode the instantaneous second derivative of the spatial voltage distribution,

emphasizing localized activity and attenuating surrounding activity [Srinivasan 1999]. It

is an unsupervised technique that, in some cases, significantly increases the SNR and

thereby increases the classification accuracy [McFarland 1997]. The Laplacian of channel
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Figure 5.6: a) Classification results using the K-epoch average approach for K ∈
{1, · · · , 7}. The results are the averaged values obtained from 23 subjects; b) Classi-
fication results using the K-probability approach for K ∈ {1, · · · , 7}. The results are the
averaged values obtained from 23 subjects.

i is computed by approximating the second derivative according to

V LAP
i = Vi −

∑
j∈Si

gijVj (5.34)

where Vi is the potential between electrode i and the reference, and gij is given by

gij =

1
dij∑

j∈Si

1
dij

(5.35)

where Si is the set of electrodes j surrounding electrode i, and dij is the distance between

electrodes i and j, j ∈ Si. Laplacian derivations were computed at channels Cz and Pz,

taking respectively (Fz, C3, C4, Pz) and (Cz, Oz, PO7, PO8) as surrounding electrodes.

Figure 5.6a) shows that the error rate decreases for all methods with increasing K, and

a sharp decreasing is evident for K ≤ 3. The C-FMS spatial filter has a smaller error rate

than the remaining methods, for all K epochs. Table 5.3 shows the respective statistical
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Table 5.3: Statistical tests (t-test) for the classification values obtained in Fig. 5.6a)

Number of
epochs, K

statistical tests for the error rate differences

K = 1 (sin-
gle epoch)

C-FMS - bst channel = 17.3% (t(22)=16.95, p ≤ 0.001)

C-FMS - Lap derivations = 10.8% (t(22)=12.17, p ≤ 0.001)
C-FMS - Max-SNR = 9.5% (t(22)=5.10, p ≤ 0.001)
C-FMS - FC = 1.1% (t(22)=3.65, p ≤ 0.001)

2 ≤ K ≤ 7 C-FMS - bst channel (p ≤ 0.001) for K ≥ 2)
(K-epoch av-
erage)

C-FMS - Lap derivations (p ≤ 0.001) for K ≥ 2)

C-FMS - Max-SNR (p ≤ 0.001, K = 2, p ≤ 0.005, K = 3, p ≤
0.05, K = 4, p ≤ 0.05, K = 5, p = 0.084, K = 6, p ≤ 0.005,
K = 7)
C-FMS - FC (p ≤ 0.01, K = 2, p = 0.056, K = 3, p = 0.052,
K = 4, p = 0.067, K = 5, p ≤ 0.02, K = 6, p = 0.13, K = 7 )

tests. The error rate difference is almost always statistically significant, or approaches

significance, except the difference between C-FMS and FC for K = 7.

In the K-probability approach, the NB classifier is applied to single epochs and the

probabilities are combined using (5.33). Figure 5.6b) shows the classification results. The

statistical t-test was again applied to evaluate the significance of the results. For a single

epoch, the results are coincident with the K-epoch approach, since for K = 1, (5.33)

is equal to (5.32). For K = 2 · · · 7, the reduction of classification error rates between

C-FMS, and best channel, Laplace derivations and FC, is very similar to the K-epoch

average approach. The differences are statistically significant with p ≤ 0.001 for best

channel and Laplace derivations, and p ≤ 0.005 for FC. The Max-SNR results are poorer

than for the K-epoch average. The difference between C-FMS and Max-SNR is about

10% (p ≤ 0.001). These results show that Max-SNR works better with data with higher

SNR provided by the K-epoch average approach. The C-FMS filter is not affected because

the feature selection algorithm selects mainly features from the FC filter.

5.4.4 Online results

In online operation, the binary classifier is applied to each one of the 12 events. Each

event is classified as target or non-target with an associated a posteriori probability using

(5.32) or (5.33). Online experiments used the K -epoch approach (5.32). The character

recognition is now a 36-class classifier where a posteriori probabilities (scores) of the 12

events are combined to find the mentally selected character/symbol. The character is
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found by detecting the respective row number, #row, and column number, #column.

The following combination of the a posteriori probabilities was used

if the number of events detected as target is ≥ 1, then

#row = argmax
j∈{1,··· ,6}

P j
+ ∧ #col = argmax

l∈{1,··· ,6}
P l
+

else, if all events are detected as non-target, then

#row = argmin
j∈{1,··· ,6}

P j
− ∧ #col = argmin

l∈{1,··· ,6}
P l
−

(5.36)

where P
{j,l}
{+,−} are the a posteriori probabilities associated with the events of rows (index

j) and columns (index l). By words, if more than one event is detected as target, the

method chooses the event most likely to be a target. If all the events are detected as

non-target, then the method chooses the event less likely to be a non-target.

Each online session occurred after the respective calibration session. From the results

of the calibration session, it was selected the least number of repetitions, K, for which

an error rate up to 5-10% was found. The number of repetitions was then adjusted,

when necessary, according to the online performance of the subject. The C-FMS was

the selected spatial filter since it consistently provided better results during the pilot

experiments and throughout the sessions in this study as confirmed by the offline analysis

in the last section.

Under the same conditions that occurred during the calibration sessions, the subjects

were asked to write a sentence. Subjects S1 to S12 (see Table 5.4) wrote the sentence

’THE-QUICK-BROWN-FOX-JUMPS-OVER-LAZY-DOG’ (39 characters), subjects S13

to S19 wrote the sentence ’THE-QUICK-BROWN-FOX’ (19 characters) and subjects S20

to S24 wrote the Portuguese sentence ’ESTOU-A-ESCREVER’ (16 characters). Partici-

pants S13 to S24 wrote a shorter sentence since they underwent an additional paradigm

during the same sessions (Case-study II described in chapter 6). The sentences were

written at once without interruptions. In case of error, subjects could opt to correct the

character using the ’del’ symbol.

To assess the online performance and for comparison with state-of-the-art results,

the number of decoded SPM, the ITR (3.3) and the PBR (3.8) were computed taking

into account the ITI (3.5 s) and omitting the ITI. Table 5.4 summarizes these results,

associated with number of repetitions (NRep) and online accuracy (3.9). The averaged

results are presented for each group of subjects. From the group of participants with CP,

subject S21 was unable to perform the online session because, during the calibration, the
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algorithms did not detect target events with an accuracy above 80% even for K ≥ 7,

which was insufficient for online operation. The averaged results were obtained only from

S20 and S22. Comparing the results of able-bodied and disabled participants, and taking

the bandwidth as the main parameter, we see that on average the results are slightly

lower for disabled participants. It is worth noting that almost all values were obtained for

classification accuracies above 85%2. Comparing the online and offline results (Tables 5.4

and 5.5), we can observe that the online results match the expected results from the offline

analysis. These results corroborate that the offine results may provide a good indicator

of the online performance as long as the correct performance metrics are used.

5.4.5 Offline analysis

5.4.5.1 SNR and discrimination enhancement

One natural measure to evaluate the performance of the spatial filters is the SNR. It

was estimated from (3.14) using all K epochs of calibration data sets. To assess the

improvement performance, the SNRs of Max-SNR and FC beamformers were respectively

compared with: 1) the SNR of the best channel; 2) the averaged SNR over the 12 channels;

and 3) the SNR of Laplacian derivations at channels Cz and Pz, taking respectively (Fz,

C3, C4, Pz) and (Cz, Oz, PO7, PO8) as surrounding electrodes. The SNR of C-FMS was

not computed because its first projection coincides with the FC beamformer, and thereby

would lead to the same results. The SNR estimates were then averaged taking 23 of the

24 subjects, achieving the results in Fig. 5.7. The results were obtained for different

number of averaged epochs3, K = 1 · · · 7, thus simulating different numbers of repetitions

of the events. The data sets from subject S21 were discarded in the analysis because

this subject did not evoke a visible P300. The results are statistically evaluated with a

t-test in Table 5.6. For all methods, as the number of epochs taken for average increases,

the SNR also increases, which was expected given the phase-locked properties of ERPs.

Comparing Fig. 5.6 and Fig. 5.7, a direct relationship between SNR and classification

accuracy becomes apparent, i.e., methods with higher SNR provide a better classification.

The exception goes to the Laplacian derivations, which shows a better classification than

best channel and notwithstanding similar SNRs. The SNR improvements led to an

2Many of the participants wrote the sentences with a fewer number of repetitions (some of them with
a single repetition) but with lower accuracies, so we chose not to show these results.

3It is important to note that, when averaging, the number of samples of the data sets is reduced by the
number of epochs, K, used in the average. For instance, if K = 2 the number of target and non-targets
epochs will be respectively 180/2 = 90 and 900/2 = 450; for K = 3, 180/3 = 60 and 900/3 = 300, and so
on.
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Table 5.4: Case-study I : online results.

omitting ITI with ITI
Subject Pac (%) NRep SPM ITR PBR SPM ITR PBR

S1 95.12 4 5.66 26.25 26.41 4.58 21.24 21.37
S2 95.12 5 4.62 21.41 21.53 3.87 17.95 18.06
S3 86.67 5 4.62 18.09 17.50 3.87 15.17 14.68
S4 95.12 3 7.32 33.94 34.14 5.61 26.01 26.16
S5 95.12 5 4.62 21.41 21.53 3.87 17.95 18.06
S6 86.67 5 4.62 18.09 17.50 3.87 15.17 14.68
S7 90.70 7 3.37 14.31 14.19 2.96 12.55 12.44
S8 79.59 5 4.62 15.66 14.12 3.87 13.13 11.84
S9 90.70 4 5.66 24.04 23.82 4.58 19.45 19.27
S10 90.70 5 4.62 19.60 19.42 3.87 16.44 16.29
S11 100.0 3 7.32 37.83 37.83 5.61 28.99 28.99
S12 86.67 4 5.66 22.19 21.46 4.58 17.95 17.37
Avg 1 91.02 4.6 5.22 22.73 22.45 4.26 18.50 18.27

S13 84.21 7 3.37 12.58 11.92 2.96 11.03 10.45
S14 82.60 5 4.62 16.66 15.56 3.87 13.98 13.05
S15 100.0 5 4.62 23.86 23.86 3.87 20.01 20.01
S16 90.47 4 5.66 23.93 23.69 4.58 19.36 19.17
S17 85.00 5 4.62 17.50 16.70 3.87 14.67 14.01
S18 95.00 2 10.34 47.87 48.13 7.23 33.45 33.64
S19 95.00 3 7.32 33.86 34.05 5.61 25.95 26.09
Avg 2 90.33 4.3 5.76 25.33 25.01 4.57 20.03 19.76

S20 100.0 6 3.90 20.14 20.14 3.35 17.33 17.33
S21 - - - - - -
S22 93.75 6 3.90 17.58 17.62 3.35 15.12 15.16
Avg 3 96.88 6 3.90 18.86 18.88 3.35 16.23 16.25

S23 100.0 5 4.62 23.86 23.86 3.87 20.01 20.01
S24 93.75 5 4.62 20.82 20.88 3.87 17.47 17.51
Avg 4 96.87 5 4.62 22.34 22.37 3.87 18.74 18.76

Overall
Avg

91.82 4.7 5.23 23.11 22.86 4.24 18.71 18.51

Table 5.5: SPM and ITR (omitting ITI) using the offline classification accuracy in Fig.
5.6a) with C-FMS.

Number of repetitions (K)
1 2 3 4 5 6 7

Pac(%) 82.92 89.82 92.66 94.52 96.01 96.99 97.56
SPM 17.65 10.34 7.32 5.66 4.62 3.90 3.37
ITR 64.13 43.17 32.30 25.94 21.80 18.78 16.45

enhancement of the ERP and thereby to an increased discrimination between target vs.
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Figure 5.7: SNR estimated from 23 sub-
jects. Analysis for K-epoch average, K =
1 · · · 7.

Table 5.6: Statistical tests (t-test) for SNR values obtained in Fig. 5.7)

Number of
epochs, K

statistical tests for SNR differences

K = 1 (sin-
gle epoch)

FC - all-channel = 8.24 dB (t(22)=9.93, p ≤ 0.001)

FC - bst channel = 5.69 dB (t(22)=10.68, p ≤ 0.001)
FC - Lap derivations = 5.86 dB (t(22)=9.05, p ≤ 0.001)
FC - Max-SNR = 2.08 dB (t(22)=6.68, p ≤ 0.001)

2 ≤ K ≤ 7
(K-epoch av-
erage)

Differences approximately constant: FC - all-channel = 8.18 dB;
FC - bst channel = 5.68 dB; FC - Lap derivations = 5.76 dB; FC
- Max-SNR = 0.87 dB; (p ≤ 0.001 in all cases)

non-target. The statistical r-square measure was used to assess this discrimination. The

color maps in Fig. 5.8 compares the r-square values before spatial filtering (top) and

after C-FMS spatial filtering (bottom), for a representative data set with 180 target

epochs and 900 non-target epochs. Channels with higher discrimination are usually over

the parietal and parietal/occipital regions (typically, PO7 and PO8 provide the higher

levels of discrimination). For C-FMS filtered data, the r-square was computed from

projections (5.22). Projection 1 is the output of FC beamformer, y1, and projection

2 is the output of Max-SNR beamformer, z1. The remaining projections are obtained
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Figure 5.8: Results obtained from representative data of one session: 180 target epochs
and 900 non-target epochs using a 5-epoch average. Color map representing the r-square
statistical measure of the discrimination between target and non-target classes. a) Topo-
graphic map before spatial filtering at instant 425 ms; b) Top: r-square at channels Fz,
Cz, C3, C4, CPz, Pz, P3, P4, PO7, PO8, POz and Oz before spatial filtering (X+,X−);
b) Bottom: r-square of projections of C-FMS beamformer according to (5.22), where pro-
jection 1 is the output of FC beamformer, y1, and projection 2 is the output of Max-SNR
beamformer, z1. The remaining projections are Z(2:N−1) according to (5.20).

from Z(2:N−1) (5.20). As expected, the first C-FMS projection shows the higher r-square

discrimination, increasing the pre-filter maximum of approximately 0.3 to a 0.6 post-filter

maximum. Although lower, the second projection of C-FMS also shows some degree of

discrimination. The other projections show no discrimination. This result confirms that

FC and Max-SNR outputs retain the most discriminative information. Figure 5.9 shows

the mean, µ(t), and mean ± standard deviations, µ(t) ± σ(t), of target and non-target

epochs measured at each instant t at channel Cz before spatial filtering (top), and µ(t)

and µ(t)± σ(t) of first C-FMS projection (bottom). The increased margin of separation
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Figure 5.9: Results obtained from the same data shown in Fig. 5.8. Top: mean, µ(t), and
mean ± standard deviation, µ(t)± σ(t), of 180 target epochs and 900 non-target epochs
measured at channel Cz using a 5-epoch average; Bottom: µ(t) and µ(t)±σ(t) of the first
C-FMS projection, y1, of the 5-epoch average of 180 target epochs and 900 non-target
epochs.

between the patterns of the two classes after C-FMS filtering is remarkable. Figure 5.10

shows also the effect of spatial filtering in the frequency domain. The plot represents the

average of the FFTs spectra of the first spatial projection. Comparing with Fig. 5.3(d),

it can be seen that the 5 Hz interference is almost eliminated from target epochs.

5.4.6 Spatial filtering robustness

The importance of spatial filtering and its advantage over the classical ’spatio-temporal’

approach is further analysed. Target ERPs exhibit an inter-trial variability regarding

latency, amplitude and morphology as can be seen in example of Fig. 5.11. The plots

compare 10 successive epochs before (a) and after (b) spatial filtering, emphasizing epoch

variability and effect of spatial filtering. Despite this inter-trial variability, there is a
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Figure 5.10: Average of the FFT spec-
tra of the first projection obtained from
C-FMS filtered epochs (180 FFTs of tar-
get epochs and 900 FFTs of non-target
epochs).
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spatial correlation between channels, that we will show to be invariant across trials in

normal conditions. Spatial filtering takes advantage of this neurophysiological invariance

on spatial correlation, giving it a robustness to inter-trial variability. Let us ascertain the

spatial correlation through a coherence measure. It gives a linear correlation between two

signals as a function of the frequency. In the neurophysiologic context, coherence can be

used to measure the linear dependence and functional interaction between different brain

regions. The coherence between two signals x and y was estimated from the magnitude

squared coherence [Bendat 2000]

λ2
xy(k) =

|Sxy(k)|2

|Sxx(k)||Syy(k)|

=
|X(k).Y ∗(k)|2

|X2(k)||Y 2(k)|

=
||X(k)|.|Y (k)|ej(arg(X(k)−arg(Y (k))|2

|X2(k)||Y 2(k)|
(5.37)

where ∗ denotes the complex conjugate, Sxx(k) and Syy(k) are respectively the power

spectra of x(n) and y(n), and Sxy(k) is the cross-power spectrum. The coherence is

sensitive to both phase and amplitude of the relationship between pairwise channel signals,

as can be seen in (5.37), and thus provides a reliable measure. Fig. 5.12 shows the spatial

correlation between CPz and several other channels (Cz, Pz, P3, P4, PO7 and PO8). For

each trial, the coherence values (5.37) were averaged for a frequency band according to

λ2
xy =

∑
k

λ2
xy(k) (5.38)



5.4. Case-study I - Spatial filtering approach in the context of the RC speller BCI 77

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

Time [s]

A
m

pl
itu

de
, µ

V

Raw P300 epochs − channel Cz

0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time [s]

A
m

pl
itu

de
, µ

V

Spatial filter projection of P300 epochs

a) b)

Figure 5.11: a) Plot of 10 successive unfiltered 5-epochs average (P300 epochs at channel
Cz) of a representative participant. The variability of amplitude, latency and morphology
make very challenging the detection of an ERP pattern, even with a 5-epochs average; b)
Spatial filter projections, obtained from 12 channels, for 10 successive 5-epochs average
(using topographic data of the same temporal epochs on a)).
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Figure 5.12: Spatial correlation measured between channel CPz and several other channels
using (5.38) across 180 target epochs. The correlation remains invariant even for channels
far from CPz where the correlation is smaller.

where the summation goes though all the frequencies of a given frequency band. The

invariance of the correlation across 180 target epochs is particularly evident in the near

proximity but also in far locations such as PO7 and PO8.

To test the robustness of spatial filtering, we compared the FC beamformer estimated

from two independent data sets obtained from the same subjects gathered in different

moments of the experimental sessions. Figure 5.13 compares the first spatial filter w1

obtained from each of the datasets. The analysis was made for one subject of the able-
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bodied group, one subject of the CP group and one subject of the ALS group. Fig.

5.13 presents at top the weights of the spatial filters while at the bottom a colormap

represents the interpolation of the same filter coefficients at electrode positions. The two

filters obtained from the two data sets are very similar, which shows that the spatial filters

have a good generalization (with no training overfit), providing invariant features for the

classifier.
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Figure 5.13: Analysis of spatial filter robustness. Top: the graph compares the coefficients
w1 of the spatial filters estimated from two different datasets (dataset 1 and dataset 2)
for the same subjects. The analysis was made for one able-bodied subject (left), one
subject of the CP group (middle), and one subject of the ALS group (right); Bottom:
scalp topography of the same spatial filters shown in top. The colormap represents the
interpolation of coefficients w1 at electrode positions.
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5.5 Assessment of spatial vs. spatio-temporal classi-

fication

As referred in section 5.1.1, most of the P300-based systems follow a ’spatio-temporal’

approach (as illustrated in Fig. 5.1). From a machine learning perspective, our spatial

filtering approach has comparatively several advantages, some of them already inferred

previously:

• Spatial projections have a reduced inter-trial variability, providing robust features to

classifiers. The robustness of classification models reduces the overfitting problem.

A 2-dimensional example is illustrated in Fig. 5.14. The scatter plots show the

two best features selected from the 12 channels, using a spatio-temporal approach

(left), and the two best features selected from the spatial projections, using a spatial

approach (right). Class separation is notoriously higher in the spatial approach;

• It transforms the original spatial feature space into a new one with higher SNR that

concentrates all the energy, eliminating the spatial redundancy;

• The dimension of the feature space is substantially reduced (N × T dimension is

transformed into a 1×T dimension or 2×T dimension). Thereby, hyper-parameters

of classifiers are tuned more quickly and more efficiently, and regularization may be

unnecessary for some classifiers. Moreover, the number of training samples can be

reduced, requiring shorter calibration periods;

• Robust features in a low dimensional feature space make classification less dependent

of both feature selector type and classifier type.

Additionally, the criteria used to estimate spatial filters are based on physical properties

of the signals, such as power and crosspower (physically meaningful), which are com-

puted using the full time series. On the other hand, spatio-temporal classification often

disregards the spatial correlation and physical properties of the signals, discarding valu-

able information. Moreover, due to high dimensionality of the feature space, N × T , a

downsampling operation is required, otherwise overfitting problems occur and mathemat-

ical models may become intractable or unsolvable. The next section compares the two

approaches using benchmarking datasets.
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Figure 5.14: 2D scatter plots for the two best features ranked with r2. Features were
obtained from 5-epoch average using an RC speller dataset. Covariance contour and
mean is shown for each class. Separating hyperplane computed using LDA, considering
equal covariances; Left) Features selected from the 12 channels, using a spatio-temporal
approach; Right) Features selected from the spatial projections, using a spatial approach.
Note the larger inter-class distance for spatially filtered features.

5.5.1 Benchmarking datasets - BCI Competition II

The goal of this section is twofold. First, to infer the impact of spatial filtering compared to

spatio-temporal approach, independently of the classifier type. Therefore, we compared

the two approaches by using several standard classifiers presented in chapter 4: LDA

(section 4.4.1), SWLDA (section 4.4.2), qNB (section 4.4.3), SVM (section 4.4.4). Note

that, although an implicit comparison between classifiers is made, our goal is beyond

this comparison, aiming to show the effective contribution of spatial filtering for any of

the classifiers. Second, to compare the performance of our proposed methodology with

state-of-the-art methods.

The BCI-Competition 2003 [BCI-Competition 2003] made available datasets gathered

during an RC speller task performed by one participant. During the task, the participant

had to spell the following words ’FOOD-MOOT-HAM-PIE-CAKE-TUNA-ZYGOT-4567’

(31 characters). Simulating the conditions of the competition, we obtained the classi-

fication models from labeled data sets (sessions 10 and 11), which were then tested on

unlabeled data sets (session 12). See details of the datasets in [BCI-Competition 2003].
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Table 5.7: Number of errors in the recognition of ’FOOD-MOOT-HAM-PIE-CAKE-
TUNA-ZYGOT-4567’ (31 characters) obtained with several classifiers using either a
spatio-temporal or a spatial approach.

Number of event repetition K
Method 1 2 3 4 5

LDA (spatial) 21 10 5 2 0
LDA (spatio-temporal) 27 18 20 9 6
SWLDA (spatial) 18 13 7 2 4
SWLDA (spatio-temporal) 25 15 12 9 7
qNB (spatial) 17 12 9 0 2
qNB (spatio-temporal) 29 28 25 26 25
SVM (spatial) 21 14 6 1 0
SVM (spatio-temporal) 27 23 17 20 14

Following the spatio-temporal and spatial approaches, the classifiers were tested achieving

the results in Table 5.7. In the spatio-temporal approach, the EEG from each channel

(the same 12 channels used in our own experiments) was downsampled with appropriate

moving average filtering by a factor of 10, and then normalized and concatenated into

a unidimensional feature vector. The 100 best features were then selected using the r2

feature selector (4.2), except in the SWLDA case, which used its embedded feature se-

lector. The criteria to enter and remove features was respectively p − value < 0.1 and

p − value > 0.15. The SVM used an RBF Kernel, and parameters C and σ were tuned

through grid-search and assessed by cross-validation. The classifier models were achieved

for different number of event repetition, k ∈ {1 · · · 5} considering for each case the average

of k epochs. In the spatial approach, the 12 channels were spatially filtered through the

C-FMS method, and the 2 projections were concatenated into a unidimensional feature

vector. No downsampling was performed. The remaining steps were similar to the spatio-

temporal approach. The 36-class character recognition was then performed using (5.36)

(the chance level is 2.7 %).

For all classifiers, it is notoriously the improvement of performance for the spatial

approach. While all classifiers perform well with the spatial approach, the results are poor

for the spatio-temporal approach. The worst cases with the spatio-temporal approach are

with qNB and SVM. In the spatial approach, the simplest classifier, qNB, has a similar

performance to the other methods, even outperforming for some number of repetitions, k.

Actually, it achieves the best performance for k = 4. The inferred words and error rates

for this combination are shown at Table 5.8. These results outperform the results achieved

by the winners in [BCI-Competition 2003]. No individual adjustments of the number of

features and training sets was made to each classifier, and we limited the number of
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Table 5.8: Inferred words and associated error rates for different number of repetitions,
using data sets from BCI - Competition 2003, using (spatial + qNB) approach.

NRep Inferred words Error

1 FCOD MMOZ NBM JID CACC TTNC ZZBUT XXT7 54.8 %
2 FCOD GMOT BAM JIE CAIE TCNA ZMAOT X0Z7 38.7 %
3 FOOD MOOT BAM JIE CAKC TCNA ZSAOT X057 29.0 %
4 FOOD MOOT HAM PIE CAKE TUNA ZYGOT 4567 0 %

channels to 12. Therefore it can be expected a further performance improvement of the

results.

5.6 Conclusion

This chapter described several novel statistical spatial filters for ERP classification. The

performance regarding neurophysiologic and classification results are compelling, showing

that spatial approach should be considered as an effective option in current ERP-based

BCIs. Although the methods were applied in a P300-based BCI framework, they can also

be used to reduce the recording duration in patient examinations, when P300 detection

is used as a diagnostic tool (e.g., cognitive impairments, neurological and psychiatric

disorders) [Mell 2008], or as described in the clinical application of appendix D.
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”Intelligence is the ability to adapt to change.”

”Remember to look up at the stars and not down at your feet.”

Stephen Hawking, one of the brightest physicists of today (Stephen Hawking suffers

from an atypical amyotrophic lateral sclerosis since the age of 21)

This chapter describes a novel speller paradigm called lateral single character (LSC)

speller. This paradigm follows an event strategy that significantly reduces the time for

symbol selection and explores the intrinsic hemispheric asymmetries in visual perception,

to improve the BCI performance. The LSC performance is compared to that of the stan-

dard row-column (RC) speller, through tests performed by able-bodied and individuals

with severe motor limitations (Case-study II ).

6.1 Introduction

P300-based BCIs should be designed to enhance simultaneously: (1) the ’quality’ of

the P300 component, which has direct influence on the classification accuracy; (2)

the amount of encoded information; and (3) the number of decoded symbols per

minute. Increasing one of these parameters while decreasing the others may have lit-

tle impact on the improvement of communication rates. It is known that the P300

ERP represents cognitive functions that vary according to stimulus modality, stimu-

lus probability, stimulus onset asynchrony (SOA), task-relevance, decision making, se-

lective attention, expectancies and relative perceptual distinctiveness among stimuli

[Polich 2007, Rohrbaugh 1974, Polich 1996, Comerchero 1999, Heinrich 2008]. In essence,

a P300-based BCI uses an attention task where temporal, spatial, object-based and feat-

ural attention can be manipulated [Correa 2006, Mercure 2008]. Thereby, there are many

parameters that can modulate the P300 component and that can be configured in P300-

BCIs to enhance the evoked P300. On the other hand, issues such as user-friendliness and
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comfort, should not be overlooked when the interface is intended to be used on a daily

basis.

6.2 Design of visual paradigms

6.2.1 Limitations of the standard RC speller

The original RC speller is the most widely used P300 speller and has already shown to

achieve effective transfer rates for clinical use [Kubler 2008]. It encodes a large number

of symbols with a small number of events, which potentiates high information transfer

rates (ITRs). Notwithstanding, the RC speller presents some issues that limit its perfor-

mance. Two known problems identified from our own experience and well documented

in [Townsend 2010] are the adjacency-distraction errors and the double-flash errors. In

the first case, non-targets rows/columns adjacent to target rows/columns may distract or

deceive the user and be erroneously selected. This is an example of spill-over of spatial

attention. The second case occurs when there are two consecutive target flashes. The

second flash is usually unnoticed by the user, and does not evoke a P300 signal. Even

if the second flash is noticed, there will be an overlap of the two components causing a

change of the P300 waveform morphology increasing its variability [Martens 2009]. This

is an example of spill-over of temporal attention and target-to-target interactions. The

frequent occurrence of overlap in the RC paradigm is due to its short target-to-target

interval (TTI), which is in turn related with the short SOA (stimulus onset asynchrony -

interval between the onset of two consecutive stimuli) and with the high target probability

(1:6). The P300 amplitude is adversely affected by the high target probability because

amplitude and probability are inversely proportional. Overcoming these two aspects by

modifying the original RC paradigm represents a considerable challenge. For example,

increasing the SOA leads to a lower ITR. Moreover, a decrease of the probability can only

be achieved with a larger matrix, possibly encoding unnecessary symbols and increasing

the time for symbol selection.

6.2.2 New visual paradigms and RC modifications

Several studies have investigated new strategies for stimuli presentation and the impact

of their physical properties (see a summary in Table 6.1). Studies in [Allison 2003b,

Sellers 2006b, Nam 2009] investigated the effect of changing the size of the original RC

matrix on the P300 amplitude, and showed that larger matrix sizes increased the am-



86 Chapter 6. Lateral Single Character (LSC) Speller

plitude. Notwithstanding, in [Sellers 2006b] the smaller matrix reached higher accuracy,

possibly due to the better separated spatial attention signals (better attentional ’zoom-

in’). The effect of different SOAs in the RC speller was also analyzed and non-consensual

results were reached. In [Farwell 1988, Nam 2009], a longer SOA increased the P300

classification accuracy. In [Sellers 2006b, Meinicke 2002], a shorter SOA led to a higher

accuracy, but to lower P300 amplitudes [Sellers 2006b]. In experiments addressing either

probability or the role of SOA, it seems that there is no straightforward probability and

SOA relation between P300 amplitude and classification accuracy. This may be due to

the fact that one may have to take into account the joint effects of spatial, temporal

and object based attention, and the final result will depend on an amplitude vs. overlap

tradeoff.

P300 is considered an endogenous component not very influenced by the physical at-

tributes of the stimuli [Sanei 2007]. However, such physical attributes might indirectly

affect the response by modulating perceptual saliency as suggested by [Teixeira 2010].

Accordingly, exogenous attributes such as intensity, color and size can enhance stimu-

lus discrimination and perception, eliciting higher and faster components [Polich 1996,

Treder 2010]. In [Salvaris 2009] and [Takano 2009], several physical parameters of the

original RC speller were changed and assessed, namely, background and symbol color,

symbol size, inter-symbol distance, and luminance/chromatic flicker.

New flash-patterns presentations have been proposed as alternatives to the standard

RC approach. In [Allison 2006] a multi-flash approach was analyzed aiming to reduce

the number of necessary flashes within a trial to detect a symbol. A fewer number of

flashes can lead to an increased ITR if the level of accuracy is kept. [Townsend 2010]

introduced a new paradigm referred to as checkerboard that relies on a ”splotch” stimulus

presentation [Allison 2003a], where the stimuli of the matrix are presented in predefined

groups instead of rows and columns. The checkerboard approach eliminates the double

flash effect, reduces the problem of component overlapping, and avoids the adjacency-

distraction issue. Despite the fact that the standard matrix is increased to a 8× 9 matrix

requiring 24 flashes per selection, thus increasing the time to make a selection, the achieved

results show even so an increased performance over the standard RC paradigm. Also based

on the ”splotch” concept, the use of a different number of flashes was compared, showing

improvements over the RC speller [Jin 2011a].

An alternative to the RC-based speller is the single-character (SC) speller wherein each

symbol is individually highlighted. In the SC speller, each event only encodes a single

symbol, resulting in low ITR. Moreover, the number of distractor symbols is larger than
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Table 6.1: Summary of new stimuli presentation paradigms and the effects of stimuli
properties.

Stimuli properties and presentations Studies

Manipulation of RC properties:

- Effects of matrix size and ISI [Allison 2003b, Sellers 2006b,
Nam 2009]

- Effects of SOA [Farwell 1988, Meinicke 2002,
Sellers 2006b, Nam 2009]

- Effects of physical attributes: color, luminance,
size, inter-symbol distance

[Salvaris 2009]; [Takano 2009]

Manipulation of flash patterns:

- Multi-flash [Allison 2006]
- ’Splotch’ [Allison 2003a,

Townsend 2010, Jin 2011a]
- Single-char [Guan 2004]; [Guger 2009]

Gaze independent paradigms:

- Two-level based [Treder 2010]; [Pires 2011c]
- Sequential central disk [Liu 2011]

in RC, since the number of flashes is the same as the number of symbols. However, on the

other hand, the SC speller has a lower target probability and the TTI is larger, which are

two parameters that can enhance the P300 amplitude and avoid overlapping. [Guan 2004]

compared the SC speller with the RC speller and achieved significantly better results with

the SC speller. However, in a study made by [Guger 2009] with 100 participants, the

results showed a significantly higher accuracy with the RC speller. Although the P300

amplitude has been higher for the SC speller than for the RC speller, the average accuracy

was worse for SC. Several speller paradigms addressing the gaze-independence issue have

also been proposed. This theme will be discussed in detail in chapter 7.

6.3 Novel paradigm: Lateral single-character speller

This study proposes a novel speller, henceforth called lateral single character (LSC) speller

(described in section 6.3.1). It introduces new features that overcome some of the limi-

tations found in current SC spellers and in standard RC spellers. Namely, compared to

other SC spellers, the layout reduces the effect of local and remote distractors, and the

flashing/event strategy allows to drastically reduce the SOA. This reduction makes the

overall time of one trial very similar to those usually achieved in the RC speller with
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the same amount of encoded symbols. By bringing together these features with the in-

herent lower target probability and higher TTI of SC spellers, LSC elicits a P300 with

higher ’quality’, thus improving the classification accuracy. Furthermore, the paradigm is

expected to be more visually attractive and comfortable.

In this study, LSC and RC spellers are compared based on online sessions performed

by able-bodied and disabled persons, by assessing the accuracy, symbols per minute and

ITR. Participants answered to a questionnaire to assess both subjective and objective pa-

rameters of the interfaces. The BCI performance is also compared with the performance

achieved with non-EEG interfaces for those participants who use standard interfaces in

their daily lives. Datasets gathered during calibration sessions were used for an offline

analysis. We compared the amplitude, latency and signal-to-noise ratio (SNR) of the

ERPs elicited by the RC and LSC paradigms. Regarding LSC, new discriminative neu-

rophysiologic features related with the lateral layout and event strategy are investigated

and discussed in section 6.6.3.

6.3.1 LSC design

The proposed LSC speller is shown in Fig.6.1a). It encodes 28 symbols comprising all

letters of the alphabet, and the ’spc’ and ’del’ symbols. It has a lateral and symmetrical

arrangement where the symbols flash alternately between the left and right fields of the

screen (see the temporal diagram of Fig. 6.1c)). There is always a symbol highlighted,

thus the ISI (inter-symbol interval) is eliminated. The SOA coincides with the highlight

time of a symbol, which substantially reduces the sub-trial time. The symbols are flashed

pseudo-randomly since the side of consecutive flashes is controlled, but within each side

the symbols are flashed randomly. The user is overtly focused on the left or on the right

side of the screen and therefore the participant sees virtually only half of the stimuli,

because stimuli on the opposite side are nearly ignored (remote distractors). Likewise,

despite the target probability being 1:28, the user perceives virtually a target probability

of 1:14. Moreover, the user sees the on-off visual effect although there is always an active

symbol, i.e., the ISI is zero, but for each side of the screen there is respectively a left ISI

and a right ISI. In the experiments, the SOA was settled to 75 ms and thus each round of

flashes took 28× 0.075 = 2.1 s. The symbols are arranged to minimize the effect of local

distractors. This effect depends on the number and distance of the surrounding stimuli.

In the typical 6 × 6 RC or on a SC matrix layout, a central symbol has 8 surrounding

distractors, while in the LSC speller the maximum number of surrounding distractors is

4 (see Fig. 3.1d)). The circular layout of the speller provides similar eccentricities for all
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symbols, avoiding large eye movements to see symbols in the corners, as occurs in RC. The

highlighting of each symbol is made by changing the foreground/background color of the

symbol from white/grey to red/green, and by increasing the size by ≈ 15%. Finally, in the

LSC speller, the spelled or copied letters are presented in a central position of the screen,

while in the RC speller they are presented at the top of the screen. The central position

avoids large eye movements to check the detected spelled symbol. It should be emphasized

that despite the control of P300-based ERPs requires overt attention, the movement of

the eyes does not need to be precise as in the case of SSVEP. An eye movement placing

the target event in the foveal region is enough for its detection.

time

(a) (b)

Symbols of Left 

screen side

Symbols of Right 

screen side

SOA

TON

TOFF TON

TOFF

Left ISI

Right ISI
Target

Distractor 

stimuli 

Matrix layout Lateral layout

(c) (d)

Figure 6.1: a) Screenshot of the LSC speller; b) Screenshots of successive events; c)
Temporal diagram of the LSC stimuli/events. TON is the highlight time and TOFF is the
time between flashes on each screen side (Left ISI or Right ISI). TON has to be equal to
TOFF ; d) Local distractors on a matrix layout and on the LSC layout.
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6.4 Case-Study II : LSC vs. RC

6.4.1 Participants

The experiments were performed by ten able-bodied participants, five participants with

cerebral palsy (CP), one participant with Duchenne muscular dystrophy (DMD), one

participant with spinal cord injury (SCI) and seven participants with amyotrophic lateral

sclerosis (ALS). Table 6.2 shows a summary of clinical data of the participants with motor

disabilities, as well as their main signs, levels of functionality, and interfaces currently used

in their daily lives. Participants S11, S12, S18, S19 and S20 already participated in Case-

study I. Participants S18-S21 and S24 are confined to a wheelchair, and use adapted

interfaces to steer the wheelchair and to access the computer. Participant S23 is also

confined to a wheelchair but cannot control it, and recently lost the ability to control an

head-tracker. All these participants suffer from severe motor disabilities and are highly

dependent of human assistance. Participant S22 can walk but requires a special device to

access the computer keyboard. One of the above individuals is in the borderline range of

intellectual functioning. Participants S11-S17 have ALS with either bulbar or spinal onset.

Their main signs are respectively dysarthria and dysphagia, and muscular weakness. None

of the ALS individuals are in an advanced stage of the disease and therefore none of them

currently uses adapted interfaces. The group of able-bodied participants is composed of

3 males and 7 females with ages ranging from 24 to 38 years old, averaging 29.2 years

old. Able-bodied participants are referred to as group I, ALS participants are referred

to as group II, and for sake of concise presentation, CP, DMD and SCI participants, all

suffering from severe communication and mobility limitations, are referred to as group

III. Participants of group III, all use in their daily lives non-EEG interfaces to control

the computer and/or the wheelchair, and thus their BCI performances were compared to

those achieved with their usual non-EEG interfaces.

6.4.2 Calibration and online sessions

The experiments consisted of calibration and online sessions that took place at facilities

of the Cerebral Palsy Association of Coimbra (APCC) (group III), at the Hospitals of the

University of Coimbra (HUC) (Group II) and at our laboratory facilities (Group I). The

online sessions were preceded by a calibration session. The participants were instructed

to be relaxed and attend to the desired target, while mentally counting the number of

’perceptual intensifications’ of such target events. Participants S18-S21, S23-S24 and S14
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Table 6.2: Motor disabled individuals: summary of main signs, functional status, and
interfaces.

Subject/
Sex

Age Diagnosis Time since
diagnosis

Main signs / Main functional-
ity

Adapted interfaces and assis-
tive devices

S18/F 18 CP Posnatal Tetraparesis, dystonia with
spasticity and dysarthria /
Head control

Powered wheelchair: head-
switch connected to a scanning
interface; Computer: head-
switch and head-tracking

S19/M 34 CP Perinatal Tetraparesis, dystonia with
spasticity, and high dysarthria
/ Head and right foot control

Powered wheelchair: adapted
joystick controlled by right
foot; Computer: controls
mouse and keyboard with the
right foot

S20/M 46 CP and discal
hernia C3-C4

Perinatal Tetraparesis, spasticity and
dysarthria / Head control

Powered wheelchair: joystick
adapted to chin; Computer:
head-tracking

S21/M 45 CP Neonatal Tetraparesis, choreoathetosis
and high dysarthria / Head
and feet control

Manual wheelchair: foot;
Computer: helmet with point-
ing device to select letters of
the keyboard

S22/F
ID07

42 CP Neonatal Tetraparesis, ataxia (high
motor incoordination) and
dysarthria / Walking ability
and coarse control

Computer: grid over the key-
board and use of track-ball
(with difficulty)

S23/M
ID05

30 DMD >22 years Tetraplegia / Slight move-
ments of the head, jaw control

Manual wheelchair: no con-
trol; Computer: used to con-
trol head-tracking

S24/M
ID06

28 Spinal cord in-
jury: C3-C4 le-
sion

12 years Complete spatic tetraplegia
and tracheotomy / Slight
movements of the head and of
the left upper limb

Powered wheelchair: joystick
adapted to chin; Computer:
head-tracking

S11/F 67 Bulbar-onset
ALS (FRS-r
46)

7 years Dysarthria, dysphagia, and
muscular weakness in upper
limbs / -

-

S12/F 75 Bulbar-onset
ALS (FRS-r
40)

1 year High dysarthria and dysphagia
/ -

-

S13/M 58 Bulbar-onset
ALS (FRS-r
47)

1 month Slight dysarthria and dyspha-
gia / -

-

S14/F 78 Spinal-onset
ALS (FRS-r
32)

1 month Muscular weakness in limbs
and high dysarthria / -

Manual wheelchair

S15/M 80 Bulbar-onset
ALS (FRS-r
44)

1 month Dysarthria / - -

S16/M 66 Spinal-onset
ALS (FRS-r
41)

2 months Muscular weakness (left leg)
and slight dysarthria / -

Crutch

S17/M 78 Spinal-onset
ALS (FRS-r
40)

5 months Hands and arms weakness and
slight dysarthria / -

-

were seated at their own wheelchairs (see a photo taken during one experimental session in

Fig. 6.2). The remaining disabled and able-bodied participants were seated on a standard

chair. The experimental protocol and EEG recording is summarized in Table 6.3.

During the calibration phase, the participants attended the letters of the word ’IN-

TERFACE’ (9 characters) which were successively provided at the top of the screen in
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Figure 6.2: Photo taken at APCC during an experimental session.

Table 6.3: Case-study II : summary of experimental protocol

Recording
Channels: 12 Ag/Cl electrodes Fz, Cz, C3, C4, CPz, Pz, P3, P4, PO7, PO8,

POz and Oz (10-20 extended positions)
Reference: left or right ear lobe; Ground: AFz

Frequency sampling: 256 Hz
Preprocessing filters: 0.1-30 Hz bandpass filter and 50 Hz notch filter
Impedance: < 10KΩ

Paradigm protocol
Paradigm: 6× 6 matrix RC speller
RC parameters: SOA=200 ms; ISI=100 ms, ITI=3.5 s
Screen: 15” at about 60-70 cm
—
Paradigm: LSC speller
LSC parameters: virtual ISI=75 ms, ITI=3.5 s
Screen: 15” at about 60-70 cm

Participants 10 able-bodied, 5 CP, 1 DMD, 1 SCI and 7 ALS

the RC speller, and at the center of the screen in the LSC speller. For each calibration

letter, each symbol was flashed 10 times. The recording session of the calibration was less
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than 5 minutes for both paradigms. The calibration dataset of each participant contains

180 target epochs and 900 non-target epochs for the RC speller, and 90 target epochs and

2430 non-target epochs for the LSC speller. These datasets were used to obtain the classi-

fication models. The online sessions occurred under the same conditions as the calibration

phase. There was no difference in the procedure between the able-bodied participants and

the impaired participants, except for subject S14. This participant evidenced a low visual

acuity and it was necessary to point out the location of each letter. It was asked to the

able-bodied participants to spell the sentence ’THE-QUICK-BROWN-FOX’, and it was

asked to the motor impaired participants, not familiarized with the English language, to

write the portuguese sentence ’ESTOU-A-ESCREVER’. The sentences were written at

once without interruptions. In case of error, participants could opt to correct the charac-

ter using the ’del’ symbol. The duration of each experiment depended on the number of

sessions, which in turn, varied according to the participant’s performance.

6.4.2.1 Classification

The offline and online classification was performed using the statistical spatial filter C-

FMS combined with the qNB classifier presented in chapter 5. The spatial filter and

classification models were obtained for each participant from the calibration data. In the

RC speller the whole calibration data set was used (180 target epochs and 900 non-target

epochs), while in the LSC speller it was used the 90 target epochs and 840 of the 2430

non-target epochs (to have more balanced datasets). In RC, the online selection of the

symbol resulted from the combination of the row and column with highest scores using

(5.36). In LSC, the detected symbol was the one associated with the event with the

highest score, using an equation adapted from (5.36) for the 28 events.

6.5 Results

6.5.1 Online accuracy and bit rate

Online results consisting on accuracy, number of event repetitions (Nrep), symbols per

minute (SPM) and ITR in bits per minute (bpm) for each paradigm are shown in Tables

6.4, 6.5 and 6.6. The last column of Tables 6.4 and 6.5 and the second last column of

Table 6.6 indicate the order by which the two paradigms were tested. Each participant

performed a series of sessions that depended on his performance. If the participant had a

good performance, the number of repetitions was decreased and the whole sentence was
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spelled again. If the performance was weak, then the number of repetitions was increased.

The notes (a), (b), (c) and (d) in Tables 6.4, 6.5 and 6.6, describe particular occurrences

during online sessions, namely (a) test not performed or skipped; (b) test aborted due

to excessive number of errors; (c) test not performed because offline classification was

unable to detect P300 with an accuracy above 80%; (d) test aborted due to user visual

discomfort. The performance metrics, ITR, PBR and online Pac were computed according

to section 3.2.1 The results presented in Tables 6.4, 6.5 and 6.6 consider the ITI time,

however for comparison with other research groups, the averages were also computed

omitting the ITI (referred in tables as average(2)). For a proper comparison of the two

paradigms, the averages were computed by choosing, for each participant, the number

of repetitions (Nrep) that provides the highest PBR1, i.e., considering that all mistakes

would be corrected.

Five participants were unable to effectively control RC, namely S05, S15, S19, S21 and

S22, and six participants were unable to effectively control LSC, namely S14, S15, S19,

S20, S21 and S22. For group I (excluding participant S05), the ITR results showed a

5.52 bpm improvement of LSC over RC (statistical paired t-test, p < 0.001). For group

II, the ITR of LSC was 3.74 higher than for RC, but the statistical test only approached

statistical significance (p = 0.074, t-test performed excluding participants S14 and S15).

For group III, the ITR of RC was 1.48 higher than for LSC, but the difference was

not statistically significant (t-test performed excluding participant S19, S20 and S21).

Comparing the three groups, LSC was on average better for group I and group II, and

RC was better for group III. The ITR average taking together the three groups was

26.11 bpm (89.90% accuracy, 4.47 Nrep and 6.58 SPM) for LSC, and 21.91 bpm (88.36%

accuracy, 4.82 Nrep and 5.26 SPM) for RC. The ITR difference, 4.20 bpm, was statistically

significant, t(16) = 3.62, p < 0.002 using a paired t-test, excluding participants S05, S14,

S15, S19, S20, S21 and S22.

For group III, it was asked to participants to write a sentence with the same number of

characters of the one tested on the BCI experiments, using their usual non-EEG interfaces.

The last column of Table 6.6 shows the achieved SPM. These experiments were performed

on a different day of the BCI experiments. Participants used different systems according to

their main disability profile, namely, a head-tracker (HT), a scanning-switch (SS), a head-

pointing-device (HPD), a mouse controlled by the foot (FM) and a keyboard-grid (KG).

Participants S19, S21, S22 who were unable to control the BCI are the ones who reached

1It should be noted that the PBRs are not shown in Tables 6.4, 6.5 and 6.6, but they were computed
to select, for each participant, the Nrep taken for average.
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the highest SPMs. These communication rates are much higher than the ones achieved

in current BCI systems. Participants S18, S20 and S24 achieved an SPM approximately

two to three times the SPM achieved with BCI. Participant S23, who is currently unable

to control any interface, achieved a BCI performance of 4.28 SPM with 87.5% accuracy.

Table 6.4: Online results of able-bodied participants (group I). See text for notes (a), (b),
(d).

RC speller LSC speller

Subject Nrep SPM Pac (%) ITR (bpm) SPM Pac (%) ITR (bpm)
order
(1st/2nd)

S01
5 3.87 89.47 16.04 4.28 90.00 16,55

RC/LSC4 4.58 85.00 17.36 5.04 90.47 19.66
3 (b) - - 6.12 81.81 19.95

S02

5 3.87 86.60 18.63 (a) - -

LSC/RC
4 (b) - - 5.04 100.0 24.23
3 (a) - - 6.12 90.47 23.88
2 (a) - - 7.79 81.81 25.39

S03 7 2.95 84.21 11.02 3.29 90.47 12.85 LSC/RC

S04 5 3.87 82.60 13.97 4.28 90.00 16.55 LSC/RC

S05 5 (d) - - 4.28 89.47 16.37 LSC/RC

S06
5 3.87 100.0 20.01 4.28 94.737 18.25

LSC/RC
4 4.58 84.21 17.08 4.28 95.00 21.59

S07
5 3.87 95.00 17.91 4.28 89.47 16.37

RC/LSC4 4.58 90.47 19.36 (a) - -
3 5.60 79.16 18.85 6.12 85.71 21.65

S08
5 3.87 85.00 14.17 4.28 90.47 16.71

RC/LSC4 4.58 70.37 12.70 5.04 86.36 18.07
3 (a) - - 6.12 90.00 23.65

S09

5 3.87 100.0 20.01 4.28 90.47 16.71

RC/LSC
4 4.58 86.36 17.84 (a) - -
3 5.60 90.47 23.70 6.12 95.00 26.22
2 7.22 95.00 33.44 7.79 100.0 37.45

S10

5 3.87 100.0 20.01 4.28 100.0 20.60
RC/LSC4 4.58 90.47 19.36 5.04 100.0 24.23

3 5.60 95.00 25.94 6.12 95.00 26.22
2 (b) - - 7.79 85.71 27.55

Average(1) 4.44/3.90 4.49 89.32 18.94 5.48 91.68 22.16

Average(2) 4.44/3.90 5.64 89.32 23.97 7.29 91.68 29.49

(1) Average of the elements in the table (includes ITI).
(2) Average if ITI would be excluded.
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Table 6.5: Online results of ALS participants (group II). See text for notes (a) and (b).

RC speller LSC speller

Subject Nrep SPM Pac (%) ITR (bpm) SPM Pac (%) ITR (bpm)
order
(1st/2nd)

S11
5 3.87 100.0 20.01 4.28 87.50 15.72

RC/LSC4 4.58 81.25 16.08 5.04 87.50 18.50
3 (b) - - 6.12 87.50 22.46

S12
5 3.87 93.75 17.46 4.28 93.75 17.88

RC/LSC4 4.58 87.50 18.25 5.04 100.0 24.23
3 5.60 87.50 22.34 6.12 81.25 19.71

S13
7 2.95 93.75 13.33 3.29 93.75 13.75

LSC/RC
5 3.87 68.75 10.33 (b) - -

S14
7 2.95 100.0 15.28 3.29 43.75 3.77

LSC/RC
6 3.35 68.75 8.95 (a) -

S15 ≥ 7 (b) - - (b) - - LSC/RC

S16
4 4.58 87.50 18.25 5.04 100.0 24.23

LSC/RC3 5.60 87.50 22.34 6.12 93.75 25.54
2 (b) - - 7.79 73.33 21.06

S17 5 3.87 81.25 13.59 4.28 81.25 13.79 RC/LSC

Average(1) 5.0/4.40 4.14 91.67 17.82 4.97 91.25 19.95

Average(2) 5.0/4.40 5.10 91.67 21.83 6.37 91.25 25.57

(1) Average of the elements in the table (includes ITI).
(2) Average if ITI would be excluded.

6.5.2 Questionnaire

Users were asked to answer a questionnaire to assess the degree of user satisfaction and to

identify limiting factors for both paradigms. Participants with high dysarthria in the ALS

group answered the questionnaire with the assistance of relatives. Participants of group III

answered the questionnaire with the assistance of occupational therapists. The results of

the questionnaire are in Table 6.7. The answers to each specific question/item are shown

as the percentage over the sample of the participants. The results show that most of the

participants liked more the LSC speller. This subjective answer has no straightforward

relation with user performance. There were cases in which the user liked more one of

the interfaces and yet had a worse performance. Also, 50% of the participants reported

that RC speller caused higher eyestrain and discomfort than the LSC speller, causing for

instance ’weeping’ and ’visual after-effect’. Participants reported that the ITI should be

increased (50% for RC and 31.8% for LSC), and that some errors might have occurred

because of this limited time. The difficulty to find the letters according to the layout

was higher for RC. Participants were asked to mention other effects that affected their

performance. Three items (mental counting, distractors and double flash) were reported
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Table 6.6: Online results of participants CP, DMD and SCI (group III) and performance
with non-EEG interfaces. The non-EEG interfaces SS, HT, HPD, FM, KG, refer respec-
tively to scanning-switch, head-tracker, head-pointing-device, foot-mouse and keyboard-
grid. See text for notes (a), (b) and (c).

RC speller LSC speller Non-EEG interface

Subject Nrep SPM
Pac

(%)
ITR (bpm) SPM

Pac

(%)
ITR (bpm)

order
(1st/2nd)

SPM

S18

8 (a) - - 2.95 94.75 12.33

LSC/RC SS: 6.8
7 (a) - - 3.29 81.25 10.61
6 3.35 100.0 17.32 3.72 68.75 9.0
5 3.87 88.88 15.85 (a) - -

S19 (c) - - - - - - - FM: 43.2

S20 6 3.35 93.37 15.12 3.72 50.00 5.32 RC/LSC HT: 9.6

S21 ≥ 9 (c) - - (b) - - RC/LSC HPD: 51.4

S22 (c) - - - - - - - KG: 31.7

S23
7 (a) - - 3.29 93.75 13.75

LSC/RC HT: 0.06 3.35 68.75 8.95 3.72 87.50 13.67
5 3.87 75.00 11.90 4.28 87.50 15.72

S24
8 2.64 73.33 7.83 2.95 56.25 5.13

RC/LSC HT: 7.2
7 2.95 37.50 2.98 3.29 62.50 6.82

Average(1) 6.25/6.67 3.30 85.43 13.04 3.51 81.58 11.62

Average(2) 6.25/6.67 3.84 85.43 15.18 4.13 81.58 13.70

(1) Average of the elements in the table (includes ITI).
(2) Average if ITI would be excluded.

by their own initiative. For the RC speller, 55% of the participants reported that the

frequent mental counting of the target events was tedious and somehow made them lose

focus. This perception experienced by the participants may be explained by the fact that

in the RC speller, users have to count twice (one for target row and one for target column)

for each round of flashes, while in LSC speller, users have to count only once for each

round of flashes (target symbol). The double-flash effect was also reported only for the

RC speller by 13.6% of the participants. The adjacency distractors were pointed out for

both paradigms, but with higher incidence for the LSC speller. Participants were asked

to propose modifications and improvements to the paradigms. For RC, it was suggested

to soften the colors. For LSC, it was suggested to increase the distance between symbols,

to increase the symbols size, and to change the style of the letter ”I” to improve its

perception.
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Table 6.7: Results of the questionnaire.

Question/item RC LSC Similar None

Paradigm most appreciated 13.6% 72.7% 13.6% n.a.
Paradigm that caused more eyestrain/visual discomfort 59.0% 0.0% n.a. 41.0%
ITI is not long enough 50.0 % 31.8% n.a. 50.0%
Symbols are difficult to find 50.0% 18.2 % n.a. 27.3%
Undesired effects reported by users

High mental counting 55% 0% n.a. n.a.
Double-flash 13.6% 0% n.a n.a.
Distractors 4.5% 13.6% n.a. n.a.

n.a.: not applicable

6.5.3 Adjacency errors

To analyse the influence of the adjacency distractors, the number of errors was computed

according to spatial location of the respective events. This information was collected only

from the disabled participants. For the RC speller, 90% of the errors were on the same

row or on the same column (row: 38% and column 52%). Moreover, 54% of the errors

were in one of the 8 adjacent symbols. In the LSC speller, 32% of the errors were in

one of the 4 adjacent symbols. Also, 47% of the errors were on the same side and 53%

in the opposite side. These results may indicate that most of the RC errors are due to

adjacency distractors. In LSC, there is also a high percentage of adjacency errors, yet

the percentage is considerably lower than in RC, which may indicate that the errors are

mostly due to P300 variability, or due to remote distractors.

6.6 Offline analysis

An offline analisys was carried out to understand and sustain the online results, but also

to assess if our initial hypotheses were correct. The analysis was based on the datasets

collected during the calibration phases.

6.6.1 Waveform morphology

The analysis was focused on channels Pz and PO7, two of the most discriminative chan-

nels [Kaper 2004, Krusienski 2008, Townsend 2010], and focused on the N200 and P300

ERP components, since they are the two main discriminative components. Fig. 6.3 shows

the average of target epochs for each participant with both paradigms. For a better vi-

sualization, the epochs were low-pass filtered in the time domain at fc = 7 Hz (it should
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be noted that the filter causes a temporal delay of ≈ 50 ms). The analysis hereinafter,

however, uses raw EEG data, i.e., without filtering. The components of the ERP elicited

in the RC speller, namely the evoked N200 and P300 components are sometimes difficult

to discriminate. This might happen because the signal is strongly affected by a steady

state visual evoked potential (SSVEP) that results from the 5 Hz stimulus flash, and also

because target epochs temporally overlap due to the small TTI. In the LSC speller, the

N200 and P300 components are usually clearly identified. Peak amplitude and peak la-

tency were determined by selecting the largest positive or negative peak within the range

275-600 ms (P300) and 175-400 ms (N200). From the individual analysis, we concluded

that participant S19 did not elicit any visible ERP component for both paradigms. Par-

ticipant S22 exhibits components with very high amplitudes which reveal the presence

of artifacts. These two participants were excluded from the analysis. Participants S15

and S17 exhibit a strong positive peak around 200 ms, but the P300 component is hardly

noticeable. Nevertheless, they were not excluded from the analysis.

A summary of the average amplitudes and latencies of P300 and N200 peaks, as well

as the respective statistical tests (t-test) is provided in Table 6.8. The P300 amplitude is

larger for LSC than for RC and the latency is shorter for LSC than for RC. The statistical

test fails only for the amplitude difference in channel PO7. For the N200 component, the

amplitude is larger for RC, but the statistical test only approaches significance for channel

Pz. The latency difference is not statistically significant.

The grand averages were computed for group I, group II, and participants with CP

(only S18, S20 and S21), as shown in Fig. 6.4. Qualitatively, it can be seen that the ERP

waveform elicited by the LSC paradigm shows a clear classical morphology, particularly

in able-bodied and CP participants. In RC, the waveforms morphology exhibit a more

pronounced oscillatory component. The amplitudes and latencies of the P300 component

(raw EEG data) of the able-bodied were statistically compared with those obtained with

the ALS and CP groups, using a two-sample t-test. It should be noted that the sample size

of the CP group is very small and therefore the statistics should be taken with care. The

P300 amplitude was similar across groups and the latencies are shorter for the able-bodied

participants, approaching statistical significance in RC speller (both channels), and being

statistically significant between able-bodied and ALS in the LSC speller paradigm (PO7

channel).

The question of whether the P300 systems are gaze dependent has been a topic of

discussion in the last few years [Kaper 2004, Krusienski 2008]. It is today assumed that

most of the P300-based BCI systems resort to overt attention, and that they use not only
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Figure 6.3: Averaged target epochs elicited by RC paradigm (red color) and LSC paradigm
(blue color) at channels Pz and PO7 for each of the 24 participants (amplitudes units are
µV ). All waveforms were low-pass filtered (fc = 7 Hz) before plotting.

the P300 component but also other specific components such as the N100, P200 and N200

components that are modulated by attention tasks and influenced by gazing [Treder 2010,

Frenzel 2010]. Our own observations, show that these components, in particular the

N200 component, provide valuable features and play an important role to increase the

classification accuracy. For this reason, it has been suggested that P300-based BCIs
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Table 6.8: Mean peak amplitudes and latencies of P300 and N200, LSC and RC differ-
ences, and statistical analysis.

Component
(channel)

Property Diff. between LSC and RC
(stat. test)

P300 (Pz)

Amplitude
LSC: 4.47 µV dif = +1.59µV
RC: 2.88 µV (t(21) = 3.1, p < 0.004)

Latency
LSC: 341 ms dif = −74 ms
RC: 415 ms (t(21) = 3, p < 0.006)

P300 (PO7)

Amplitude
LSC: 4.28 µV dif = +0.67µV
RC: 3.61 µV (no stat. sign.)

Latency
LSC: 354 ms dif = −122 ms
RC: 476 ms (t(21) = 6.2, p < 0.001)

N200 (Pz)

Amplitude
LSC: -1.71 µV dif = −0.64µV
RC: -2.35 µV (t(21) = 1.9, p = 0.07)

Latency
LSC: 295 ms dif = −25 ms
RC: 320 ms (no stat. sign.)

N200 (PO7)

Amplitude
LSC: -3.67 µV dif = −0.04µV
RC: -3.71 µV (no stat. sign.)

Latency
LSC: 239 ms dif = +9 ms
RC: 230 ms (no stat. sign.)

should be renamed ’ERP-based’ BCIs [Treder 2010].

6.6.2 SNR contribution to ERP variability analysis

Several studies quoted in section 6.2.2 show non-consensual results suggesting the absence

of a straightforward relation between P300 amplitude and classification accuracy. SNR

measurement of target ERPs can add valuable information to their characterization in

addition to the waveform morphology, since it assesses the variability of inter-trial ERPs.

Although classification accuracy depends not only on the ERP variability, but also on the

separation between target and non-target ERPs, our observations in chapter 5 indicated

a direct relationship between SNR and classification performance. To infer this relation-

ship and to assess the inter-trial variability of ERPs, the SNR was computed for both

paradigms using (3.14).

Fig. 6.5 shows the SNR averages (in dB) separately for able-bodied, ALS and CP

participants, taking K = 1 · · · 7 epochs for average. As expected, and in line with the
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Figure 6.4: Grand averages computed over able-bodied group, over ALS group and over
CP group (only S18, S20 and S21). All waveforms were low-pass filtered (fc = 7 Hz)
before plotting.

online results, the able-bodied group has the highest SNR for both paradigms, and the CP

group has the lowest SNR, despite the fact that the CP participants exhibited a higher

P300 amplitude. Comparing RC and LSC paradigms in the able-bodied group, the SNR

of LSC is always at least 3.7 dB higher than RC, for K = 1 · · · 7, p <0.006. The ALS

group also shows a difference > 3.7 dB for K = 1 · · · 7, but it only approaches statistical

significance, p < 0.08. In the CP group (S18, S19 and S20), the difference is > 2.7 dB,

but it is not statistically significant.

6.6.3 Searching for new discriminative features in LSC

The LSC paradigm was designed to overcome some limitations of the RC paradigm, as

well as to investigate the emergence of new neurophysiologic features. For this purpose,

the existence of discriminative features in the frequency domain was investigated, and also

whether new neurophysiologic features could arise from the left/right layout and event

presentation strategy of LSC.

6.6.3.1 Frequency analysis

As the user focuses on only one side of the screen, it was initially hypothesized that the

stimuli on the opposite side would have a small visual effect, and thus the user would
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virtually see a target probability of 1/14 and only half of the stimuli, having a perception

of 6.5 Hz, i.e., half of the flashing frequency. Fig. 6.6 corroborates this assumption.

Target epochs reflect a frequency at 6.5 Hz (7 Hz in the graph due to FFT resolution),

and only a small peak at 13 Hz. Non-target epochs reflect only the 13 Hz flash. By

contrast, the RC paradigm shows that the frequency of the flashes strongly affects both

target and non-target epochs of the RC speller. The LSC graph in Fig. 6.6 suggests

that LSC may have discriminative features related to stimuli frequency that can be used

to improve the classification. To infer the influence of frequency, we computed the offline

classification accuracy using the SSFCB filter (5.27) that includes a frequency shaping (see

chapter 5), and we compared it with C-FMS. Fig. 6.7 shows the averaged classification
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Figure 6.7: Offline classification results averaged over all participants except S19 and S21.
Results obtained with C-FMS filter (which was applied online) and with SSFCB filter that
incorporates a spectral shaping.

error rate over all participants except S19 and S21 obtained with both methods (using

unseen data). Results show that the SSFCB achieves a lower error rate (statistical t-

test p <0.05 for K = 1 · · · 7), suggesting that LSC speller can benefit from the spectral

shaping. The filter h̃ (5.25) was manually adjusted setting to zero the weights associated

with non-discriminative frequency bins.

6.6.3.2 Laterality analysis

Visual spatial attention modulates early ERP components such as the N100, P200 and

N200 with lateralization effects [Luck 1994, Makeig 1999]. However, experiments are usu-

ally performed based on covert attention, while in our case an overt attention paradigm

was used. By computing the ERP waveforms elicited by left and right events, we in-

vestigated whether or not a laterality difference exists. Fig. 6.8 (top) displays the ERP

waveforms of epochs recorded at PO7 and PO8 elicited by left and right target events.

The waveforms are the grand averages computed over the group of able-bodied partic-

ipants. Components N100, P200 and N200 of the ERP exhibit different waveforms for

left and right events. The difference is more easily detected by computing the difference

between PO8 and PO7 as shown in Fig. 6.8 (middle). For example, the component N200

is larger over PO7 for both left and right events, but the PO8-PO7 difference is larger

for right events. The results suggest that the classification algorithms could benefit from
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two individual models, one for left events and the other for right events. Computing the

PO8-PO7 difference for non-target epochs, a phase reversal on the SSVEP is evidenced in

Fig. 6.8 (bottom). This phase reversal, which is produced by the left/right event strategy

of the LSC paradigm, indicates that it is possible to detect the side of the event only by

computing the phase between EEG signals from left/right symmetric locations.
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Figure 6.8: Grand averages computed over able-bodied participants. Top: target epochs
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6.7 Discussion

The initial assumptions regarding the LSC paradigm, indicating that this approach could

be an effective alternative to the RC paradigm, were assessed by online and offline analysis,

and deserve now some further discussion.

6.7.1 Online performance and state-of-the-art comparison

The average results (including ITI) of the able-bodied participants were 18.94 bpm,

89.32% accuracy, 4.49 SPM and 4.44 repetitions for RC, and 22.16 bpm, 91.68% accuracy,

5.48 SPM and 3.90 repetitions for LSC. These results compare very favourably with those

reported in the two studies with the highest performances. Namely, [Townsend 2010]

reports a 19.85 bpm, 77.34% accuracy, 4.68 SPM and 4.5 repetitions for RC, and

23.17 bpm, 91.52%, 4.36 SPM and 3.61 repetitions for the checkerboard paradigm, and

[Lenhardt 2008] reports a 3.91 SPM and 83.33% accuracy for RC. The online results

achieved by motor impaired participants are also good in comparison with the results

reported in other studies [Townsend 2010, Hoffmann 2008b, Sellers 2006b, Piccione 2006,

Donchin 2000], however results cannot be directly compared because the levels of disabil-

ity of the participants greatly differ.

Comparing LSC and RC, the overall averaged ITR (excluding only the subjects unable

to participate online in one or both paradigms) was 4.20 bpm higher for LSC. The relevant

improvement of LSC over RC, is a major achievement and shows that LSC is an effective

alternative to RC. Nonetheless, while the ALS participants performed better with LSC

showing only slightly worse results than those achieved by able-bodied participants, the

participants of group III, in particular the CP participants, performed better with RC.

The overall results obtained with CP participants are also relevant since there are very few

studies examining the use of P300-based BCIs by individuals with CP [Hoffmann 2008b].

From the group of five CP participants, only two effectively controlled the BCI, namely

S18 and S20. The overall results obtained with CP participants may suggest that these

individuals may have more difficulties to control a BCI than the other disabled partici-

pants. In order to be more conclusive about the participants who performed worse, some

participants of group III (S19, S20, S23 and S24) underwent pilot experiments with an

additional paradigm presented in chapter 8 called Arrow-paradigm. The aim was to as-

sess whether the weaker results achieved by some participants of this group were only due

to neurophysiologic causes, or depended more on the complexity of RC and LSC. The

Arrow-paradigm has a simpler presentation than RC and LSC, consisting of only 11 large
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and well separated symbols that flash individually. Using this paradigm, participant S19

evoked a P300, although it was still weak and insufficient for online operation. Partici-

pants S20 and S24 significantly improved the online performance and S23 kept the online

performance. These results suggest that it is worth to test different visual paradigms to

increase the BCI performance.

6.7.2 Contributions of the LSC paradigm

The event strategy chosen for LSC allowed to significantly decrease the flashing time and

to eliminate the ISI (while still keeping a virtual ISI effect). Thereby, the reduction of the

time associated with the events allowed to achieve sub-trial times similar to those typically

obtained with RC, leading to competitive ITRs. By reducing the surrounding symbols in

LSC, it was possible to control the local distractors and thereby to reduce the adjacency

errors. This percentage was 32%, while in RC it was 54%. The percentage of remote errors,

in the opposite side of the target event, was 53%. We do not have enough information

to conclude whether the error percentage is due to ERP variability or due to remote

distractors, but according to the questionnaire, participants reported that distractors

affected their performances. Other event strategies, for example, extending the left/right

event strategy to the four quadrants of the screen, can potentially be explored in the future

in combination with further manipulations of TTI, ISI and double-flash.

The questionnaire allowed us to assess some subjective issues concerning RC and LSC.

The majority of participants, 72.7%, expressed a preference for LSC. Additionally, 59%

reported that RC caused a higher eyestrain and visual discomfort, while in LSC none of

the participants reported any visual discomfort. This is an important issue in BCI and

should not be overlooked because it may limit the time period of BCI usage.

6.7.3 Neurophysiologic features

The grand-averages in Fig. 6.4 show that the ERP waveforms for both RC and LSC differ

between Pz and PO7. The P300 amplitude in channel Pz is larger in LSC than in RC.

The peak occurs also earlier in LSC than in RC, for channels Pz and PO7. These results

corroborate our initial expectations that LSC, with a lower target probability, would elicit

a larger P300 amplitude than RC. As concerns N200, the amplitude in Pz was larger in

RC than in LSC, suggesting that the N200 component may have contributed more to the

classification accuracy in RC than in LSC.

When searching for features induced by the lateral layout and event strategy of LSC,
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the grand averages suggested a discrimination between left vs. right ERP targets. This

discrimination can be exploited, by using left and right independent models in the clas-

sifiers. These asymmetries are a direct reflection of the hemispheric dominance of the

right hemisphere in visuospatial attention [Silva 2008, Silva 2010]. Other asymmetries

(e.g. up/down) in the paradigm design can potentially be explored in the future.

A major achievement of LSC paradigm was the SSVEP phase reversal effect between

left and right non-target events. This effect can enable the detection of the side of the

target event by measuring the phase at symmetric electrode locations. The inclusion of

phase information adds a new dimension to the P300-based BCI that can increase the

classification accuracy. The phase information can be embedded in current classification

algorithms or combined in a different classifier. Detecting the side of the incoming event

can be used to discard the events from the opposite side, or to increase the estimated

likelihood of the target event.

6.7.4 Limitative factors of BCI

BCI is still limited by various factors. It usually requires more attention and may cause

a higher fatigue than other standard interfaces. Attention tasks may be affected when

users experience pain symptoms. For example, some of the participants of group III had

to interrupt the sessions to alleviate the pain, by stretching the legs, arms and shoulders,

or by changing the position of the head, which may have negatively influenced their per-

formance. Curiously, participants of group III who were unable to control the BCI, were

those who had better results with standard interfaces. Motivation may eventually play

an important role on the achieved performances. Some participants, who are accustomed

to use efficiently the same interface for more than a decade, were not highly motivated.

Moreover, it was subjectively observed that the level of confidence and the fear to fail

could influence the performance. Please see the study in [Nijboer 2010] where some of

these issues are discussed.

6.8 Conclusion

This study presented a P300-based paradigm, the LSC speller, that showed an increase in

performance over the standard RC speller. LSC paradigm explored the event strategy and

the hemispheric asymmetries to introduce new neurophysiologic dimensions that can be

used in the future to improve bit rates and classification accuracy. The effective transfer
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rates achieved by motor disabled participants for both LSC and RC spellers, are a step

forward to their potential application as assistive devices for communication.
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”Everything having to do with human training and education has to be reexamined in

light of neuroplasticity.”

Norman Doidge, in ”The Brain That Changes Itself”.

This chapter introduces a novel two-level speller paradigm called gaze independent

block speller (GIBS) and compares it with the RC speller. Online experiments show that

the users can effectively control GIBS without moving the eyes (covert attention), while

this task is impossible with the RC speller. Additionally, in overt experiments (gazing the

target), GIBS attains performances similar to RC, despite being a two-level speller. This

chapter extends also the practical bit rate (PBR) metric for the case of two-level spellers.
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7.1 Introduction

A P300-based BCI is considered an independent BCI because it can be controlled without

resorting to any kind of movement. While this is actually true, most of the P300 BCIs

cannot however be effectively controlled without gazing the target symbol (overt atten-

tion). There is a fall off in spatial resolution of the human visual system away from the

point of fixation which makes difficult the detection of target events outside the central

vision. At 10 degrees from the center of the macula (fovea), eyes are only capable of

seeing about 20% in terms of visual acuity (see Fig. 7.1). Gaze dependence is a limitative

factor particularly relevant for individuals who lose the ability to move the eyes (e.g. ad-

vanced stages of disorders such as ALS) [Palmowski 1995]. Gaze-independent BCIs have

been addressed in [Treder 2010, Liu 2011, Brunner 2010]. The authors showed that in

the standard RC speller, users have to gaze the mentally selected letter to be able to

control the speller. For stimuli in the periphery of the RC matrix (or simply outside the

foveal vision), covert attention (without moving the eyes) is very difficult because spa-

tial acuity decreases with increased visual eccentricity, and because the identification of

symbols is hampered by the crowding effect [Treder 2010, Sampaio 2011]. To address this

problem, several solutions have been proposed in [Treder 2010, Frenzel 2010, Liu 2011],

trying to improve the spatial arrangement of the symbols (central layout with larger sym-

bols) allowing a covert attention task. The authors [Treder 2010, Brunner 2010] tested

the paradigms offline, and showed that the classification accuracy with covert attention

was much lower than with overt attention, even with the proposed spatial layouts. Only

[Liu 2011] tested the paradigm online, but successful results were achieved only for 10

repetitions, leading to a very low transfer rate.

We describe here GIBS, a gaze independent speller, which allowed effective online

transfer rates when controlled covertly.

7.2 GIBS design

GIBS is a two-level speller. User has first to select a group of letters (first level) and

then to select the letter within that group (second level). Screenshots of the GIBS are

presented in Fig. 7.2 a) and b). The paradigm comprises all letters of the alphabet,

the symbols 0 and 1, the space (’sp’), and the delete (’dl’), totalizing 30 symbols. The

symbols are grouped into four blocks following an alphabetical order. The symbols ’sp’

and ’dl’ are repeated in every group. The symbol ’sp’ is used to separate the words of the
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Figure 7.1: a) Simple schematic view of the fovea in human eye; b) Relative acuity vs.
degrees from fovea; c) Screenshot of GIBS and field of view 5 degrees around the fovea at
≈ 60 cm of distance; d) Screenshot of RC and foveal region and field of view 5 degrees
around the fovea at ≈ 60 cm of distance.

sentences. Since this symbol is frequently used, it was included in all groups to enable its

selection without having to switch between blocks. The ’dl’ symbol is also included in all

groups with the same purpose. The paradigm layout is composed by a group of 9 symbols

in the center and 3 lateral small blocks with the remaining symbols. Since there are 9

symbols at the center and 3 small blocks flashing, the number of events is 12, and thereby

the target event probability is 1:12. To select a symbol, the user has first to select the

small block where it belongs. When the respective block is selected, the symbols of that

block move to the center and the respective small block disappears (see Fig. 7.2 a) and

b)). The user can then select the attended symbol. These symbols at the center are large,

well apart, and placed in the visual angle near the fovea. These symbols flash individually

while the symbols within the small blocks flash as an entire block. Despite the fact that

the small blocks are placed outside the central vision, this does not constitute a problem

because the user has only to detect the entire block and not an individual symbol within

the block. Since all blocks are always visible, in case of a missed block or misspelled
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a) b)

Figure 7.2: a) Screenshot of GIBS when a block is flashed; b) Screenshot of GIBS after
the lower left block has been selected.

symbol, user can immediately select the correct block or delete the symbol. The SOA was

set to 150 ms, and the duration of each flash was set to 75 ms. The ITI was set to 3.5 s.

From an information transfer rate perspective, the time taken for the transitions be-

tween blocks is clearly a disadvantage over the RC speller. However, GIBS has a lower

target probability, a lower occurrence of double-flash, a lower probability of overlapping,

and fewer elements of distraction, reducing the crowding effect, when compared with RC.

It is therefore expected that the P300 component elicited by GIBS will have a higher

SNR, leading thereby to an increased classification accuracy. In sections 7.2.1 and 7.2.2,

an analysis is made, showing how much the classification accuracy should be improved to

achieve transfer rates similar to RC, thus compensating the transitions between blocks.

7.2.1 Block transitions rate

To estimate the time required for selecting a symbol in GIBS, we need first to estimate

the average rate of transitions between blocks (Ntr). Taking several hundred sentences

of informal dialogs and generic texts in the English language, we computed the average

number of transitions that would occur using the groups of letters in Fig 7.2, i.e., using

the alphabetical order. The respective groups are illustrated in Fig. 7.3a). The average

number of transitions was Ntr ≈ 0.60 transitions per selection. The possibility of reducing

Ntr by using different groups of letters was also investigated. The average number of
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Figure 7.3: Possible groups of letters according to: a) Alphabetical order (currently used
in GIBS); b) Frequency of letters (of the English language); c) Frequency of digrams (of
the English language).

transitions was computed grouping the letters according to letter frequency (Fig. 7.3b))

and grouping the letters according to most frequent digrams (sequence of two letters)

(Fig. 7.3c)). The achieved number of transitions were respectively 0.51 and 0.48. So, it

is possible to improve the Ntr, however these groups are less intuitive than the ones in

alphabetical order and users may experience difficulty in memorizing the letters included

within each group.

7.2.2 Bit rate metrics

In section 3.2.1, we presented two transfer rate metrics, namely ITR and PBR. We will

now extend the PBR metric to GIBS, which can be generalized to any two-level paradigm.

Let re-equate the PBR, obtained from (3.8)

PBR = rs log2Ns (7.1)
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where Ns is the number of symbols and rs is the rate of possible selections per minute,

computed from

rs =
60

Td

(7.2)

where Td is the trial duration (time required for selecting a symbol). For the RC speller,

the trial duration is given by

Td = Nr(Nrep × (Nev × SOA) + ITI) (7.3)

and for GIBS, by

Td = (1 +Ntr)Nr(Nrep × (Nev × SOA) + ITI), (7.4)

whereNr is the number of tries to correctly spell a character (3.7), Ntr reflects the averaged

number of transitions, Nev is the number of events and Nrep is the number repetitions

to make a symbol selection. Substituting (7.4) in (7.2), yields the PBR metric for the

two-level speller

PBR =
60

(1 +Ntr)Nr(Nrep × (Nev × SOA) + ITI)
log2Ns. (7.5)

Using the above formulas (7.3) and (7.4), we can compare now the two transfer rates.

For the same number of repetitions and classification accuracy, the bit rate for GIBS will

be naturally lower than for the RC speller. Thus, we want to determine what should be

the relative improvement in classification accuracy of GIBS to compensate the time taken

for extra selections needed for transitions between the blocks. Taking (7.3) and (7.4), Td

was analyzed for two different situations. In Fig. 7.4, the classification accuracy was set

to 90% for both paradigms, while varying the number of repetitions within a trial. In

Fig. 7.5, the number of repetitions was set to 5 and 6, while varying the classification

accuracy (the average number of transitions in GIBS was defined as Ntr = 0.60). In Fig.

7.4, we see for example that it is possible to achieve a similar Td by selecting 5 repetitions

in RC, and 3 repetitions in GIBS (illustrated in Fig. 7.4 by the horizontal line segment).

Therefore, to have the same Td, the detection with GIBS would have to be achieved with

two repetitions less than with the RC speller. Setting the number of repetitions and

varying the accuracy, the curves in Fig. 7.5 show that, for example, for Nrep = 5, for an

80% accuracy in RC, a 90% accuracy is required in GIBS to achieve the same Td, i.e.,

10% more (illustrated in Fig. 7.5 by the horizontal line segment). In section 7.3, the two
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Figure 7.4: Time duration of a trial (Td) for RC speller (7.3) and GIBS (7.4) varying the
number of repetitions and setting the classification accuracy to 90%.
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Figure 7.5: Time duration of a trial (Td) for RC speller (7.3) and GIBS (7.4) varying the
classification accuracy and setting the number of repetitions to 5 and 6.

spellers are compared online, inferring if GIBS can attain transfer rates similar to RC

speller.
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Table 7.1: Case-study III : summary of experimental protocol

Recording
Channels: 12 Ag/Cl electrodes Fz, Cz, C3, C4, CPz, Pz, P3, P4, PO7, PO8,

POz and Oz (10-20 extended positions)
Reference: left or right ear lobe; Ground: AFz
Vertical EOG and Horizontal EOG (eye monitoring)

Frequency sampling: 256 Hz
Preprocessing filters: 0.1-30 Hz bandpass filter and 50 Hz notch filter
Impedance: < 10KΩ

RC speller paradigm
Paradigm: 6× 6 matrix RC speller
RC parameters: SOA=200 ms, ISI=100 ms, ITI=3.5 s
Screen: 15” at about 60-70 cm
—
GIBS speller paradigm
Paradigm: GIBS speller
GIBS parameters: SOA=150 ms, ISI=75 ms, ITI=3.5 s
Screen: 15” at about 60-70 cm

Participants 4 able-bodied

7.3 Case-study III - GIBS vs RCS

7.3.1 Experimental protocol

We assessed experimentally GIBS and compared its performance with that achieved with

RC speller. The summary of experimental protocol is presented in Table 7.1. Two different

experiments were performed. In one experiment, the participants were allowed to gaze

the target symbols (overt attention), and in this second experiment they were not allowed

to gaze the target symbols (covert attention). In the second experiment, vertical and

horizontal electrooculographic signals (V-EOG and H-EOG) were recorded to monitor

the movement of the eyes, ensuring that no ocular movements occurred during the covert

attention task (in case of movement, the detection was discarded). Before the online

session, several eye movement and blinks were recorded to serve as identification of these

patterns. The online sessions were preceded by a calibration session of approximately

5 min. During the RC calibration phase, the user had to attend the letters of the word

’INTERFACE’, and during GIBS calibration, the user had to attend 7 letters of the central

group and 5 choices of small blocks. The labeled datasets obtained from calibration have

180 target epochs and 900 non-target epochs for the RC speller, and 96 target epochs

and 1056 non-target epochs for GIBS. These datasets were used to obtain the models for

online classification, through the C-FMS+qNB methodology presented in chapter 5.
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H-EOG

V-EOG

Figure 7.6: Subject controlling GIBS with covert attention. Experimental setup with
H-EOG and V-EOG recording for eye movement monitoring.

7.3.2 Online results

Four participants tested both paradigms using overt attention. Two of them, S02 and

S04, underwent the second experiment and tested both paradigms using covert attention.

The participants had to spell the 19 characters sentence ’THE-QUICK-BROWN-FOX’.

The results obtained with overt attention are in Table 7.2. The averaged results, using

the number of repetitions that maximizes the PBR, show that the performance achieved

with GIBS, regarding accuracy and number of repetitions, is substantially better than

that obtained with RC. The results are 14.89 bpm, 85.5% accuracy and 4.75 repetitions

for RC speller, and 16.67 bpm, 96.02 % accuracy and 3.5 repetitions for GIBS. The

results show that the classification improvements with GIBS were enough to compensate

the transitions between blocks, even reaching a PBR higher than that obtained with RC

speller. Note however, that the performance of this group of participants was below the

average results obtained with RC in Case-study II. As concerns the experiments based on

covert attention, the online results are in Table 7.3. None of the participants was able

to control the RC speller. Participants reported that they were unable to perceptually

attend the targets placed 2 degrees outer the center (see Fig. 7.1d)). More than the

decrease of the spatial acuity, the nearby distractors impeded target processing (crowding

effect phenomenon) [Scolari 2007], a phenomenon that was augmented by the large size

of flash events (entire row/column). On the other hand, both participants were able to

covertly control GIBS with effective transfer rates. In GIBS paradigm, the crowding effect

is reduced by the increased target-distractor distances, and by the small size of the flash
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Table 7.2: Online results - Overt attention. Sentence spelled: ’THE-QUICK-BROWN-
FOX’.

RC speller GIBS

Subject Nrep Pac(%) PBR (bpm) Pac (%) PBR (bpm)

S01
5 100 20.01 - -
3 68.4 10.68 100 19.64
2 - - 78.9 14.25

S02
5 78.9 11.58 100 13.98
3 - - 94.7 17.57

S03 5 78.9 11.58 100 13.98

S04
5 89.4 15.79 100 13.98
4 84.2 16.20 - -
3 - - 89.4 15.50

Average 4.75/3.5 85.5 14.89 96.02 16.67

Table 7.3: Online results - Covert attention. Sentence spelled: ’THE-QUICK-BROWN-
FOX’.

RC speller GIBS

Subject Nrep Pac(%) PBR (bpm) Pac (%) PBR (bpm)

S02
5 (a) - 100 13.98
3 - - 84.2 13.43

S04 5 (a) - 89.4 11.04

events. It is known that the crowding effect is eliminated entirely at a distance that is

known as the critical spacing point [Scolari 2007]. In Tables 7.2 and 7.3, (a) means that

participant was unable to perform the task, and (-) means that the experiment was not

performed.

7.3.3 ERP waveforms

The average ERP waveforms elicited in overt and covert attention tasks were computed

taking the data collected during the calibration phases. Fig. 7.7a) shows the waveforms

of the ERP average for GIBS. Both overt and covert experiments evoked a P300, and as

expected, the P300 with overt attention is higher. Fig. 7.7b) shows the waveforms of

the ERP average for RC speller. The overt attention task elicits a P300, however there
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Figure 7.7: P300 average considering overt and covert task (datasets of participant S02).
a) P300 waveforms for GIBS; b) P300 waveforms for RC speller.

is no traceable P300 in the covert attention task. The waveform shows only the strong

oscillatory effect of SSVEP, typical of the RC speller (see chapter 5). These waveforms

explain why participants were unable to control RC online.

7.4 Conclusion

Gaze-independent paradigms are the only choice for people with severe motor ocular re-

strictions. GIBS provided an efficient way to control P300-based BCIs without moving

the eyes. While the validation of GIBS still requires further experiments with a larger

number of subjects, it was clear that the RC speller does not allow covert control. The

ineffectiveness of the RC paradigm has led many researchers, performing clinical experi-

ments in patients with severe motor disability, to abandon this paradigm, and starting to

investigate auditory paradigms.

Surprisingly, the transfer rate of GIBS outperformed the RC speller in overt control.

These results support the importance of the paradigm design to increase BCI performance.

While the control of GIBS is more complex, since it needs a two-level selection, its visual

design, with fewer and larger symbols proved to be an important factor for BCI perfor-

mance. Other approaches deserve to be investigated. For instance, the identification of

symbols in the periphery can be improved by scaling magnification effects and increasing

inter-symbol spacing. Mixed solutions might be worth investigating, i.e., a bit of covert

attention but not full restriction of eye movements, adapted to each individual.
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”Sorry, I wasn’t thinking.”

A BCI participant, after spelling unintentionally a naughty word, when he was using a

BCI without non-control state detection.

This chapter introduces a P300-BCI called Arrow-paradigm, designed specifically to

control a robotic wheelchair. This BCI system was initially developed for synchronous

control and then extended to asynchronous (self-paced) control. Two methods for asyn-

chronous control were developed and analysed offline. One of them was implemented and

assessed online.
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8.1 Introduction

Most current BCI systems, including those previously presented in this thesis, work in

synchronous mode, i.e., the system provides the temporal cues that define the time in-

stants in which the user can input a command. In contrast, in asynchronous (self-paced)

BCI, the user can decide when he/she wishes or not to control the interface, i.e., the user

can switch between a ’control-state’ and a ’non-control-state’. While this issue is impor-

tant but not critical in P300 spellers, it is crucial when the BCI is intended to control a

robotic device, such as a wheelchair. Without self-paced control, the BCI is always trans-

lating the EEG to commands. Thus, if the user does not want to provide any command,

EEG patterns are translated to unintentional commands leading to false actions (false

positives) with unpredictable consequences. Therefore, asynchronous control is highly

desirable for effective BCI in certain real-world scenarios. This issue has been addressed

in [Zhang 2008] for P300-based BCI, and in [Mason 2000, Townsend 2004, Scherer 2004]

for SMR-based BCI.

The implementation of asynchronous control in P300 BCIs requires the detection of a

non-control state, for which no commands are sent by the interface. Two approaches will

be investigated and assessed in the context of a paradigm designed to send commands to

a robotic wheelchair, henceforth designated by Arrow-paradigm.

8.2 Case-study IV - Asynchronous and synchronous

control of Arrow-paradigm

8.2.1 Arrow-paradigm design

The Arrow-paradigm was initially designed to be operated in synchronous mode

[Pires 2008b]. A screenshot is shown in Fig. 8.1. The paradigm provides a small lex-

icon which includes assistance words and information to steer a mobile robot (e.g., a

wheelchair), namely, ’GO’, ’LEFT’, ’RIGHT’, ’STOP’, ’YES’, ’NO’, ’HELP’, ’PHONE’,

’FOOD’, ’WATER’ and ’ROOM’ (or the equivalent words in portuguese). Each sym-

bol/word is randomly intensified with 175 ms SOA and 75 ms ISI. When the symbol/word

is intensified , the color is changed and the size is slightly increased. The number of sym-

bols is 11, leading to target probability of 1:11. The inter-trial interval was settled to

2.5 seconds. This synchronous paradigm was successfully tested online by several able-

bodied and disable participants. Given its simplicity, presenting larger and fewer symbols
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Figure 8.1: Screenshot of the Arrow-paradigm. It provides a set of direction commands
and a small lexicon composed by assistance words. Symbols {A · · ·F} are not currently
used, simply indicating possible future commands.

than RC and LSC spellers, most of the participants achieve higher performance than that

achieved with those spellers. Some participants are actually able to control this paradigm

with single trial (one repetition). However, this paradigm is of little use, if the user is not

able to decide when he/she wants to send a command. Initially, we successfully tested

some simple approaches to switch ON/OFF the system, by, for example, closing the eyes,

which increases the amplitude of the α rhythm, or by gazing a flash at a given frequency,

which induces a SSVEP with the same flashing frequency. The switch could be activated

by the detection of these signals. However, these approaches require strong ocular move-

ments and therefore they have no relevance if the system is to be used by individuals with

severe motor disabilities. The alternative is to detect a non-control state relying only on

EEG without resorting to any type of muscular activity.

8.2.2 Experimental setup and calibration protocol for asyn-

chronous control

A set of online experiments were performed using the Arrow-paradigm in synchronous and

asynchronous mode. The summary of the experimental protocol is presented in Table 8.1.

Six able-bodied (S01-S06) and four disabled participants controlled the Arrow-paradigm

in synchronous mode. The motor disabled participants are the subjects identified as S19,
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Table 8.1: Case-study IV : summary of experimental protocol

Recording
Channels: 12 Ag/Cl electrodes Fz, Cz, C3, C4, CPz, Pz, P3, P4, PO7, PO8,

POz and Oz (10-20 extended positions)
Reference: left or right ear lobe; Ground: AFz

Frequency sampling: 256 Hz
Preprocessing filters: 0.1-60 Hz bandpass filter and 50 Hz notch filter
Impedance: < 10KΩ

Synchronous Arrow-paradigm
Parameters: SOA=175 ms, ISI=75 ms, ITI=2.5 s
Screen: 15” at about 60-70 cm
Participants 6 able-bodied and 4 motor disabled
—
Asynchronous Arrow-paradigm
Parameters: SOA=175 ms, ISI=75 ms, ITI=2.5 s
Screen: 15” at about 60-70 cm
Participants 2 able-bodied

S20, S23 and S24 in Table 6.2, who tested previously RC and LSC paradigms in Case-

study II. They are all confined to a wheelchair, and thus they could all benefit from this

interface.

The asynchronous mode was tested only by able-bodied subjects S01 and S02. To

investigate the non-control state, the standard calibration protocol procedure introduced

in previous chapters was changed in order to accommodate the additional non-control

(NC) state in between control (C) states. In the control state, participants were asked

to attend the target events indicated at the top of the screen, exactly as it was done

in previous synchronous paradigms. In the non-control state, participants were asked to

relax, not paying attention to any of the events (idle state). At the top of the screen, a

message ’non-control - RELAX’ is provided to the user. During this period, the events

continue flashing, and the user keeps looking1 to the screen, simulating a real online

scenario. The calibration session is divided in the succession of states: C + NC + C

+ NC + C. During the control state, user attends successively three target symbols,

each one corresponding to a round of 10 repetitions of the events. The non-control state

corresponds to the time equivalent to one symbol round. At the end of the calibration

session, a dataset contains 90 target epochs, 900 non-target epochs and 220 non-control

epochs, and so we have now three classes instead of two.

1This is the worst case scenario, considering that the user can not move the head or the eyes to look
away.
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8.2.3 Three-condition data analysis

Using the datasets recorded in the asynchronous calibration, we searched for discrimina-

tive EEG features between the 3-classes: target, non-target and non-control. We started

by analysing the three conditions in the time domain, computing the average of the epochs

for each class, as shown in Fig. 8.2a) for a given dataset of subject S01. Both non-target

and non-control epochs evidence the SSVEP effect of the flashes, at a frequency f = 5.7

Hz (5.7 = 1/0.175, SOA=175 ms). Non-control epochs show additional oscillatory com-

ponents identified in the frequency domain. Fig. 8.2b) shows the frequency spectrum

of the three classes, obtained by computing the FFT for each epoch and then averaging

the FFTs. Dividing the epochs in control state {target + non-target} and {non-control}
state, we obtained the plots in Fig. 8.2c)d). Some discriminative frequencies between

control and non-control state seem to occur at ≈ 6, 17 and 34 Hz, however they varied

across sessions and across subjects.

Based on the above analysis, two approaches were investigated. The first one to detect

{target + non-target} vs. {non-control} and the second one to detect {target} vs. {non-
target + non-control}. In the first approach, we investigated if it was possible to detect

discriminative features related to stimuli frequencies, or frequencies related to the relaxing

condition of the non-control state. For instance, α rhythms are associated with idle and

meditation states while β rhythms are associated to sustained attention [Monastra 2005].

To implement the {control-state} vs. {non-control state}, discriminative features need

to be selected, automatically adjusting to each individual. Therefore, we extended the

spatio-spectral filter SSFCB (5.27) described in section 5.3.4 to automatically tune the

frequency shaping filter. This method, henceforth called ASSFCB (automatic SSFCB) is

described in section 8.2.4. The second approach implements a detector between {target}
vs. {non-target + non-control}. Non-control epochs share many similarities with non-

target epochs, thus it is expected to obtain classification rates that approach those ob-

tained between target vs. non-target. The non-control detection could be attained by

imposing a threshold limit in the posterior probabilities [Zhang 2008], controlling thereby

the rate of false positives (FPR). This approach is described in section 8.2.5.

8.2.4 ASSFCB spatial filter - detection of non-control state

In section 5.3.4, we presented SSFCB, a spatio-spectral filter. The weights of the spec-

tral filter h̃ = [β(1) β(2) · · · β(T ′)] were tuned manually. We propose here ASS-

FCB, an extension of SSFCB that allows the automatic tuning of the spectral weights.
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Figure 8.2: Dataset from a representative subject (90 target epochs, 900 non-target epochs
and 220 non-control epochs) a) Average in the time domain of target, non-target and non-
control epochs; b) Spectrum corresponding to the average of the FFTs of the epochs taken
for (a); c) Average in the time domain of {target + non-target} and non-control epochs;
d) Spectrum corresponding to the average of the FFTs of the epochs taken for (c).

Some automatic approaches combining CSP spatial filter and temporal/spectral fil-

ters were already proposed for motor-imagery-based BCIs [Lemm 2005, Dornhege 2006,

Tomioka 2006, Wu 2008]. Our approach follows the same underlying concepts used in

[Tomioka 2006, Wu 2008]. ASSFCB is detailed in Algorithm 1. The method is fully im-

plemented in the frequency domain following the mathematical formalism introduced in

section 5.3.4. The algorithm implements an iterative procedure that finds the spatio-

spectral filters in two separate steps, spatial filter and spectral filter, following a sub-

optimum approach. The spectral filter h̃ is initialized with all coefficients set to 1, corre-

sponding to an all-pass filter. In the first iteration, the spatial filter W̃ is estimated taking

h̃ = [1 1 · · · 1] and thus it coincides with the original FC beamformer (FCB) filter. In
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the subsequent step, the spatio-spectral projections ỹ are used to estimate the optimal

spectral filter h̃, through a frequency domain eigenfilter [Haykin 1996]. Combining the

two filters, spatio-spectral projections are computed and transformed to the temporal do-

main, and then qNB classifier infers the performance of spatio-spectral filters, measuring

the classification error rate. The iterative procedure is repeated until a maximum number

of iterations is reached or until the classification error rate is below a predefined threshold.

ASSFCB was used to discriminate between {control-state} vs. {non-control-state}.
We built the control-state joining target epochs and non-target epochs {C = T+NT}, and
the non-control state was built from relaxing/idle state epochs {NC}. As we saw before,

non-target and non-control state epochs are very similar, which makes this detection a

challenging problem. The optimum spectral filters learned by ASSFCB are shown in

Fig. 8.3 for subjects S01-S02. The spectral coefficients are zero for low frequencies,

which indicates no discrimination for frequencies in the range of target ERPs. Some high

Algorithm 1 ASSFCB

1: Spectral filter initialization:
h̃ = [β(1) β(2) · · · β(T ′)] with β(j) = 1, j = 1 · · ·T ′

2: Obtain Discrete Fourier Transform for each epoch k in dataset
3: for k = 1 : K do
4: X̃(k) = DFT(X(k)), X̃ ∈ RN×T ′

5: end for
6: repeat
7: Obtain spectral filter projections according to (5.26):

Z̃(c) = X̃(c).h̃ (c ∈ {+,−})
8: Obtain spatial covariances S̃b and S̃w and then spatial filters according to maximization

of (5.27):

max W̃H S̃bW̃

W̃H S̃wW̃

Select spatial filter W̃ (1) associated to top eigenvalue
9: Compute spatio-spectral filter projections according to (5.28):

ỹ(c) = W̃ (1)′Z̃(c)

10: Compute classification error rate applying classifier qNB to spatio-spectral projections in
the time domain
y(c) = IDFT(ỹ(c))

11: Compute the spectral filter h̃ in the frequency domain (eigenfilter) by maximizing:

max h̃HR̃bh̃

h̃HR̃wh̃
, s.t. β(j) ≥ 0, where R̃b and R̃w are the estimated spectral between-class

and within-class covariances
12: Normalize the spectral filter h̃ according to:

h̃ = [β(1) β(2) ··· β(T ′)]
∥[β(1) β(2) ··· β(T ′)]∥2

13: until Max number of repetitions reached or error rate < threshold
14: Select spatio-spectral filter that minimizes the classification error rate
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Figure 8.3: Optimal spectral filters h̃ obtained for subject 1 (a) and subject 2 (b) learned
by ASSFCB.

coefficients (spectral peaks) seem related to SSVEP evoked by stimuli frequencies. These

frequencies overlap rhythms in the α band, which makes difficult to infer whether spectral

coefficients are related to attention or relaxation states. Curiously, a high discriminative

frequency around 35 Hz is detected by ASSFCB in both subjects. This deserves a future

neurophysiological analysis. To assess the performance of ASSFCB across iterations, we

computed the classification error rate for each iteration as shown in Fig. 8.4. Note that the

first iteration coincides with the original spatial filter. The subsequent iterations show a

significative improvement of the classification, showing the effectiveness of ASSFCB. This

improvement is reached just after two or three iterations, and subsequent iterations may

reduce the performance. Despite this significative improvement, the classification results

were not sufficiently robust for online application.

8.2.5 Posterior probabilities - threshold adjustment

This approach takes the values returned from the posterior probabilities P (Ci|y) com-

puted from (5.30) using the Bayes theorem. Let us consider the three classes Ci with

i ∈ {T,NT,NC}, then we have P (CT |y), P (CNT |y) and P (CNC |y) respectively for tar-

get, non-target and non-control. These probabilities were computed applying the qNB

classifier to spatial FCB projections. The log-transformation was applied to (5.29), ob-

taining

P (Ci|y) = log(πi)−
Nf∑
j

log(σi(j))−
1

2

Nf∑
j

(
(y(j)− µi(j))σ

−2
i (j)(y(j)− µi(j))

)
. (8.1)
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Figure 8.4: Classification performance (error rate) of ASSFCB across three iterations.
The first iteration coincides with the original FCB spatial filter.

For each binary classifier presented in Fig. 8.5, the posterior probabilities were normalized

according to

P̄ (Ci|y) =
P (Ci|y)∑
i P (Ci|y)

. (8.2)

The right and left distributions in Fig. 8.5a) correspond respectively to

P̄ (CT |yT ) ∧ P̄ (CNT |yNT ) (8.3)

and

P̄ (CNT |yT ) ∧ P̄ (CT |yNT ) (8.4)

i.e., (8.3) and (8.4) give respectively the distributions of posterior probabilities for correct

and false detections. The same applies for each of the others binary classifications in

Fig. 8.5 b)c)d). Simulating the real scenario, we tested a binary classifier {target} vs.

{non-target + non-control} with two different datasets, in Fig. 8.5c) and 8.5d). The

posterior probabilities show that the classifier performs only slightly worse than {target}
vs. {non-target} binary classifier. Adjusting a threshold ∆, we can detect the control

state by eliminating the FPR. The online implementation of asynchronous control requires

a simple modification of (5.36) in order to include this threshold. Rule (5.36) assumes

that a P300 ERP is always present, while in asynchronous mode, P300 may not exist.

Therefore, taking the events j ∈ {1, · · · , 11}, the detection of a target symbol is obtained
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Figure 8.5: Distribution of posterior probabilities computed from (8.2) using (FCB +
qNB). Three binary classifiers were tested. a) {target} vs. {non-target}; b) {target
vs. non-control}; c) {target} vs. {non-target + non-control}; d) Same as c) but with a
different dataset. All graphs were obtained using a K-epoch average, K = 3.

according to  if ∃P̄ j(CT |y) > ∆ then Target = argmax
j∈{1,··· ,11}

P̄ j(CT |y)

else Non-control state
(8.5)

8.2.6 Online results

A set of online experiments were performed using the Arrow-paradigm in synchronous

and asynchronous mode according to protocol defined in Table 8.1.
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8.2.6.1 Synchronous control

For synchronous control, participants performed a standard calibration session. Then,

simulating the online steering of a wheelchair, they were asked to send the following 15

symbol/command sequence: ’GO’, ’LEFT’, ’GO’, ’STOP’, ’YES’, ’NO’, ’HELP’, ’FOOD’,

’WATER’, ’PHONE’, ’GO’, ’RIGHT’, ’STOP’, ’ROOM’ and ’STOP’ (or equivalent words

in portuguese). The users were seated at a standard chair or on their own wheelchairs.

Table 8.2 summarizes the results, showing for each participant, the number of repetitions

Nrep for which the minimum error rate was achieved. Since we want to minimize the

number of false steering commands, the error rate metric plays an increased relevance to

evaluate the BCI performance. The number of symbols per minute was computed taking

the ITI time, simulating a realistic scenario. Several able-bodied participants achieved a

7.25 SPM with 100% accuracy. Motor disabled participants achieved 4 to 5 SPM, but

with some errors. Nevertheless, these subjects performed better with this paradigm than

with RC and LSC paradigms (compare with Table 6.6), which is mainly explained by the

higher simplicity of Arrow-paradigm.

8.2.6.2 Asynchronous control

After a calibration session, following the protocol described in section 8.2.2, subjects S01-

S02 controlled asynchronously the Arrow-paradigm. The classification methodology was

the one described in section 8.2.5. The threshold ∆ was adjusted offline from calibration

data to minimize the FPR (non-control states detected as target symbols) while trying

not increasing to much the rate of false negatives, FNR (target symbols detected as

non-control states). The first experiment consisted of a sequence of intermittent symbol

detection and non-control state as shown in Fig. 8.6a), comprising a total of 36 symbol

detections plus 35 non-control state detections (sequence type I). A FPR of 11.4% and

5.5% was achieved respectively by subjects S01 and S02, while keeping a low FNR. A

second type of sequence was tested, consisting of 34 non-control states and 12 symbols

detection (sequence type II in Fig. 8.6b)). The sequence intended to test a scenario in

which the user is mainly in non-control state and sends a command occasionally. An

FPR ranging from 3-6% was attained also with a low FNR. These quite good results were

achieved for a relatively high SPM (7.25 SPM, Nrep = 3). To improve the reliability of

the BCI system, we could further reduce the FPR. This can be reached by increasing

Nrep, which decreases the SPM, or by increasing the threshold level ∆, which increases

the FNR. Naturally, reliability and SPM are inversely proportional.
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C NC C NC C NCC NC.....

a)

C NC .....C NC NCCNC

b)

Figure 8.6: Sequences of control an non-control states: a) sequence type I - intermittent
control (C) and non-control (NC) sates; b) sequence type II - non-control (NC) states
with occasional control (C) states.

Table 8.2: Online results for Synchronous control of Arrow-paradigm. Detection of a 15
symbol/command sequence. Clinical data of subjects S19, S20, S23, S24 are described in
Table 6.2

Synchronous Arrow-paradigm

Subject Nrep Nr. errors (%) SPM with ITI

S01 3 0 (0%) 7.25
S02 3 0 (0%) 7.25
S03 5 0 (0%) 4.95
S04 5 0 (0%) 4.95
S05 3 0 (0%) 7.25
S06 5 4 (27%) 4.95

S19 (a) - -
S20 5 3 (20%) 4.95
S23 5 2 (13%) 4.95
S24 6 2 (13%) 4.27

Table 8.3: Online results for Asynchronous control of Arrow-paradigm: 36 symbol detec-
tion with 35 non-control states in between (sequence type I).

Asynchronous Arrow-paradigm

Subject Nrep Errors (%) False Positives (%) False Negatives (%) SPM with ITI

S01 3 1 (2.7%) 4 (11.4%) 0 (0%) 7.25

S02
4 1 (2.7%) 1 (2.8%) 1 (2.7%) 5.88
3 0 (0%) 2 (5.5%) 2 (5.7%) 7.25

8.2.7 Wheelchair steering scenario

The number of decoded symbols per minute (SPM) in a BCI is very low, which means

that users can only provide a few discrete commands per minute. Thus, the control of
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Table 8.4: Online results for Asynchronous control of Arrow-paradigm: 34 non-control
states with 12 symbols detection in between (sequence type II).

Asynchronous Arrow-paradigm

Subject Nrep Errors (%) False Positives (%) False Negatives (%) SPM with ITI

S02 3 0 (0%) 1 (2.9%) 1 (8.3%) 7.25
S02 3 0 (0%) 2 (5.8%) 0 (0%) 7.25

a wheelchair must rely on a navigation system that receives sparse commands from the

user and that performs safe and smooth manoeuvres according to steering information

[Pires 2002]. The navigation and human-machine shared control is currently being in-

vestigated in our Lab within our research group [Lopes 2011]. Several brain-actuated

wheelchairs have already been proposed in other Labs. Motor imagination was investi-

gated in [Galán 2008] to detect 3 mental steering commands (forward, left and right) and

in [Tanaka 2005] to detect left and right mental states. The P300 ERP control has been

investigated in [Iturrate 2009] and [Rebsamen 2010], the last one also addressing non-

control state. In [Rebsamen 2010] the BCI allows the selection of high-level pre-defined

locations (e.g. office) while in [Iturrate 2009] the BCI selects low-level locations in a 3D

map of the surrounding environment. These systems are currently being developed as

a proof-of-concept. As the number of decoded symbols is still very limited, the main
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Figure 8.7: a) Robchair prototype during an experiment at ISR; b) and c): state dia-
grams implemented in BCI to manage TCP/IP requests and commands between BCI and
RobChair in operation mode 1 (b) and operation mode 2 (c).
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challenge of a brain-controlled wheelchair is from the navigation side.

Some preliminary and pilot experiments were performed with the Robchair prototype

(Fig. 8.7a)). A TCP/IP communication module was incorporated in the BCI system to

send commands and receive requests from the wheelchair. At the present time, Robchair

has two operation modes. One in which the user sends commands whenever he/she wants,

and the other in which the user responds only to requests of Robchair in ambiguous

scenarios (e.g., decide between left or right in bifurcations). These two operation modes

are implemented in the BCI system based on state diagrams, as shown in Fig. 8.7b) and

Fig. 8.7c) respectively. The description of the navigation experiments are beyond the

scope of this thesis.

8.3 Conclusion

Asynchronous control is an important issue for effective use of BCI in real-world sce-

narios. Comparing the two approaches proposed for asynchronous control, the detection

between {Target} vs. {Non-target + Non-control}, using the information from poste-

rior probabilities, was more efficient than the detection between {Target + Non-target}
vs. {Non-control}, using ASSFCB. This is explained by the high similarities between

Non-target and Non-control epochs, both mainly reflecting the stimuli frequencies. Thus,

the ASSFCB was unable to identify the idle/relax state during non-control, which may

suggest that users may have to train this state condition. This approach requires further

analysis. On the other hand, the approach detecting {Target} vs. {Non-target + Non-

control} was quite efficient. Although the online results have been obtained only for two

individuals, the number of experiments was extensive, validating the approach.
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”One should not pursue goals that are easily achieved. One must develop an instinct for

what one can just barely achieve through one’s greatest efforts.”

Albert Einstein (Nobel prize in Physics in 1921)

Our proposed work represents an effort to go one step forward to the application

of P300-based BCIs in real-world scenarios. Nonetheless, many of the BCI issues that

were investigated can be further improved for a more effective clinical and non-clinical

application. This chapter reminds some of the main contributions and draws some of our

lines of future research. Two satellite applications, developed in parallel with the main

research work are also succinctly described in appendices C and D, namely a BCI-Tetris

[Pires 2011a], and an automatic detection of P300 modulated by saliency of visual target

[Teixeira 2011].

9.1 Increasing transfer rates of P300-based BCIs

Increasing the communication rate of BCI is one the most important issues for the effective

application of BCI. The performance results achieved in chapters 5 and 6 were above the

state-of-the-art, and therefore extremely motivating. Nevertheless, several of the proposed

methodologies can be further improved to increase the transfer rates of P300-based BCIs,

some of them guiding our future research, namely:
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• Results obtained in this thesis confirmed that the design of the visual paradigm

has a strong direct effect on user’s performance. Paradigms using fewer symbols,

such as GIBS and Arrow-paradigm, evoke enhanced P300 components, leading to

higher classification accuracies, than those obtained with paradigms with a greater

number of symbols such as RC and LSC spellers. As discussed in chapters 6 and

7, the P300 evoked by the standard RC paradigm is adversely affected by many

undesirable factors. Although the decrease in the number of symbols of a paradigm

enhances the P300 ERP, it happens that reduces the ITR. Therefore, more research

should be carried out, trying to develop paradigms that avoid undesirable effects

on P300, while keeping an effective number of symbols. This can be achieved by

exploring new layouts and event strategies, as it was done in LSC speller. Effective

event strategies can as well reduce the overall time of a trial. LSC can potentially

further decrease the trial time, by extending the left/right event strategy to the four

quadrants of the screen;

• Visual paradigms should be designed to evoke new discriminative neurophysiologic

features, thereby introducing new discriminative dimensions. In this regard, the

proposed LSC paradigm has several aspects that can be explored in the future. For

instance, the left and right asymmetries of P300 targets related to visuo-spatial

attention, and the phase shift evoked by left and right event strategies, can provide

new left/right discriminative features, potentially increasing classification accuracy;

• Signal processing (feature extraction) is one of the most important components

of a BCI. Most of current feature extractors applied in P300-based BCIs rely on

amplitudes collected over time. Our analysis showed that frequency and spatial

information provide important features for P300 detection. New methods should

be investigated, combining temporal, frequency, phase and spatial neurophysiologic

features.

9.2 Key issues for effective application of P300-based

BCIs

In addition to communication rates, two other key issues, very important to the effec-

tive deployment of P300-based BCI in real-world scenarios, were addressed in this thesis.

Chapter 7 introduced GIBS, an efficient gaze-independent speller, that ensures an effec-

tive BCI control by people with severe motor ocular limitations. The second key issue,
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the asynchronous control (self-paced) described in chapter 8, is of crucial importance to

control physical devices. One of the proposed approaches has proved extremely effective,

providing an efficient mechanism to control the rate of false positive commands.

Unsupervised adaptation was not addressed in this thesis, but still remains a key

challenge for BCI [Krusienski 2011]. Due to psycho-neurophysiological factors, neuro-

plasticity, and electrode setup, subjects exhibit an EEG variability from session to session

or even within the same session. Most of P300-based systems perform a calibration session

before each online operation to fit the classification model to the most recent condition

of the user. Even minimizing the calibration time as it was done in our systems, this

calibration is always a constraint to BCI use. After a single initial calibration, an efficient

unsupervised adaptation could take the initial models adjusted to the user, and adapt

them according to the current condition of the user. Adaptation can be implemented

in different domains such as feature extraction, models, classification or post-processing

[Krusienski 2011].

9.3 Conclusion

In this thesis, we described several P300-based systems with important contributions to

signal processing and visual paradigm design. In the signal processing field, we proposed

several novel statistical spatial filters in the time domain, which were then extended

to the frequency domain, leading to new statistical spatio-spectral filters. These feature

extractors provided significative classification improvements independently of the classifier

type. Moreover, the feature extraction and classification methodology is computationally

very fast and needs only a small amount of training data, thereby contributing to a

small calibration time. In regard to paradigm design, LSC, a lateral single character

speller, was designed to overcome several limitations of the standard RC speller, and

to explore layout, event strategy, and hemispheric asymmetries in visual perception to

improve the performance of BCI. Performance results obtained with LSC were above

those obtained with RC, thus validating the design of the paradigm. LSC still has a

margin for potential improvement in bit rate and accuracy. Spatial filters and LSC were

thoroughly validated online and offline by extensive sets of experiments performed by

able-bodied and individuals with motor disabilities. Performance results obtained by able-

bodied were above state-of-the-art. ALS participants, in early and intermediate stages

of the disease, performed only slightly below able-bodied participants. The performance

of individuals with CP was lower, but two of them controlled the BCI effectively. Two
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additional paradigms have been implemented with particular relevance for deployment

of BCI in real-world scenarios, namely, GIBS, a gaze independent speller, and Arrow-

paradigm, an asynchronous BCI, specially designed to steer a robotic wheelchair. These

two paradigms were validated online by able-bodied subjects.

We have worked toward the effective application of BCI, but much can still be done in

many areas to improve its application. The use of BCI goes far beyond clinical application

and will be part, certainly, of our daily life in the near future. Neuroplasticity will

help us to adapt ourselves to better control BCI, and BCI will induce new processes of

neuroplasticity, a dichotomic relation that may contribute to an optimized use of all the

brain potential abilities.



Appendix A

Bit rate metrics

A.1 Derivation of the channel capacity of a BCI

The channel capacity is obtained from the mutual information of the channel
[Shannon 1948]

I(X;Y ) = H(X)−H(X|Y ) (A.1)

where H(X) is the source entropy and H(X|Y ) is the information lost in the noisy chan-
nel. Assuming Ns possible equiprobable choices (probability P (xi) = 1/Ns) of the BCI
paradigm, and the conditional probability P (xi|yi) given by the BCI accuracy, pa, then
I(X;Y ) is given by

I(X;Y ) =
∑
x

P (xi)log
1

P (xi)
−
∑
x,y

P (xiyj)log
1

P (xi|yj)
(A.2)

=
∑
x

P (xi)log
1

P (xi)
−
∑
x,y

P (xi|yj)P (yj)log
1

P (xi|yj)

=
∑
x

P (xi)log
1

P (xi)
− [P (x1|y1)P (y1)log

1

P (x1|y1)
+ · · ·+

+ · · ·+ P (x1|yNs)P (yNs)log
1

P (x1|yNs)
]Ns

= log(Ns)− [palog
1

pa
+ (1− pa)log

1
1−pa
Ns−1

]

= log(Ns) + palog(pa) + (1− pa)log
1− pa
Ns − 1

.

The channel capacity I(X;Y ) ≡ B, represents the amount of information transferred per
symbol, measured in bits/symbol.
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CSP and generalized eigenvalue
spatial filter

B.1 Common spatial patterns

Consider the N × N EEG spatial covariance normalized as R = XX′/tr(XX′) where ′

represents the transpose operator and tr(X) represents the trace of X. The normalized
spatial covariance is computed separately for class-1 and class-2, respectively R1 and
R2. The CSP filter as introduced in [Soong 1995] consists in finding a matrix W and a
diagonal matrix Λ which simultaneously diagonalize the two covariance matrices as

W ′R1W = Λ1 and W ′R2W = I − Λ1 = Λ2 (B.1)

where I is the identity matrix. This diagonalization is achieved whitening the composite
matrix Rs = R1 +R2, i.e., obtaining a matrix P such that the covariance is equal to I

P ′(R1 +R2)P = I. (B.2)

The whitening matrix P is given by P = Us

√
Λ−1

s where Λs is the diagonal matrix of
eigenvalues and Us is the matrix of eigenvectors of Rs. Considering S1 = P ′R1P and
S2 = P ′R2P then S1 + S2 = I. If S1 is decomposed by

S1 = ΦΛ1Φ
′ or S1Φ = ΦΛ1 (B.3)

where Φ and Λ1 are respectively the eigenvectors and eigenvalue matrices of S1, then

S1Φ + S2Φ = IΦ (B.4)

which leads to

Λ2 = I − Λ1 (B.5)

where Λ2 is the eigenvalue matrix of S2 = ΦΛ2Φ
′. Therefore R1 and R2 share the same

eigenvector matrix W = PΦ, and the projection of data X is given according to

Y = W ′X. (B.6)

Assuming that the eigenvalues of R1 are in descending order λ
(1)
1 > λ

(2)
1 > · · · > λ

(N)
1 then

the eigenvalues of R2 will be reversely ordered. The eigenvector with largest eigenvalue
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for one class has the smallest eigenvalue for the other class and vice versa. Each column
vector (eigenvector) wj (j = 1, .., N) of the matrix W is a spatial filter. The first and last
eigenvectors are the optimal eigenvectors that discriminate the two classes. The central
eigenvectors maximize the common features of the two classes.

B.2 Rayleigh quotient and generalized eigenvalue

problem

Consider the Rayleigh quotient

J(W ) =
W ′R1W

W ′R2W
. (B.7)

The optimal maximization of the Rayleigh quotient is given by differentiating J(W ) in
order to W and equating to zero

∂J(W )

∂W
=

∂

∂W

(
W ′R1W

W ′R2W

)
= 0 (B.8)

⇔(W ′R2W )
∂

∂W
(W ′R1W )− (W ′R2W )

∂

∂W
(W ′R2W ) = 0

⇔(W ′R2W )2R1W − (W ′R1W )2R2W = 0

Dividing by 2W ′R2W , then

R1W − J(W )R2W = 0 (B.9)

R−1
2 R1W = J(W )W

Defining J(wi) ≡ λi then
R−1

2 R1wi = λiwi (B.10)

which is a generalized eigenvalue problem.

B.3 Max-SNR beamformer and CSP

We show that the CSP solution is the same of that obtained from the optimization of the
Rayleigh quotient. Let consider the Rayleigh quotient

J(W ) =
W ′R1W

W ′RsW
(B.11)

where R1 and Rs = R1 +R2 are the covariance matrices already defined in section B.1.
According to section B.2, the optimal W is achieved by finding the generalized eigenvalue
decomposition that satisfies

R1W = RsWΛ. (B.12)
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Substituting Rs = R1 +R2 in (B.12) we obtain

R2WΛ = R1W (I − Λ) (B.13)

R2WΛ(I − Λ)−1 = R1W

(R2)
−1R1W = WΛ(I − Λ)−1 (B.14)

and thus the eigenvectors W are obtained from the EVD of (R2)
−1R1 or (Rs)

−1R1 which
both share the same eigenvector matrix, provided that R2 and Rs are nonsingular. The
projected variance ratio v

(k)
t /v

(k)
nt is λ(k)/(1 − λ(k)). If we impose W ′RsW = I in (B.12),

then

R1W = RsWΛ (B.15)

W ′R1W = W ′RsWΛ

W ′R1W = IΛ

R1 = WΛW ′

and replacing R1 = WΛW ′ in (B.13) we yield

R2WΛ = WΛW ′W (I − Λ) (B.16)

R2W = W (I − Λ)

R2 = W (I − Λ)W ′

i.e., we reach the exact CSP solution (B.1) as we wanted to demonstrate.
The Max-SNR stated as the maximization of the Rayleigh quotient corresponds to

a particular case of CSP, which considers only the larger eigenvalue that maximizes the
discrimination power.





Appendix C

BCI-Tetris

This appendix succinctly describes a Tetris-like game controlled with BCI, developed
in parallel with the main research work, and presents some qualitative results. This
application highlights the BCI game research area, that we believe will have a significant
growth in the next years.

C.1 Case-study V - Tetris game controlled with BCI

Is it possible to control a Tetris-like game with BCI? In order to answer this question,
we adapted and simplified the original Tetris game to be controlled with BCI. Three dif-
ferent versions, offering different forms of control, were implemented as proof-of-concepts
[Pires 2011a]. The graphical design of the proposed Tetris was developed by two under-
graduate students under my co-supervision in their final MSc. thesis [Casaleiro 2010] and
[Torres 2011]. The graphical design of these Tetris versions was developed in a TCL/Tk
framework. Signal processing and classification algorithms were implemented in Simulink
as in previous chapters. The data communication between the Simulink module and the
TCL/Tk module was made through a shared memory driver, developed for this purpose.
Two Tetris versions, denoted as V1 and V2, are based uniquely on P300 ERP elicited
by an oddball paradigm, and a third version, denoted as V3, combines P300 with SMR
induced by motor imagery.

C.1.1 P300-based Tetris: V1 and V2

In Tetris V1, there are 16 combinations representing different positions and rotations of
four different pieces (Fig. C.1b)Left). The 16 pieces (combinations) flash randomly in
pre-defined positions of the Tetris board. User has to select a target piece indicated at
the bottom of the board (Fig. C.1a)). In Tetris V2, the selection of the piece is made
in two instances. First, user selects the rotation of the piece and then, selects the hor-
izontal position. At this phase of development, we had to explicitly provide the target
piece at the bottom of the Tetris board, to clear up if the miss-selections came from
miss-classifications of the algorithm or from wrong selections of the user. The pieces flash
with a SOA of 200 ms. No significant differences exist between these paradigms and those
described in previous chapters, except that symbols (pieces) are only visible at the time
of flashing, and symbols are not associated with letters or words. Tetris V1 and V2 have
different target probabilities, namely 1:16 and 1:4. The two versions were tested online
by several participants after a calibration session (see a photo of an experimental session
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Tetris board

a)

Target piece

Target flashing 

position

Tetris pieces

b)

Figure C.1: a) Game board of the P300-based Tetris. The target piece to be selected
is indicated at the bottom of the board. To help the player, the position where the
piece is flashed appears in gray. The red piece is one of the pieces being flashed at the
screenshot time; b) Left) 16 combinations of 4 pieces, combining simultaneously position
and orientation; b) Right) Example of one piece showing the four possible positions along
the horizontal axis and the four possible rotations.

in Fig.C.2a)). Both versions were effectively controlled. Nevertheless, participants per-
formed worse with V2 than with V1, thus requiring a higher number of target repetitions.
The higher target probability of version V2 may explain this difference. Additionally, in
Tetris V2, participants failed more on the selection of horizontal positions than in the se-
lection of the orientation. This may indicate that these two types of events have different
perceptual effects.
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a) b)

Figure C.2: Experimental sessions of user testing Tetris games. a) P300 Tetris (V1);
P300-SMR Tetris (V3).

C.1.2 Combined P300-SMR: Tetris V3

P300-SMR Tetris is the most interesting, approaching the original Tetris game. The ori-
entation of the piece is detected with the P300 neural mechanism, the same way as in
Tetris V2, while the horizontal target position is reached by moving the piece to left or
right, by performing motor imagery. Participants had to train how to control their SMR.
The training session, of about 30 min, was made according to the widely used protocol
described in [Pfurtscheller 1998]. During the training sessions, participants performed
periods of motor imagery and periods of rest, according to the given cues (left, right and
rest). Participants were asked not to move and to keep the arms and hands relaxed. At a
left cue, participants had to imagine a left hand movement (e.g., opening and closing the
left hand) and at right cue, they had to imagine a right hand movement (e.g., opening and
closing the right hand). The type of motor imagination was only suggested, thus partici-
pants could choose their own imagination mechanisms. During rest periods, participants
were asked to not imagine motor tasks. The training datasets consisted of 100 trials of
left motor imagery and 100 trials of right motor imagery. Classification models, obtained
from calibration, were fitted to the subject taking SMR features, namely the band power
of µ and β rhythms [Pires 2011a].

After the training session, each participant played the game. After selecting the orien-
tation of the piece, the user moved continuously the piece to left or right until the target
position was reached (with visual neurofeedback). The displacement of the piece could
be adjusted to be more or less reactive (taking more or less time), in order to fit the par-
ticipant’s performance. Successful results were achieved by several participants, although
some couldn’t learn how to control their rhythms (see a photo of an experimental session
in Fig.C.2b)).

C.1.3 Discussion

The idea behind the implementation of the BCI-Tetris was to develop a game that could
be used clinically by children or adolescents with ADHD. Neurofeedback, the real-time
feedback of brain activity, is currently being used in many clinics for the treatment of
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ADHD, as an alternative approach to pharmacologic treatments [Monastra 2005]. Neuro-
feedback is provided in the form of game control to increase the motivation of the trainees
[Pope 2004]. Rhythms associated with attention are translated to a command that con-
trols a specific variable of the game, providing visual feedback of neural activity, thereby
inducing the user to modulate his rhythms. Our proposed Tetris games are substantially
different concerning the control form and the level of difficulty. For the best of our knowl-
edge, in the context of ADHD, P300 oddball paradigms have never been used for the
treatment of ADHD. P300 has been used only as a neurophysiologic marker of ADHD or
to assess the improvements of patients after the treatment. Since P300 is an endogenous
ERP that depends on selective attention, we can hypothesize that continuous sessions
playing P300-based games could improve the attention levels of the players. This suppo-
sition obviously still lacks of validation by neurotherapists. Moreover, motor imagery is
also not a common practice used in ADHD. An effective clinical application of this game
would obviously require several modifications and adjustments based on neurotherapists
experience.

As low-cost commercial EEG headsets appear in the market, such as Emotiv
[Emotiv 2011] and Neurosky [Neurosky 2011], simple BCI game applications are emerging
for entertainment. BCI can provide a new control dimension, freeing the hands of the
players to control some inputs of the game, while BCI is used to control others inputs.



Appendix D

Automatic detection of P300 evoked
by subliminar visual tasks

This appendix succinctly describes a case-study that investigates the relation between
psychophysical detection of visual salient features and their neurophysiological correlates
at the event level. Our proposed signal processing and classification algorithms are applied
for automatic detection of P300 ERPs in neurophysiologic responses, thereby validating
the link between psychophysical and neurophysiological responses. Just a few of the
overall results are here presented.

D.1 Case-Study VI - Automatic detection of P300

evoked by subliminar visual tasks

An experimental task was designed by Marta Teixeira [Teixeira 2010] [Teixeira 2011]
at IBILI, assessing psychophysical and neurophysiological aspects related to perceptual
saliency of visual targets. The experimental task investigates whether the P300 signal is
modulated by the degree of perceptual saliency, independently of visual target properties.
To confirm if there is a direct link between psychophysics and the neurophysiology, we
applied our signal processing and classification algorithms to detect P300 ERPs in neu-
rophysiologic responses. My contribution to this work was on the implementation of the
signal processing and classification algorithms [Teixeira 2011]. Classification was applied
at a single-trial level, as a psychophysiological measure of perception. If the algorithms
can efficiently detect P300, this experiment might be used as a clinical test for an objective
visual acuity measurement, independently of the cooperation of the patient.

D.1.1 Task description

Two experiments, both consisting of an oddball design, were tested by 10 healthy
participants. Experiment 1 was designed to test the effect of perceptual saliency of
color/luminance and texture on P300 amplitude and latency. Saliency was manipulated
by having 3 target levels of perceptual deviation from a standard red coloured patch (see
Fig. D.1a)). Texture was manipulated by using 3 target levels of phase offset deviation
against a standard with no phase offset (see Fig. D.1b)). In experiment 2, saliency was
manipulated by having 3 target levels of isoluminant chromatic deviation against a green
squared patch, for the chrominance condition (see Fig. D.2a)). Luminance was manipu-
lated by using 3 target levels of luminance deviant patches (see Fig. D.2b)). Targets are
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Standard Target1 Target2 Target3

a)
Standard Target1 Target2 Target3

b)

Figure D.1: Experiment 1: a) Stimuli for colour/luminance saliency; b) Stimuli for texture
saliency. Images taken from [Teixeira 2011].

Standard Target1 Target2 Target3

a)
Standard Target1 Target2 Target3

b)

Figure D.2: Experiment 2: a) Stimuli for chrominance saliency; b) Stimuli for luminance
saliency. Images taken from [Teixeira 2011].

designated as Target1, Target2, and Target3 according to their increased level of salience.
Each deviant target had a probability of 1:16, with a minimal inter-target distance of 6
stimulus repetitions. Stimuli were displayed for 500 ms, with an ISI of 1500 ms. During
the experiments, participants had to respond, by clicking a button, for each detected
deviant target.

D.1.2 P300 classification

Detection of P300 was performed on a single-trial basis, i.e., taking a single repetition
of each target stimulus. The classification process was based on the proposed C-FMS
spatial filter and on the LDA classifier. Two classification scenarios were analysed. In the
first one, classification models were fitted individually to each participant. The main goal
was to infer if the automatic P300 detection matched the behavioural response (inferred
from the motor response of participant). As an example, Fig. D.3 compares the single
trial detection with motor response for the chrominance experiment. Similar results were
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Figure D.3: Detection rate of behavioural vs. single trial in the chrominance experiment.
Graph taken from [Teixeira 2011].

Table D.1: Classification results (balanced accuracy) of independent model for the chromi-
nance condition.

Subj 1 Subj 2 Subj 3 Subj 4 Subj 5 Subj 6 Subj 7 Subj 8 Subj 9 Subj 10 average
Target 3 88.77 94.79 90.05 62.66 84.14 85.26 77.80 87.45 96.70 89.41 82.40
Target 2 85.89 89.57 73.18 54.63 76.74 73.28 72.80 84.26 85.47 74.40 72.76
Target 1 75.41 81.06 45.10 47.77 44.99 47.38 53.02 44.26 65.20 45.20 46.82

achieved for the other conditions. Classification results were obtained individually for each
subject through leave-one-out (LOO) cross-validation applied to all epochs of the datasets.
Statistical tests confirmed the correlation between single-trial detection vs behavioural
response. In the second classification scenario, results were obtained from an independent
model built from a set of three subjects and tested on the remaining subjects. The model
was obtained through LOO cross-validation within the set of participants, by choosing
the three subjects that best generalized to the other subjects. The model was created
joining the datasets of these three subjects. This classification scenario validates the
algorithms performance on unseen subject’s data. This scenario is obviously the most
important for clinical application, as an independent model is required for a vision test.
Results are shown in Table D.1 for the chrominance experiment. The average results
were obtained discarding the three subjects from which the model was obtained (subjects
1, 2 and 9). The results are only slightly worse than in the first scenario, showing that
the independent model generalizes well to other subjects. Similar results were obtained
for the other experiments. This infers the good generalization properties of the C-FMS
spatial filter approach, and validates its potential use for a clinical acuity vision test.
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