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Abstract—This paper presents a non-invasive Brain Com-
puter Interface (BCI) game that is inspired on the Tetris game.
The BCI-Tetris is presented in three different versions. Two
versions based on the P300 event related potential (ERP), and
one version that combines the P300 ERP with the control of
sensorimotor rhythms. The BCI-Tetris is being developed to be
tested in pilot experiments with children with attention-deficit
and hyperactivity disorder (ADHD). The results reported in
this study with able-bodied participants show that the BCI-
Tetris can be effectively controlled.
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I. INTRODUCTION

Non-invasive Brain Computer Interfaces (BCIs) use elec-
troencephalographic (EEG) signals to control systems with-
out recurring to the motor output pathways. Most of the BCIs
developed until now have been designed as a communication
system for people who suffer from severe motor impairments
such as amyotrophic lateral sclerosis, muscular dystrophy,
spinal cord injuries and cerebral palsy. For these individuals,
EEG is a new communication channel that can signifi-
cantly improve their interaction with the world. Farwell
and Donchin developed in the eighties a BCI paradigm
that allows to write by successively selecting letters of
the alphabet [1]. This speller has been used worldwide
achieving successful results in both able-bodied and motor
disabled individuals [2], [3], [1]. Recently, many other BCI
applications have emerged, namely the control of prosthetic
devices, control of wheelchairs [4] [5] and game control
[6]. A major research area closely related to BCI is the
neurofeedback, i.e., the real-time feedback of brain activity.
Neurofeedback has been used in game applications for the
treatment of children and adolescents with attention-deficit
and hyperactivity disorder (ADHD) and for the treatment
of seizure disorders [7], and also in neuro-rehabilitation for
recovery from incidents of stroke and traumatic brain injury
[8].

In this paper we describe the development of 3 different
versions of a Tetris-like game, based on the P300 event
related potential (ERP) and based on the control of sen-
sorimotor rhythms. P300 is elicited by a target event of
an oddball paradigm [1]. It is characterized by a positive
peak that occurs about 300 ms after the onset of the target

event (a random and rare stimulus among frequent non-target
stimuli). The µ (8-12 Hz) and β (18-24 Hz) waves are
sensorimotor rhythms that decrease during motor imagery
and increase during motor relaxation [9]. This increase and
decrease are known as event related synchronization and
desynchronization (ERS/ERD). The proposed BCI-Tetris
intends to be used in pilot experiments with children with
ADHD. In the context of ADHD, P300 has been used only
as a neurophysiologic marker of ADHD or to assess the
improvements of patients after the treatment. For the best of
our knowledge, the use of P300-based BCIs for the treatment
of ADHD has never been researched before. P300 is an
endogenous ERP that depends on selective attention, there-
fore we can hypothesize that continuous sessions of tasks
based on P300 can improve the attention levels of players.
The combination of P300 ERP and sensorimotor control, the
latter typically used in neurofeedback applications, can be
an interesting approach to be tested clinically. This paper,
however, is only a proof-of-concept showing that BCI-Tetris
can effectively be controlled.

II. EEG-BASED GAMES: RELATED WORK

There are several types of neural mechanisms that can be
used to control a game with EEG, namely neurofeedback
based on several EEG rhythms, P300 event related potentials
(ERP), and steady-state visual evoked potentials. Some
research works using these neural mechanisms are presented
in the following (see [6] for a more formal survey). In
clinical applications, neurofeedback is frequently used in the
form of game control. Games give an additional motivation
to the trainees [10], which is of particular relevance for
children. One of the main applications of neurofeedback
is on the treatment of ADHD, and it is considered today
an effective alternative to pharmacologic treatments. ADHD
show an elevated relative theta power, reduced relative alpha
and beta power, and elevated theta/alpha and theta/beta
power ratios [7]. This information can be used to induce the
regulation of these rhythms through EEG feedback training
(reinforcement or inhibition). The ability of subjects to
manipulate the µ and β sensorimotor rhythms (oscillations
recorded over the motor cortex) has also been used to control
several types of games that go from three-dimensional (3D)



video games to simple 2D games. For example, in [11]
several participants learned to steer a person in a 3D game.
The results showed that subjects could gain very good binary
control of µ rhythms after approximately 10 h of training.
Also, in [12] the authors used sensorimotor rhythms to
control a pinball machine. In [13], the authors proposed a
2D and a 3D game controlled by the level of attention. The
algorithms use a fractal dimension model to extract features
from the EEG activity. In the first game, a ”Dancing Robot”,
the player has to control the speed of the 3D robot while
the robot is dancing. The dancing speed depends on the
concentration level of the player. In the second game, ”Brain
Chi”, the player helps a 2D little boy to fight against evil
bats. In the same sense, the size of protection ball depends
on the player concentration level.

While in the above approaches, the user controls the
games based on induced activations of EEG rhythms, mean-
ing that the user can initiate actions without depending on
stimuli from the game, there are other game approaches
relying on external stimuli. Steady-state visual evoked po-
tentials (SSVEP) is an oscillatory rhythm that appears in
the visual cortex as a response to a stimulus flickering at
a constant frequency. The authors in [14] use SSVEP in a
game where the player has to focus and gaze to one of two
possible checkerboards flickering at different frequencies.
The objective is to gain balance control (1D) of a char-
acter on a tightrope. Following the same neuromechanism,
Martinez et al. [15] propose a 2D racing game with four
different checkerboards around a car (which represent 4 dif-
ferent directional controls) flickering at different frequencies.
SSVEP is an exogenous potential and therefore it is mainly
dependent on the type of the stimulus. It does not require
training of the players, however the flickering effect usually
causes eyestrain, limiting the time of use. Finally, P300 ERP
is also an approach to control games by following oddball
paradigms. Piccione et al. [16] proposed a P300-based game,
where the participants are asked to control the movement of
a virtual object (a blue ball) along a path specified by the
examiner. Four arrows are randomly flashed in peripheral
positions of the monitor corresponding to the four possible
directions that control the ball. In [17], a ”MindGame”
inspired in the original P300 row-column speller paradigm
is played on a checkerboard-styled game board with 28/18
fields and 12 randomly positioned trees. The fields with the
trees are potential targets in an oddball paradigm and thus
the player’s task is to move the character from tree to tree.

III. TETRIS-GAMES APPROACHES

The proposed games consist on three different approaches
based on the Tetris game. The original game suffered several
simplifications and adaptations to allow its effective control
using the proposed neuromechanisms. The Tetris board lay-
out is presented in Fig. 1. Two versions, V1 and V2, are fully
based on the P300 paradigm, and a version V3 combines the

Figure 1. Game board of the P300-based Tetris. The target piece to be
selected is indicated at the bottom of the board. To help the player, the
position where the piece is flashed appears in gray. The red piece is one
of the pieces being flashed at the screenshot time.

P300 paradigm of V2 with a motor imagery paradigm. At
this stage, the implementation of Tetris V3 still has these
two parts separately. Each one of the three approaches has
two sub-versions of the game, a calibration/training version
and an online version where the user effectively plays.

1) Tetris V1 - P300-based: In Tetris V1, there are 16
combinations comprising different positions and rotations of
four different pieces as represented in Fig. 2Left). The goal
is to select the target piece that is placed in the bottom of
the board (see Fig. 1). There are four pieces each one with
four possibilities of rotation. The resulting 16 combinations
take a fixed position in the Tetris layout. The pieces flash
randomly, but at each instant only one piece is visible.
The piece remains flashed during 100 ms, and the stimulus
onset asynchrony (SOA - interval between the onset of two
consecutive stimuli) is 200 ms. It is supposed that the target
piece elicits a P300 ERP. Since there are 16 pieces, the
target event has a probability of 1/16. To increase the events
perception, each piece has a different color. Moreover, to
facilitate the task of finding the position of the target piece,
this one is indicated in gray in its flashing position.

Figure 2. Pieces used in Tetris games. Left) Version V1 with 16 combina-
tions of 4 pieces, combining simultaneously position and orientation; Right)
Version V2. Example of one piece showing the four possible positions along
the horizontal axis and the four possible rotations.



Figure 3. Layout of the Tetris board in motor imagery. Movement of the
piece for left or right is continuous along the horizontal axis.

2) Tetris V2 - P300-based: The Tetris V2 has an opera-
tion more approximated to the original Tetris game. There
are four possibilities for rotation and four possibilities for
position, respectively. In the first instance, the user selects
the desired rotation and thereafter he selects the desired
position along the horizontal axis. Thus, the user has to
choose a target among four possibilities, which means that
each target event has a probability of 1/4. The pieces are
randomly flashed with a flash time of 100 ms and a SOA of
200 ms. If the user fails to select the correct rotation, he is
unable to detect the correct target even if he selects correctly
the position. The target piece is at the bottom of the board,
and also in gray in its flashing position .

3) Tetris V3 - Hybrid P300/motor Imagery: The Tetris
V3 is an hybrid approach that combines two parts, one
controlled by the P300 and the other controlled by motor
imagery. This version is very close to the original Tetris. The
rotation of the piece is selected the same way as in Tetris
V2, and the position of the piece is selected through motor
imagery. The Tetris board during motor imagery is slightly
different from the one in P300 (see Fig. 3). The user has
to move the piece until the correct position is reached (1D
movement). It is possible to select two mental approaches to
move the piece to left or right, namely, imagination of left vs.
right motor tasks, or motor imagination vs. rest (relaxation
state). A motor imagination moves the piece to one of the
pre-defined directions. Moreover, to adjust the difficulty of
the game to the skills of the player, the precision of the
horizontal position can be adjusted from fine to coarse, and
the time to achieve the position can also be adjusted.

IV. METHODS

A. Participants and data acquisition

Despite many participants tested the proposed paradigms,
only two of them made systematic experiments. Therefore,
this study only reports the experiments made with 2 able-
bodied participants. The EEG activity was acquired with a
g.tec gUSBamp amplifier. Signals were recorded from 12
Ag/Cl electrodes at positions Fz, Cz, C3, C4, CPz, Pz, P3,
P4, PO7, PO8, POz and Oz of the international extended
10-20 standard system with a g.tec cap. The electrodes were
referenced to the right or left ear lobe and the ground was

placed at AFz. Signals were sampled at 256 Hz, and filtered
by a 0.1-30 Hz bandpass filter and a 50 Hz notch filter.
The electrodes impedance varied from subject to subject,
but were almost always kept under 10KΩ.

B. Classification

The classification models were obtained from the datasets
gathered in the calibration/training sessions that preceded the
online sessions. Two different classifiers were chosen for the
P300 and motor imagery approaches.

1) P300: The offline and online classification was per-
formed following the methodology that we presented in
[2]. It uses a statistical spatial filter that cascades a Fisher
beamformer and a Max-SNR beamformer (C-FMS). The
twelve input channels are transformed into two high SNR
(signal-to-noise ratio) projections, which are then fed to a
naı̈ve Bayes classifier (NB). The spatial filter is applied to
the average of the epochs collected from the repetitions of
the same event. The spatial filter and classification models
were obtained for each participant from the calibration data.
The online detection of the symbol was made by choosing
the event with the highest score returned from classification.

2) Motor imagery: Taking the µ and β band powers as
features for left imagery vs. right imagery and imagery vs.
rest, two classifiers were modeled following the well-known
two-class Fisher linear discriminant (FLD). The goal is to
maximize the intercluster distance between the two classes
and minimize the intracluster within a given class in the
new dimension space [18]. Let the within scatter matrix be
defined as:

SW = S1 + S2 (1)

where S1 and S2 are the scatter matrices:

Si =
∑
x∈Hi

(x−mi)(x−mi)
T , i = 1, 2 (2)

The between scatter-matrix is defined as:

SB =

2∑
i=1

(m−mi)(m−mi)
T (3)

where x = (x1|x2| · · · |xn) is the vector with all xi
d−dimensional features (training vectors), mi is the mean
of the samples in class i, and m is the mean of all samples.
For the new feature vector y = WT x, then Ŵ is given by:

Ŵ = S−1W (m1 −m2) (4)

C. System framework

The recording and processing of EEG data is imple-
mented on a real-time Simulink R© environment controlled
by an acquisition driver that provides a hard real-time clock
(gUSBamp) [19]. However, the graphical part of Tetris is
developed externally to Simulink, based on the Tcl/Tk high
level language. Fig. 4 shows the system framework. The data
communication interface between Simulink and the Tcl/Tk



Figure 4. System framework. Event control is made in Simulink and then
the event codes are sent to an external application built in TCL/TK through
a shared-memory interface.

application is made through a shared memory driver. The
driver was created with a C++ S-function on the Simulink
side and using a DLL on the side of the external application.
The DLL was generated by SWIG [20], a software devel-
opment tool that simplifies the task of interfacing different
languages to C and C++ programs. In a nutshell, SWIG is a
compiler that takes C declarations and creates the wrappers
needed to access those declarations from other languages
including Tcl in our case. This framework allows a rapid
development of signal processing algorithms, and at the
same time an easy way to develop 2D or 3D games. The
EEG acquisition, signal processing and events control are
all performed in Simulink. In the P300-based versions of
Tetris, Simulink sends the codes associated to the events
and sends the detected target when a selection is made. In
the motor imagery Tetris, Simulink sends the visual cues
(in training sessions) and the detected position of the piece
(online game).

D. Experimental procedure of calibration/training

1) P300: Before the online control of Tetris V1 and V2,
each participant performed a calibration session. Each par-
ticipant was instructed to be relaxed and attend the desired
target, mentally counting the number of intensifications of
the target. Participants were seated on a standard chair at
about 60-70 cm of a 15” computer screen. In Tetris V1,
each trial of the calibration session consisted of a round
of 10 flashes for each Tetris piece. In Tetris V2, each trial
consisted of a round of 5 flashes for each Tetris piece. The
interval between trials (ITI, inter-trial interval) was settled to
3 seconds to allow the user to switch the attention focus to
a new target piece. At the end of the calibration phase, the
data set of Tetris V1 was composed of 120 target epochs and
1800 non-target epochs, while in Tetris V2, it was composed
of 90 target epochs and 270 non-target epochs. An epoch is
the data segment associated to each event which in our case
has a duration of 1 second.

The online sessions occurred following the same proto-
cols. The player receives as feedback the detected piece,
indicating whether it was correctly or wrongly detected.
In both online versions, the players are encouraged and
stimulated with the score and the level of the game and even
with written messages. The level of the game depends on the
number of repetitions to detect the piece. A fewer number
of repetitions increases the level of difficulty to detect the
correct target.

2) Motor imagery: A training session of motor imagery
preceded the online game. The training was performed
according to the widely used protocol described in [9].
The procedure allowed the acquisition of data from left
motor imagery, right motor imagery, and rest. During the
training sessions, the participants were asked to not move
and to keep the arms and hands relaxed. The participants
had to start the imagination tasks according to the visual
cues. Each participant made a training session of about
30 minutes, consisting on 100 trials of left motor imagery
and 100 trials of right motor imagery. During the game
played online, the player receives the cue to start, and
then receives continuously the detected position of the piece
(visual feedback).

V. RESULTS

A. Offline classification results

1) P300 Tetris: The collected data sets were used to
obtain the C-FMS spatial filter and the NB classifier. The
classification error was measured by FNR+FPR

2 , where
FNR and FPR denote respectively false negative rate and
false positive rate. This performance measure is more reli-
able than simple error rate because the target and non-target
classes are highly unbalanced, and therefore the measure
is not biased. Fig. 5 shows the classification error average
over the two participants. To select a suitable number of
event repetitions, the error rate was obtained for K = 1 · · · 7
repetitions. For K > 1, the K epochs were averaged and
the classification algorithms were applied to the average.
Tetris is being designed to be operated by children in
clinical applications, therefore it is important to minimize the
number of channels to reduce the setup time. Several sets of
channels are examined to compare the effect on classification
performances. Four channel sets were selected. Channel set 1
comprises the 12 channels referred in section IV-A. Channel
set 2 is composed of [Cz CPz Pz] channels, channel set 3 is
composed of [P3 P4 CPz], and channel set 4 is composed
of [PO7 POz PO8] channels. The results for Tetris V1 and
V2 are respectively shown in the top and bottom of Fig.
5. Comparing the results of the two versions, the Tetris V1
show significative better results than Tetris V2. There are
two factors that can explain this disparity. P300 amplitude
is inversely proportional to target probability. In Tetris V1,
the probability is 1/16 while in Tetris V2, the probability
is 1/4. Therefore it is expected that paradigm of Tetris



Figure 5. Classification results for K = 1 · · · 7 event repetitions, taking
different channels sets. Average of the two participants. Top: Tetris V1;
Bottom: Tetris V2.

V1 elicits a P300 component with a larger amplitude. The
second aspect concerns the number of target and non-target
epochs. The larger number of training epochs in Tetris V1
may have benefit the robustness of its classifier. Comparing
the different channel sets in Tetris V1, the performance
of set 1 is higher than the the other sets, particularly for
a small number of K repetitions. However, for K ≥ 3
the error is inferior to 4%, for all sets except set 4. This
indicates that a small number of channels can be used during
clinical experiments. In Tetris V2, there are no significative
differences between the channel sets. The non-superiority
of set 1 relatively to the others may indicate that there is a
high spatial variability of the P300 signal, and therefore the
classification is not significantly improved by the C-FMS
spatial filter.

2) Motor Imagery: Fig. 6 shows a frequency vs. time
colormap representing the EEG rhythms, recorded at C3,
during a left motor imagination of one of the participants.
The visual cue was provided at instant 0 second. Before the
visual cue, the subject was on rest. The desynchronization
of µ (8-12 Hz) and β (18-24 Hz) is clearly visible during
the motor imagination task, with emphasis for the rhythms
µ. The power bands of µ and β rhythms recorded at C3
and C4 locations were the selected features to train the
FLD classifier. Taking windows of one second of EEG, the
averaged offline classification accuracy results were 70% for

Figure 6. Frequency vs. time colormap of EEG recorded at C3 during a
Left motor imagery task.

left vs. right imagery, and 75% for rest vs. motor imagery.

B. Online

The online experiments of Tetris V1 and V2 were per-
formed after the calibration sessions, using the same protocol
of the calibration phase. The number of repetitions was
selected according to user performance. The online results
are in Table I. The performance was superior in Tetris V1
than in Tetris V2, which is consistent with the offline results.
In Tetris V2, most of the errors occurred on the selection
of the horizontal position of the piece. This means that
the rotation effect is more effective to elicit a P300 ERP
than the effect of changing the position. This should be
taken into consideration in further modifications of Tetris
V2. In Tetris V1, the players were able to detect the target
piece respectively with only 2 and 3 repetitions. In clinical
applications, the level of difficulty can be incrementally
adjusted to the skills of the players. The weaker results
obtained with Tetris V2 may indicate that the approach has
to be slightly changed.

In Tetris V3, the motor imagery protocol was significantly
different from the training phase. After the piece was placed
at the center, the user had 30 seconds to reach the target
position. Both participants achieved successfully the target
position within the 30 seconds on most of the trials. It should
be emphasized that the control of sensorimotor rhythms
require training. The two participants never had used a
BCI before and performed the online sessions after only
30 minutes of training. Thus, it is expected that their skills
increase with more training and that the time to achieve a
target piece can be effectively shorter.

VI. CONCLUSION

This paper describes the development and the results of
three different approaches to control a Tetris-like game. The
results show that Tetris V1 is effectively controlled with a
few number of event repetitions. Tetris V2 is more difficult
to control which is mainly due to its high target probability.
Since the player fails mainly on the selection of the position,
then the integration of motor imagery to move the piece in



Table I
ONLINE CLASSIFICATION ACCURACY AFTER THE SELECTION OF 16

TETRIS PIECES USING DIFFERENT NUMBER OF REPETITIONS.

Participant Repetitions Tetris V1 Tetris V2

S1

6 - 62.5%
5 100% -
3 100% -
2 87.5% -

S2

6 - 62.5%
5 100% -
3 75% -

Tetris V3 is a suitable option. The sensorimotor rhythms
showed to be effective on the control of the movement of
the piece, and this control can be further improved after
several training sessions. The BCI-Tetris was experimentally
validated, but it is necessary now to receive the feedback
of therapists and medical staff working with children with
ADHD to make further improvements and adjustments.
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