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Abstract—This work presents a method for simultane-

ous segmentation and modeling of objects detected in range

data gathered by a laserscanner mounted onboard ground-

robotic platforms. Superquadrics are used as model for

both segmentation and object shape fitting. The proposed

method, which we name Simultaneous Segmentation and

Superquadrics Fitting (S3F), relies on a novel global

objective function which accounts for the size of the object,

the distance of range points, and for partial-occlusions.

Experimental results, using 2D range data collected from

indoor and outdoor environments, are qualitatively and

quantitatively analyzed. Results are compared with popu-

lar and state-of-the-art segmentation methods. Moreover,

we present results using 3D data obtained from an in house

setup, and also from a Velodyne LIDAR. This work finds

applications in areas of mobile robotics and autonomous

vehicles, namely object detection, segmentation and mod-

eling.

I. INTRODUCTION

O
BJECT detection and modeling is a long-

standing research topic for the mobile robotics

community, with the majority of the approaches

relying on data from laser range sensors and cam-

eras mounted on-board a robot. While perception

systems using cameras have extensive applications,

laser-based solutions constitute a field of particular

importance in robotics, with many applications fo-

cussing on intelligent transportation, as evidenced

by the works of [1], [2], [3], [4], [5] and [6].

Common to most on-board perception systems

using laser range data is the use of a segmentation
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process as the primary step towards detection and

tracking of moving objects or landmarks detection.

Generally, laser range data segmentation, or clus-

tering, is the process of grouping range-points, be-

longing to a given scan, to a limited number of sets.

Points within a set (a cluster or a segment) share

common spatial characteristics, usually defined in

terms of a distance criterion. In the robotics com-

munity, methods for laser-range data segmentation

have been reported by [7], [4], and [8]. In general,

segmentation is carried out independently of other

processes, however, some authors have proposed

methods which perform, concurrently, segmentation

and geometric primitive extraction. Among the most

common geometric primitives used in the context of

mobile robotics are lines, see a survey given by [9],

and circles, as proposed by [10].

Usually, object tracking is conducted based on the

object’s centroid and its relative shape, thus one of

the concerns is how to model the shape (appearance)

of the segment (or cluster) which characterizes

a given object under tracking. Depending on the

environment where the robot moves, the problem of

assigning a proper geometric model to a segment is

not trivial. This problem becomes more challenging

under the presence of partial information, in non-

structured scenarios, and with moving objects. In

order to mitigate such situations, we propose to use

superquadrics as a general geometric primitive upon

which additional hypothesis may be set forth. Su-

perquadrics, when compared to ellipsoids, provide

an interesting increase of the degree of modelling

capability at the cost of very few additional parame-

ters, and, on the other hand, it is simple to constrain

the parameters in order to obtain a specific range of

primitive shapes.

Superquadrics, as defined by [11], are a fam-

ily of geometric shapes with many applications in

computer vision, computer graphics and, recently,

in robotics as well. The research works of [12]
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and [13] are examples of using superquadrics (or

superellipses in the two-dimensional case) in com-

puter vision. The work of [12], still constitutes

an important reference on superquadrics fitting in

range images. In robotics, in most of the cases

superquadrics are devoted to object modeling for

the purpose of manipulation and grasping, such

as the work in 3D hand tracking of [14]. On the

other hand, the use of superquadrics in mobile

robotics and autonomous vehicle applications has

been underexplored so far. Exceptions to this ob-

servation are the works of [15], which employs

superquadric surfaces to model free configuration

spaces for autonomous navigation, and [16] which

uses superquadrics to model an indoor environment,

as perceived by a mobile robot, with the purpose of

detecting changes in such environment.

In this work we expand on this topic and pro-

pose a method for concurrent segmentation and su-

perquadric fitting in range data collected in indoor-

outdoor scenarios. This method, named Simultane-

ous Segmentation and Superquadric Fitting (S3F),

explores superquadrics formulation as a intrinsic

model to be used in both segmentation and shape fit-

ting. Additionally, we discuss and propose a solution

to deal with self-occlusions and report experiments

on 2D and 3D field data, allowing a better un-

derstanding of the problem of fitting superquadrics

in laser-range data collected from moving ground-

robotic platforms.

This paper is organized as follows. Background

material, superquadric models and their properties

are presented in Section II. In Section III, we

address specific formulations necessary to support

the new proposed objective function used in our

method. Experiments, comparisons and discussions

are presented in Section IV. Finally, conclusions are

given in Section V.

II. BRIEF REVIEW ON SUPERQUADRICS

For the sake of completeness, the canonical

and parametric formulation associated with su-

perquadrics, and existing objective functions, are

briefly presented in the sequel (see [17] for a more

complete description). Superquadrics have great po-

tential in modeling a large set of shapes, some

of them are illustrated in Fig. 1, and have been

used as geometrical primitives in computer graphics,

computer vision, and object modeling for robotics

applications as presented by [13].
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Fig. 1: Examples of superquadric shapes and their

2D projection.

Superquadrics may be represented in canonical

implicit form by the contour surface of a function

as formulated by [12]. This function, for a fixed set

of size and shape parameters, respectively ai and ε j,

with {ai|i=1,2,3,ε j| j=1,2 : ai ∈R>0 and ε j ∈ [0.1,2]},
is given by

F(x) =

(

(

x1

a1

) 2
ε2

+

(

x2

a2

) 2
ε2

)

ε2
ε1

+

(

x3

a3

) 2
ε1

, (1)

where x ∈ R
3 with x = [x1,x2,x3]

T . This function

is often termed inside-outside function because for

F(x) < 1 a given point x lies inside the enclosed

volume, and for F(x) > 1 the point lies outside

the volume enclosed by the superquadric surface

(visible side). On the other hand, if a point lies on

the surface of a superquadric, here denoted by xs,

then F(xs) = 1. For x∈R
2, i.e. 2D shapes, equation

(1) simplifies to:

F(x) =

(

x1

a1

) 2
ε2

+

(

x2

a2

) 2
ε2

. (2)

Equations (1) and (2) are valid for superquadrics

centered at a local reference frame. Considering

the coordinate system shown in Fig. 2, where Xp

is a point in the sensor (laser) coordinate system

(X1,X2,X3), the origin of the local reference system

is given by the coordinates of the vector µ and

represented by (x1,x2,x3). Therefore, in order to

cope with superquadrics having arbitrary orientation

and centered at a distance of µ from the sensor
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Fig. 2: Coordinate systems associated with the sen-

sor (laser) and the local (superquadric) reference

system. The centroid of the quadric is given by µ .

reference frame, a rotation (expressed by R) is

applied to the superquadric local reference frame

and then followed by a translation (expressed by

µ). As suggested by [12], these operations may

be collected into a homogeneous transformation as

follows:

[

Xp

1

]

= T

[

xp

1

]

, with T=

[

R µ

01×3 1

]

, (3)

where xp is a point in the local reference system.
The rotation is performed based on Euler-Rodrigues
parameters thus, the matrix may be written as sug-
gested by [18]

R=







1− 2
(

e2
2 + e2

3

)

2(e1e2 + e0e3) 2(e1e3− e0e2)

2(e1e2− e0e3) 1− 2
(

e2
1 + e2

3

)

2(e2e3− e0e1)

2(e1e3 + e0e2) 2(e2e3− e0e1) 1− 2
(

e2
1 + e2

2

)






,

(4)

with e0 = cos(θ/2), ei={1,2,3} = λi sin(θ/2), and θ
is the angle of rotation about the direction vector

λ and ‖λ‖= 1. Using Euler-Rodrigues parameters

enables an unconstrained and singularity free trans-

formation.

For the purpose of graphical representation the

parametric representation is necessary. Given the

size and shape parameters (ai, ε j), the 3D parametric

representation is of the form

xs1 = a1 sgn(cos(ω))cosε1(η)|cos(ω)|ε2

xs2 = a2 sgn(sin(ω))cosε1(η)|sin(ω)|ε2

xs3 = a3 sgn(sin(η))|sin(η)|ε1

(5)

where (xs1,xs2,xs3) are the coordinates of the points

on the surface of the superquadric, {η :−π
2
≤ η ≤

π
2
} and {ω : −π ≤ ω < π}. The parametric form

allows one to identify that there exists a bounding

box [−a1,a1]× [−a2,a2]× [−a3,a3] and a one-to-

one correspondence between points belonging to the

surface and the parameters (angles) η and ω . Be-

cause of the one-to-one correspondence, the angular

parameters corresponding to points on the surface

can be retrieved by

η = atan2

(

sgn(xs3)

∣

∣

∣

∣

xs3

a3

∣

∣

∣

∣

1/ε1

,

(

(

xs1

a1

)2/ε2

+

(

xs2

a2

)2/ε2

)ε2/2ε1





ω = atan2

(

sgn(xs2)

∣

∣

∣

∣

xs2

a2

∣

∣

∣

∣

1/ε2

,sgn(xs1)

∣

∣

∣

∣

xs1

a1

∣

∣

∣

∣

1/ε2

)

.

(6)

A. Common objective functions

The importance of selecting an adequate objective

function for superquadric fitting has been addressed

by [19], [20] and [21], while [19] and [21] have

performed numerical experiments specifically to

characterize the behavior of the objective functions

used in fitting of 3D superquadrics. In [19], they

have used dense synthetic range data while [21]

worked with field data. They have analyzed aspects

such as the concavity of the objective function to-

wards the minimum and precision on the recovered

parameters. In particular, the conclusion of the study

reported by [21] was that the “mean square error and

minimal volume” objective function used in [12],

expressed by

G=
3

∏
i=1

ai ·∑
j

(

1−Fε1(x
j
p)
)2

, (7)

is less adequate than the “radial Euclidean” objec-

tive function proposed by [19]:

G= ∑
j

(

‖x
j
p‖
(

1−F−ε1/2(x
j
p)
))2

, (8)

where the summation is over all points being fitted,

which may be the full laser scan or just part of the

scan. The analysis presented by [19] shows that the

radial objective function outperformed other mea-

sures in terms of precision, sensitivity to parametric

changes and the concavity towards the minimum.
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The objective function from the landmark paper

of [12] is expressed by the product between a

volume penalty, GV = ∏3
i=1ai, and some quadratic

error, GF = ∑ j

(

1−Fε1(x j
p)
)2

, resulting in (7).

Within our framework, both expressions (7) and

(8) do not fulfill all the requirements to solve the

problem studied in this work. More specifically,

we noted that a null error in GF will in fact

preclude a desirable further minimization of GV .

For instance, in indoor environments, a null distance

error is easily induced by a straight wall segment

(in the form of a line-segment), or a planar patch

in the 3D case, and this will not allow a proper

volume minimization. The objective function (8),

showed to be more robust to outliers but also

evidenced difficulties in properly minimizing the

superquadric volume. Notice that line-segments (or

planar patches) would constitute ill posed problems

if the inclusion of a volume minimization term was

not properly chosen.

While volume minimization and distance error

are quite common subjects in the literature dedi-

cated to superquadrics, visibility is not commonly

addressed as part of a recovery process but, instead,

as a condition for shading in computer graphics.

Objects represented by superquadrics are frequently

shaded using information on the angle between the

superquadric normal and the light source. Unless

information about the viewpoint is available, or es-

timated, the superquadric fitting procedure may pro-

duce surfaces fitting to points which would actually

be self-occluded from the laserscanner (considering

such surface actually exists). This is a problem,

not considered in previous publications, that occurs

when no penalty is given to points in an object

occluded by a recovered superquadric. In fact, when

using solely distance and volume objective func-

tions, a superquadric could fit just as well to scanned

points with one of its self-occluded sides along a

segment. Without penalizing points which lie on the

self-occluded side, the fitting procedures will often

fail to correctly recover even the simplest partially

represented object. This finding led us to propose a

method comprising a new objective function which

is presented in the sequel.

III. SIMULTANEOUS SEGMENTATION AND

SUPERQUADRIC FITTING IN RANGE DATA

An appropriate segmentation stage is a key step

towards detecting and modeling objects using data

from laserscanners. Usually, segmentation is per-

formed independently of shape extraction and, as

consequence, there is no guarantee of consistency

between the hypothesis used to perform the seg-

mentation and the shapes extracted from the seg-

ments (objects). This is pointed out, e.g., in [22]

where it stated that performing segmentation, as an

independent process, is not adequate for use with

robot manipulators because segmentation itself will

fulfill constraints other than those imposed by fitting

superquadrics.

In this work, the characteristics and the conditions

under which our dataset was collected consider-

ably differ from the related works mentioned in

previous Sections. Due to sparseness of the data,

type of environment, scale variations, noise, and

partial information, a new optimization procedure

was needed to cope with typical mobile robotic and

intelligent transportation environments. The short-

comings mentioned in Section II have motivated us

to propose an objective function based on partial

costs, so that the volume of the superquadric, the

distance error and the visibility are all taken into

account (in the 2D case, it is adapted accordingly

to area, distance and visibility). The proposed ob-

jective function takes the form of a weighted sum

of all the portions to be minimized:

G= α1GV +α2GF +α3G∇, (9)

where the partial costs GV , GF and G∇ refer to

volume, distance and visibility respectively, and the

weight hyperparameters αi control the behavior and

influence of each cost parcel of (9). The volume

penalty is important once the other partial costs have

low values, more specifically in situations of self-

occlusion which would result in an undeterminate

volume.

We begin by considering the extracted volume,

which is penalized in the form of the product

GV =
n

∏
i=1

ai, (10)

where n= 3 if (1) is considered (3D case) or n= 2

if (2) is used (2D case). The ai, as defined when

(1) was established, represent the size parameters.
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Taking xip to be the ith scanned point from a set of

N points represented in the local reference frame,

and considering a bounding sphere with diameter

d = max j,k(‖x
j
p−xkp‖), where it is assumed that the

superquadric is inscribed by the sphere,
[

0,d3
[

is a

conservative interval for the values of GV .

The distance part of our objective function is

based on the work of [19] and is expressed as:

GF =
1

N

N

∑
i=1

(

‖xip‖
(

1−F−ε1/2
(

xip,Λ
)

))2

, (11)

where
[

0,d2
[

is assumed as a conservative interval

for the values of GF , with zero being the case when

the scanned points are exactly on the surface. The

vector of unknowns is Λ = {ai,εm,µ ,λ1,λ2,θ} i.e.,

a total of 11 components in 3D.

Potential self-occlusion can be readily verified

by using the dot product between the superquadric

surface normal and the unit vector defined from

the sensor to the range point. The dot product

should be negative at the time of detection. When

a parametric formulation exists, it is common to

calculate the surface normal as the cross-product

between the tangents using derivatives with respect

to the parameters (angles). However, this procedure

would require the solution of (6) to recover the

parameters η and ω in (5) that correspond to a

particular range point. The additional equations to

recover the correct quadrant of η and ω , and the

use of the cross-product, can be easily avoided.

In fact, if ε1 or ε2 are extended to be functions

of x (see [23], [24]), there are additional benefits

in avoiding the use of η and ω since they result

in implicit equations. Instead, the gradient of the

canonical representation has been used to calculate

the surface normal directly at the range points,

n = ∇F
‖∇F‖ . This is possible because the gradient of

the canonical representation, calculated at a range

point xp= βxs, with β a scalar and xs on the surface

of the superquadric, results in

∇F(xp) = β 2/ε1∇F(xs), (12)

i.e., for radially aligned points, the normal has the

same direction (orientation and sense).

The gradient of an extended superquadric, ∇F =
[∂x1

F ,∂x2
F,∂x3

F] i.e., the general case which con-

siders that the exponents are themselves function of

the coordinates (see [23], [24]), is given by

∂x1
F = ( f1 + f2)

ε2
ε1

(

1

ε1

∂ε2

∂x1
−

ε2

ε2
1

∂ε1

∂x1

)

ln( f1 + f2)

+( f1 + f2)
ε2
ε1
−1

(

f1

(

2

x1ε1

−
1

ε2ε1

∂ε2

∂x1

ln
(

x̂2
1

)

)

−
f2

ε2ε1

∂ε2

∂x1
ln
(

x̂2
2

)

)

−
f3

ε2
1

∂ε1

∂x1
ln
(

x̂2
3

)

, (13)

∂x2
F = ( f1 + f2)

ε2
ε1

(

1

ε1

∂ε2

∂x2
−

ε2

ε2
1

∂ε1

∂x2

)

ln( f1 + f2)

+( f1 + f2)
ε2
ε1
−1

(

f2

(

2

x2ε1
−

1

ε2ε1

∂ε2

∂x2
ln
(

x̂2
2

)

)

−
f1

ε2ε1

∂ε2

∂x2
ln
(

x̂2
1

)

)

−
f3

ε2
1

∂ε1

∂x2
ln
(

x̂2
3

)

, (14)

∂x3
F =−

ε2

ε2
1

∂ε1

∂x3
( f1+ f2)

ε2
ε1 ln( f1 + f2)

+ f3

(

2

x3ε1
−

1

ε2
1

∂ε1

∂x3
ln
(

x̂2
3

)

)

, (15)

with x̂i = xi/ai and f1 = x̂
2

ε2

1 , f2 = x̂
2

ε2

2 and f3 = x̂
2

ε1

3 .

The pure visibility constraint results in a discon-

tinuous function at the superquadric surface (visible,

on the surface, and not visible). This characteristic

is highly undesirable in the context of iterative

optimization and thus an additional contribution of

the present work is to propose a smooth objective

function to improve convergence. The self-occlusion

objective function has been designed using the di-

rectional derivative ∇r, and the hyperbolic tangent

as a replacement for the discontinuous Heaviside

function. This replacement ensures a smooth tran-

sition zone with controllable width for the shift

from occluded to visible. The hyperbolic tangent

is a C∞ function and has also been suggested for

other optimization problems such as described by

[25]; thus, the self-occlusion objective function is

expressed by

G∇ =
1

2
+

1

2N

N

∑
i=1

tanh
(

α0∇rF
(

xip,Λ
))

(16)

where G∇ takes values in the interval ]0,1[, with

zero being the limit value when all points lie on the

visible side of the surface and one takes limα0→∞G∇

(i.e. the hyperbolic tangent converges to a Heavi-

side). The gradient is calculated in the superquadric
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local reference frame and the rotations to the sen-

sor reference are performed afterwards. Indeed, the

parameters associated with rotation and translation

are constants and do not need to be applied before

differentiation. Translation itself is not necessary for

the analysis of gradients or directional derivatives.

The parameter α0 controls the transition width of

the hyperbolic tangent and thus its similarity with

the Heaviside function. The directional derivative

of the inside-outside function used in equation (16),

∇rF , is determined by ∇rF = ∇F ·Xp/‖Xp‖. To

calculate this directional derivative it is important

to have data from the laser scanner in the sensor

reference frame at the time of scanning (even if

the reference frame is moving - which is the case

in this work). Applications using 2D data require

the dimension of the vector of unknowns to be

adequately reduced. Because the proposed objective

function is well behaved, the Levenberg-Marquardt

algorithm was used to achieve the results reported

in this work.

The Levenberg-Marquardt algorithm requires the

objective function Jacobian. Special care in estab-

lishing the cost function has enabled stable nu-

merical differentiation and, additionally, it allows

calculation of the analytical Jacobian. Numerical

conditioning of the analytical Jacobian and the

use of other optimization methods, which may be

considered in evaluating trade-offs between memory

usage and processing time, are considered impor-

tant topics that require extensive and additional

numerical experiments which exceeds the scope

of this work. Furthermore, our method is iterative

and needs initial values for the shape, size and

orientation of the superquadric. These values have

been estimated based on a bounding box which

encompasses the whole scan, i.e. a rounded corner

rectangular superquadric has been used and aligned

with the direction of motion of the mobile platform.

A. Implementation

Our method concurrently segments and extracts

superquadrics from 2D range data and can be ap-

plied as a self contained 2D method, or expanded

to the 3D case (for selected environments). Con-

current, in this context, means that segmentation

is based on successfully fitting superquadrics thus,

at some point in the segmentation process, an ex-

tracted superquadric is obtained automatically while

a segment is identified. For the 2D case, which

is detailed in this Section, equation (2) is used

as part of the solution in both the segmentation

and the goodness of fit, thus ensuring consistency

of the model used simultaneously for segmentation

and shape fitting. In 3D environments, the same

procedure applies when the data contains sufficient

information allowing a consistent projection to a 2D

plane. Notice that, for the 3D case, the formulation

given in (1) is used to recover the parameters of the

superquadrics.
Considering a set S of N 2D range-points xi in

the local coordinate system (where i= 1, · · · ,N), the

main steps of the method, which is summarized in

Algorithm 1, are the following:

1) Calculate the midpoints x̂m (where m =
1, · · · ,N − 1) between each two consecutive

angularly ordered scanned points.

2) Fit a superquadric to the scanned points by

minimizing the objective function (9).

3) Check the value of the objective function

against the threshold (ThrG) and the minimum

number of points (equal to 2 in our case).

If less than the threshold, then a valid su-

perquadric and a segment have been found

and its parameters Λ are added to a list.

Remove from S the points belonging to the

extracted superquadric, and jump to step 5.

4) Calculate the most-interior midpoint w.r.t. the

superquadric (b1), and the point with worst

‘shear’ (b2). Midpoint b1 corresponds to the

smallest value of F and point b2 to the

worst difference between gradients at suc-

cessive points (interpreted as being forces

which would cut the superquadric). Select b2

unless b1 has no neighbor within a distance d.

Distance d is a scene preservation parameter

which is used only to reject superquadrics

which have good fit but are bridging gaps

greater than d (fixed in our experiments as

d = 1.5m). Return to step 2 with the subset

that ends with the point closest to the seg-

menting point.

5) Group unclassified points within unprocessed

subsets (if they exist), thus making a new

initial set, and jump to 2 if the number is

greater than a certain minimum (set to 1).

6) The algorithm stops when all points have been

assigned to a given superquadric or labeled as

outlier.
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Algorithm 1 Simultaneous segmentation and su-

perquadric extraction algorithm

Input: S: set of 2D range-points (x) sorted by the angular values, where x∈ S;
Output: Ω: set of parameters (Λ) for all recovered superquadrics;
1: ΛL and ΛU : element-wise lower and upper bounds for Λ;
2: Λ∗ = {Λ : ΛL ≤ Λ≤ ΛU}: element-wise operators assumed;
3: G: measure of the goodness of fit, see (9); ThrG: adopted threshold on

the goodness of fit e.g., ThrG = 5.0;
4: i: the index of a given laser-point xi;
5: m: the index of a given midpoint x̂m = 0.5(xi+xi+1);
6: b: the index of a given laser-point selected as break point xb;
7: S∗: set of range-points which do not have an associated superquadric;
8: Ss: set of points belonging to a superquadric that complies with ThrG;
9: S∗← S;

10: while |S∗| > 1 do
11: while G> ThrG do
12: Λ : minΛ∈Λ∗ G : i.e. Λ which minimizes G;
13: if G≤ ThrG then
14: Ss← S∗;
15: Ω←Ω

⋃

Λ;
16: else
17: b1 = minx̂m∈S∗ F(x̂m,Λ);
18: b2 = maxxi∈S∗ |∂x1

(F(xi,Λ) − F(xi+1,Λ))| + |∂x2
(F(xi,Λ) −

F(xi+1,Λ))|;
19: b= select(b1,b2);
20: S∗← S∗ \{xi | b< i≤ |S∗|};
21: end if
22: end while
23: S∗← S\Ss;
24: end while

The reason for using midpoints at step 4, and

not the range-points as proposed by [26]1, is to

reduce the chance of inappropriate segmentation

which may happen when range-points lie on the

superquadric boundary. This modification was found

necessary, in particular, to cope with parallel lines

from detected walls (e.g. in a tunnel).

To illustrate, sequentially, the effects of each step

of the algorithm, an example of recovering a su-

perquadric from a range-scan is shown in Fig. 3. The

result of the step 2 is shown in the left part of Fig. 3,

where the segment having the breakpoint is chosen,

according to step 4, to break the scan into a new sub-

scan. The procedure is repeated for the remaining

sub-scans until a good fit is found. The superquadric

shown in the right part of Fig. 3 is, for this example,

the first to be recovered. The range-points belonging

to this superquadric form the first segment and are

not considered for further iterations, indicating the

simultaneity behavior. Finally, the algorithm restarts

at step 1 and the procedure is repeated until the

fitting criteria are no longer met.

As demonstrated, our method works from global

to local, has a deterministic behavior and was

designed towards dealing primarily with 2D data.

These aspects are in contrast with most of the

1Nevertheless [26] studied superquadrics in a different application

field.

published algorithms using superquadric models,

such as the Segmentor, detailed in [17], which work

from local to global, rely on a large number of initial

random (stochastic) seeds and are designed exclu-

sively for 3D data. Moreover, in the applications we

are dealing with, the CPU-time of the Segmentor

seems to be prohibitive.
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Fig. 3: Sequence illustrating the extraction of a

superquadric from a scan of 2D range-points.

Due to the visibility constraint imposed by the

present procedure, which tends to force the su-

perquadric to go behind the points as seen by the

sensor, our method tends to extract a superquadric

in such a way that the ‘hidden’ part of a segment of

range-points with a convex-like shape (for example,

the L-shape of a vehicle as perceived by a laserscan-

ner) is filled by the superquadric shape. Conversely,

in segments with a concave-like appearance (e.g.,

interior wall corners) the method tends to extract

two quadrics instead of one, as shown in Fig. 4 by

the highlighted segments.
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Fig. 4: Segmented indoor scenes with some concave

regions.

IV. EXPERIMENTS

The experiments reported in this paper aim at

demonstrating the performance of the proposed

method in terms of segmentation and superquadric

fitting to laser range data. To support experimental

analysis, a set of laser scans collected in indoor and
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outdoor scenarios is used. The majority part of the

dataset used in our experiments were obtained with

our robotic vehicles AtlasCAR and the ISRobotCar,

shown in Fig. 5. The first vehicle is described by

[27], while the second vehicle is presented in the

video-paper of [28].

Fig. 5: The AtlasCAR and the ISRobotCar instru-

mented robotic vehicles.

A. Experiments on 2D laser-range data

We have evaluated our method in a set of 2D

range-data collected from indoor and outdoor en-

vironments with laserscanners mounted on mobile

platforms. The weighting parameters intrinsic to

the S3F method, α0 in (16) and αi in (9), have

been adjusted and fixed throughout the experiments

as α0..3 = {2,1,80,30}. The inequality which is

verified during optimization, comparing the cost

function against a threshold, is invariant to a non-

zero scale factor applied simultaneously to the ex-

plicit hyperparameters of (9) and the threshold. It

is thus important to keep the ratio between those

hyperparameters and the threshold ThrG which pro-

vides the optimal results. The value of α1 may be

set to one. Then, the other hyperparameters may

be chosen as multiples of α1. The ratio between

α2 and α3 is especially important because α2 is

responsible for controlling the fit to the set of points

while α3 is responsible for recovering superquadrics

which are consistent with the sensor viewpoint.

It has been found through numerical experiments

that α2
α3

close to 2.7 and α2 close to 30 provide

good results for outdoor scenes. The hyperparameter

α0 is important to the numerical stability of the

optimization, and controls the transition width of

the visibility constraint, it is not invariant to the

mentioned scale factor and should be chosen as

large as possible. Before discussing the quantitative

evaluation, detailed in Section IV-B, it is appropriate

at this point to present some qualitative analysis.

This consideration comes from the fact that there

are some interesting details of fitting superquadrics

to real data that deserves some preliminary dis-

cussions. Macroscopic quantitative analysis tend to

occlude some cases of difficult fitting which appear

to be simple. In [4], some of the peculiarities of

real outdoor data are briefly discussed and, before

presenting statistical results, we will further build

upon those.
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Fig. 6: Segmentation of a scene containing road,

poles, trees and bushes.

Results obtained on range-data collected in urban-

like scenarios are shown in Fig. 6 to Fig. 8. The

scan appears to be noisy but mostly this is not due to

intrinsic sensor noise, rather to characteristics of the

objects being scanned and because of ego-motion,

constituting one of the challenging aspects of real-

world data. In Fig. 6, tree trunks and road poles

have been properly segmented and the extracted

superquadrics, which depend on number of sup-

port points available for fitting, resemble rounded

squares and ellipses. The road side bushes were

also segmented and the openings between them

have been correctly preserved. The S3F algorithm

works from global to local and the final fit has

only local support (i.e., occluding superquadrics are

not avoided in the global sense) moreover, line-

segments do not constitute an ill posed problem

since volume minimization is active.

Figure 7 shows a road scene where a vehicle

is approaching from the opposite direction with

respect to the ego-vehicle. On the left, an overview

of the scan and respective extracted superquadrics

are depicted. On the bottom-right, a detailed view of

the scene with the oncoming vehicle and some poles

nearby are shown, giving evidence of the robustness

of the proposed method under sparse data.

The road scene of Fig. 8 is characterized by

several road agents, some of them with partial data,
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Fig. 7: Case of an approaching car in the opposite

direction of the ego-vehicle.
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Fig. 8: Scene with pedestrians, vehicle, trees and

sign poles.

including the presence of pedestrians in very close

proximity. Typically, trees and lamp posts have been

segmented and modeled by superquadrics resem-

bling square shapes with rounded corners, while

the vehicle and some nearby pedestrians have been

segmented by a single superquadric.
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Fig. 9: On the left, superquadrics resulting from

Algorithm 1 with ThrG = 2 (red solid line) and

ThrG = 5 (blue dashed line). On the right, an image

of the scene is shown.

Finally, a road scene with pedestrians and a

moving vehicle (at the left) are shown in Fig. 9.

Using different values of ThrG in the Algorithm

1, namely ThrG = 2 and ThrG = 5, we obtained

the superquadrics in red-solid and blue-dashed lines,

respectively. As ThrG increases, the number of de-

tected segments and respective quadrics decreases,

indicating a tendency of merging points. This be-

havior is intrinsic since high thresholds will tend

to merge segments while lower thresholds have the

opposite effect, establishing a tradeoff. It is noticed,

as by [4], that vehicles pose a particular problem

to segmentation algorithms, normally leading to

oversegmentation due to heavy discontinuity in the

scan of the fender area.

B. Performance evaluation

The methodology used to quantitatively evaluate

segmentation algorithms is described as follows.

We have manually labeled 3098 segments in order

to compose the set Γ. The labeling process was

performed on the laserscanner Cartesian space with

the aid of image-frames collected from the on-board

cameras. For each scan s, the objects (segments)

of interest were labeled according to the following

criteria:

1) The objects of interest are: vehicles, poles,

tree-trunks, sign-posts and pedestrians.

2) Points belonging to rigid body objects, such as

the vehicles, were labeled as a single object.

3) For any pair of clearly spaced groups of

range-points, that correspond to the legs of

a given pedestrian, the pair is labeled as

two independent segments. Otherwise, if they

appear too close, a single segment is added to

the ground-truth.

4) A group of objects appearing together in an

image-frame and in the corresponding scan,

especially people close to each other, was usu-

ally labeled by a number of segments less than

the actual number of objects, since a more

informed decision could not be established.

Let Γs denote the set of labeled segments for a

given scan s, where ns = |Γs| is the number of of

segments belonging to Γs; wherein |.| denotes the

cardinality of a set. Each labeled segment in Γs is

denoted by Si (with i= 1, · · · ,ns), where the number

of range-points in each segment Si is designated by

Ti. Similarly, let Ks be the number of superquadrics

extracted from s and M j the number of points in a

given superquadric Q j. For the purpose of evalua-

tion, each superquadric is referred as a ‘segment’.

For each segment we calculate Ri = ∑
Ks

j=1

∣

∣Si
⋂

Q j

∣

∣
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as the total number of points of Si which have the

range-coordinates in Q j. Thus, if there is a perfect

match between Si and Q j, Ri = Ti = M j, if Si has

no association with any Q j, Ri = 0, while if there

exists a partial-match Ri < Ti.

Let Pi be the set of superquadrics which contains

at least one point associated to Si and Pi = |Pi| be

the number of superquadrics matched to Si. Denot-

ing by Mi the total number of points associated with

the superquadrics in Pi thus, based on the above

notations, we propose the following ‘performance

measure’ calculated per each ith−segment:

Di =
2Ri

(Mi+Ti)Pi
, (17)

where Di ∈ ]0,1]. In (17), Pi penalizes oversegmen-

tation since, if this happens, 1
Pi
< 1. On the other

hand, undersegmentation and undetected fractions

of ground truth affect (17) by 2Ri

(Mi+Ti)
< 1. The per-

scan performance measure is expressed by

Ls =
ns

∑
i=1

log(Di) (18)

and the global measure L, considering all scans

of the dataset (N=1081), reduces to L = ∑N
s=1Ls.

The maximum value of (18) (Ls = 0) represents

a perfect match, which means that each segment

in Γ is represented unambiguously by a single

superquadric. For purpose of comparison with other

methods, the value of L should be normalized by the

total number of segments in Γ (equivalent to using

a geometric mean).

We benchmark the S3F method against two pop-

ular segmentation methods used by the robotic

community and a state-of-the-art method. The first

one is a simple but effective method designated

Jump Distance Segmentation (JDS), which con-

siders an approximation of the Euclidean distance

JD = |ri− ri+1| between consecutive range-points

(ri,ri+1) and a threshold ThrJ . In the JDS method,

a break-point is detected if JD> ThrJ . The second

evaluated method, called KF-based Segmentation

(KFS), uses the Kalman filter in conjunction with a

statistical test, under a Chi-square validation region,

to detect breakpoints. The stochastic model used to

describe the spatial-dynamic evolution of the range

measurements as well the transition matrices are

described in [29]. Basically, a breakpoint is detected

if the normalized innovation squared exceeds a

threshold Thrχ according to a χ2
1 distribution table.

The model used in the KFS framework is not restric-

tive with respect to shape thus, it assumes a constant

rate of change between the range-distance and the

angle (also termed constant speed model). The third

method considered here, called Segmentation using

Invariant Parameters (SIP), has been recently devel-

oped by Fortin et al. [4] where the authors reported

experimental results on vehicle detection. The SIP

method was primary developed to deal with laser

measurements in Polar coordinates. This approach

is founded on the use of lines to model segmented

objects, and leads to the definition of a criterion

of line-segment detection that only depends on the

sensor intrinsic parameters and range measurement

noise. In [4], a confidence interval in a Mahalanobis-

based merging procedure and a scene preservation

distance are considered design parameters. Finally,

after adjusting these design parameters by means

of validation tests, we perform experiments with

the SIP method considering the standard deviation

(ThrS) of range measurements as the variable pa-

rameter.

For N=1081 scans, Fig. 10 shows the values of L

as function of normalized thresholds, being ThrmaxL
the threshold which provides maximum value of L

(the thresholds were normalized in order to align

the maximum of each curve at a common abscissa).

One may notice that all curves have identical trends,

which is explained by the fact that distance-based

criteria form the basis of the methods.
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Fig. 10: Results of the global measure L as function

of the normalized threshold for S3F, JDS, KFS and

SIP methods.
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The nomenclature used for indicating our evalu-

ation measures is as follows.

� N.Det.seg = number of detected (extracted) seg-

ments used to represent a total of 3098 labeled-

segments of Γ.

� N.Match = total number of extracted segments

with unique and complete ground-truth correspon-

dence.

� N.Overseg = total number of over-segmentation

instances.

� N.Underseg = total number of under-segmentation

instances.

The benchmark results are summarized in Ta-

ble I and were obtained using thresholds whose

values correspond to the maximum of the global

measure L. The maximum values for each method

correspond to the absolute thresholds ThrG = 5.5,

ThrJ = 0.1, Thrχ = 2.0 and ThrS= 0.3, respectively

for S3F, JDS, KFS and SIP. According to the results

given in Table I, the S3F method outperforms all

methods in what respects the characteristics of the

recovered set. The KFS slightly outperforms the

JDS in terms of perfect match (given by N.Match),

yet additionally providing less undersegmentation

and better stability near the maximum L (Fig. 10),

while the JDS method presents lower oversegmen-

tation compared to the KFS method. Besides ve-

hicles segmentation and detection, which was the

primary application presented in [4], here SIP was

benchmarked in a real-world dataset with a variety

of objects with different sizes and shapes. Under

these circumstances the performance of SIP was

mainly penalized by its higher rate of oversegmen-

tation, induced by laser-data missing returns and by

variability intrinsic to object shapes.

Complementary results of the S3F method are

provided in Fig. 11, with values of L shown as

function of normalized hyperparameters α2 and

α3, chosen for their very distinctive roles in the

optimization. Parameters were varied one at a time

and normalized by αimaxL, the respective values of

αi=2,3 which result in maximum L for ThrG = 5.5.

One can verify that α3 has a strong influence

on segmentation performance, where low values

of α3 alleviate visibility constraints at the cost

of undersegmentation, while large values induce

oversegmentation in order to impose visibility.

Further performance assessment is performed

based on precision-recall curves that characterize

segmentation results in terms of over and underseg-

TABLE I: Summary of the experimental results of

the algorithms. The ground truth has 3098 segments.

Method N.Det.seg N.Match N.Overseg N.Underseg

S3F 3308 2270 309 142

KFS 3523 1949 555 203

JDS 3419 1853 458 222

SIP 3588 1332 615 222
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Fig. 11: Global measure L achieved by S3F as

function of normalized α2 and α3.

mentation [30]. In this work, we define precision Pr

and recall Re measures by

Pr(Thr) =
N.Match

N.Match+N.Overseg
(19)

Re(Thr) =
N.Match

N.Match+N.Underseg
, (20)

where each value of (Thr) gives a point in the curve.

We have varied the thresholds according to ThrG ∈
[0.1,14], ThrJ ∈ [0.005,0.22], Thrχ ∈ [0.005,9.0]
and ThrS ∈ [0.083,3.3], with the resulting curves

shown in Fig. 12. Among the methods, JDS was

most sensitive to the increase of the threshold

level (measured as a fraction of the optimal value)

and thus it is more prone to low recall (high

undersegmentation). On the other hand, compared

to JDS, the KFS method presents better behavior.

However, Thrχ acts in a more complex manner

than ThrJ. S3F exhibits robustness with respect to

precision and shows a more stable behavior around

the optimal-operating point of the Pr−Re curve (the

upper right point), while SIP presents the highest

stability near the optimal operating point.

All code has been implemented in interpreted

language and without exercising special care in
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respect to resource management (memory and calls

to the processor). For timing purposes, conceptual

Algorithm 1 for S3F has been set to 0.01 tolerance

on estimated parameters (one centimeter in the case

o size parameters), to the optimal threshold, and has

been given the initial values discussed in Section III.

In these conditions, extracting up to 10 two-

dimensional superquadrics using our method de-

mands on average 1.5 s of CPU-time running in

a single thread-single core (Intel T9300 2.5 GHz

CPU, Ubuntu 12.04) in Matlab environment. How-

ever, most of the time of the conceptual algorithm

is spent in operations whose number can be reduced

if the implementation exchanges information on the

breakpoints between iterations, in which case single

threaded execution time is expected to fall to around

0.2 s. Further reductions require optimization of

resources. Both the KFS and the JDS are several

times faster. The version of SIP applied to our data

runs in 0.05 s on average.
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Fig. 12: Results of precision-recall for S3F, JDS,

KFS and SIP methods.

C. Experiments on 3D laser-range data

Processing of 3D point clouds normally results

in computer-intensive procedures. The projection of

3D point clouds onto a 2D plane can often be used

as a means to reduce problem complexity and to

make 2D superquadric based segmentation applica-

ble as a pre-processing step for the 3D problem.

This is the main reason why 2D representations

for 3D scenes have been chosen and successfully

applied in other studies, e.g. [31], [32].

In this section we have used 3D point clouds

avaliable from the KITTI dataset [33] and from an

in-house platform which extrinsically rotates a 2D

range finder, as shown in Fig. 13. The 3D point

clouds from the KITTI dataset were generated by

a Velodyne sensor and have an intrinsic ordering

while from the in-house setup they are not ordered.

Raw point clouds are sparse and noisy, the scenes

themselves are unstructured and it becomes com-

plex to fit general models for the objects. Direct

superquadric fitting would be prone to errors and

would be highly time consuming. To overcome

these problems, we first project the 3D point-cloud

onto a 2D plane and then apply the S3F algorithm

directly. The decision on how to perform the pro-

jection, or if indeed there is a projection that greatly

simplifies the segmentation, will depend on the type

of scene and it is out of scope of this work to satisfy

all situations.

Fig. 13: The in-house 3D laser platform.

We assume that the correct projections are verti-

cal onto a plane that fits the ground. The plane is

described by all points in space satisfying:

n · (xp−x0) = 0, (21)

with n the plane normal and x0 a point known to

belong to that plane. Such point is chosen to be

the intersection between the plane and the vertical

axis of the reference frame moving with the vehicle

(relative reference frame, i.e. x3). Thus, there are

three unknowns, two normal components, and one

offset. The unknown unit normal components have

been chosen as n1 and n2 with n3 assumed to be

positive.

We start by determining the plane that best fits

to the points on the ground, if they exist. Assuming

that geometric moments and principal directions of

sparse clouds, conditioned on partial information,

should induce errors, we have decided to fit the
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ground-plane using nonlinear least squares and a

cost G∇ similar to the self-occlusion proposed for

the superquadrics. This cost states that the plane

cannot have many scanned points under it (some

assumptions have been made to account for sensor

noise).

Once the plane is found, a 2D description is

sought and required to be compatible with the con-

current extraction procedure. Further processing is

necessary. The 3D point cloud is projected vertically

onto the previously determined plane and a synthetic

2D scan is obtained by using a grid procedure,

similar to occupancy grids presented by [34], whose

grid size depends on the smallest element we wish

to detect. The grid size in our work has been chosen

to be 5 cm. The resulting 2D scan is processed using

the same procedures as before.

Results are given here for a simple harbor scene

scanned by the in-house scanner and for more com-

plex scenes available from the KITTI dataset. 2D

superquadrics are used to determine the points that

will contribute to a 3D fit, by calculating the inside-

outside function for all candidates and considering

a specified neighborhood, which we have fixed

arbitrarily at 0.1 m. In case overlapping exists, those

overlapping points are attributed in a greedy manner

to the largest superquadric. Since 2D superquadrics

are a subset of the 3D, they are also used to estimate

the initial parameters for the 3D. Fitting each 3D

superquadric to centimeter tolerance then takes on

average 0.2 s on raw point clouds from the KITTI

dataset.

Presented in the top-right part of Fig. 14 are

the extrated 2D superquadrics for the harbor scene

shown adjacent. Finally, the resulting 3D fit is

shown on the bottom of the same figure. It can

be seen that the 2D segmentation has been well

performed and that the 3D superquadrics are ad-

equate to model the containers. In Fig. 15 and Fig.

16 are results for point clouds from the KITTI

dataset, an image of the scene is presented on

the top and the modeled 3D scene on the bottom.

These scenes further demonstrate the importante and

applicability of 2D projections to reduce complexity

and computational time for processing point clouds

from real outdoor scenarios. In Fig. 15 it can be seen

that not all vehicles have been correctly recovered,

in particular the dark ones on the right side of the

road. This is a problem on the sensor side, since

the light emmited by the laserscanner, and which

then hits the dark vehicles, provides a very weak

return signal, eventually not discernable from noise

and tagged as missing.
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Fig. 14: Harbor scene as described by 2D and 3D

superquadrics. In the left-down part, the extracted

2D superquadrics are shown, while the final 3D

superquadrics are illustrated on the right.

V. CONCLUSION

In this paper we have proposed a method for

multiple object segmentation and modeling, using

superquadrics formulation, in range data collected

from laserscanners mounted onboard ground-robotic

platforms. The proposed method is directly applica-

ble to 2D cases and is based on the minimization of

an objective function and on segmentation criteria

introduced in this work. The objective function

accounts for the size of the recovered object, the

distance between the recovered superquadric and the

range points, and for partial-occlusions. The criteria

adopted for segmentation are based on the su-

perquadric inside-outside function and its gradient.

As consequence, the method preserves consistency

between the formulation used for segmentation and

fitting.

In the form of an iterative algorithm, and con-

sidering the experimental results obtained with a
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Fig. 15: Scene from the KITTI dataset with vehicles.

Fig. 16: City scene from the KITTI dataset with

pedestrians, poles, bicycle and buildings.

labeled dataset comprising 2D range scans from

indoor and outdoor environments, the segmentation

aspect of the present proposal outperformed two

popular segmentation approaches in terms of a seg-

mentation performance measure, introduced in this

work, which penalizes over and undersegmentation.

Regarding object modeling, which is an integral part

of the method, we can conclude that, at the cost of

few shape parameters, superquadrics have a strong

capability of representing multiple shapes of interest

within a unified functional approach.

Finally, the algorithm used in the 2D case has

been applied as the primary preprocessing stage in

3D range data, preserving the consistency between

2D and 3D formulations and providing a convenient

solution towards a more complete 3D object seg-

mentation and modeling.
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