
CNN-based Human Detection Using a 3D LiDAR onboard a UAV

Jack N.C. Hayton1 Tiago Barros2 Cristiano Premebida2 Matthew J. Coombes1 Urbano J. Nunes2

Abstract— This paper addresses the problem of detecting
humans in a point cloud taken with a 3D-LiDAR onboard a
UAV. The potential use cases of this technology are numerous,
examples include security and surveillance, disaster relief and
search and rescue operations. In this paper, a CNN-based
approach is proposed which is able to analyse point clouds
returned by a 3D LiDAR sensor in such a way that it can
detect humans. The algorithm described here consists of 3
main components: data pre-processing, post-processing, and
human classification. In this paper objects were assigned to
one of two classes: human and non-human. The classification
was performed by projecting the 3D point cloud onto a series
of 2D planes using occupancy grid mapping. This creates a set
of silhouettes of the object corresponding to the top, front and
side views. Classification is achieved by supervised CNNs using
single-view and multi-view (3 channels) images patches.

I. INTRODUCTION AND RELATED WORK

The rise of robotics and autonomous driving over the past
decade has brought LiDAR sensors into the mainstream, pre-
viously being too expensive and bulky to integrate into most
robotics applications. LiDAR provides very accurate spatial
awareness however, it is typically limited to significantly
lower resolution than other common sensors such as cameras.
In the context of robotics its primary function is to provide
real-time spatial awareness that is used to control/navigate
the robot. When dealing with the LiDAR data, also known
as point cloud, one of the biggest challenges is the accurate
detection of objects of interest within 3D set of data points.

Object classification and tracking using LiDAR has been
thoroughly studied and its use has seen a sharp increase
over the last decade due to advancements in robotics [1]
and autonomous vehicles [2]. Most of the research carried
out on LiDAR was from the perspective of unmanned (or
autonomous) ground vehicles (UGVs) [3], however, over the
past few years we have seen increased use on unmanned
aerial vehicles (UAVs) [4] [5], primarily due to the reduction
in size and weight of LiDAR systems.

Over the last decade, advancements in engineering and
battery technology have brought consumer UAVs (or drones)
into the mainstream opening the door to a host of potential
uses of an airborne LiDAR [6] [7]. In particular, combining
airborne LiDAR technology with object detection algorithms
[8] offers many new possibilities as existing use cases are
mainly restricted to static aerial mapping. The potential use
cases are plentiful, including defense or law enforcement
applications where a person must be tracked or followed in

1 Authors are with the Department of Aeronautical and Automotive En-
gineering, Loughborough University, UK. Email: m.j.coombes@lboro.ac.uk

2 Authors are with the Institute of Systems and Robotics, Department
of Electrical and Computer Engineering, University of Coimbra, Coimbra,
Portugal. Emails: {tiagobarros, cpremebida, urbano}@isr.uc.pt

Fvelo

z

x
y

Fig. 1. The octocopter drone (DJI S1000) with the onboard LiDAR
(Velodyne VLP-16) used to collect point cloud data for human detection.
The sensor coordinate reference system (Fvelo) are designated by the xyz
axes.

terrain that does not allow for ground vehicles. Additionally,
such systems can be used in disaster relief or search and
rescues operations where a UAV scans a given area, locates
people and transmits their location.

Most of the existing research work on small airborne
LiDAR is related to terrain mapping, geo-surveying, agri-
cultural robotics and digital elevation mapping. Tulldahl et
al. [6] review application and capabilities of LiDAR from
small UAV but, makes no mention of any object detection
or tracking use-case. Commercial solutions exists, for exam-
ples the Phoenix LiDAR Systems which aims to provide a
complete integrated solution for UAV mounted LiDAR used
in mapping and geo-surveying applications [9]. Recently,
Velodyne partnered with YellowScan to integrate its VLP-
16 Puck LiDAR, the same model used in this project, into
YellowScans surveyor for demanding UAV applications [10].
UAV mounted LiDAR systems are now being used for a more
diverse set of applications; having previously been primarily
used for mapping. To our knowledge, no study has hitherto
been carried out on the validity of using an off-the-shelf
LiDAR (such as the Velodyne Puck) mounted on a UAV to
identify and track an object.

The scarcity of existing research on airborne LiDAR was
an encouragement to collect real-world LiDAR data from a
drone [11], as shown in Fig. 1. This work aims to develop
an object detection algorithm based on CNN and by using
3D LiDAR mounted onboard a UAV. The key contributions
are the following: (i) a dataset providing UAV mounted 3D
LiDAR data for human detection; (ii) complete pipeline for
point cloud pre&post-processing - including ground detec-
tion, clustering and occupancy-grid 2D representation; (iii)



Raw Data
Raw data from 
airborne LiDAR

Data Synch.
LOAM-based LiDAR 

Point-Cloud 
synchronization

Ground detection
RANSAC to 

determine the 
ground plane

Data Alignment
Align Point-cloud 

w/ reference 
coordinate axes

Define ROI
Use reference 
point to define 
rectangular ROI

Clustering
Separate Point-

cloud into clusters

Occ. Grid
Project the Points 
onto 2D Grid map

Process Image
Convert grid to 2D 

image at cluster 
location

Human 
classification
CNN-based 

classifier

Point cloud pre-processing

Post-processing CNN-based classification

Fig. 2. Proposed pipeline of the 3D LiDAR-based human detection algorithm. Main modules are: pre-processing, post-processing, and object classification.

CNN-based human classification.
The remainder of this paper is structured as follows: Sect.

II describes the methodology and the approach developed to
process the 3D point clouds and detect humans. Section III
details the dataset, the experiments and the results includ-
ing augmented and non-augmented CNN models. Finally,
Section IV concludes the study and present suggestions for
future work.

II. METHODOLOGY AND PROPOSED METHOD

This section details the developed algorithm that takes a
point cloud delivered by a LiDAR onboard a drone, as an
input, and outputs the positions and classes (or categories)
of the objects within the field of view. A block diagram
outlining the pipeline of the algorithm is given in Fig.
2, where the detection algorithm is broken down into 3
main modules: data pre-processing, post-processing, object
classification.

A. Sensor Data Pre-processing

Data pre-processing refers to the process of extracting and
“cleaning up” a subset of data from a much larger set of raw
data. This is required as real-world data is often incomplete,
inconsistent, unordered and noisy. In the context of this paper
the input data is a point cloud: which is a list of unordered
points described by rectangular coordinates (N × 3 array,
where N is the number of data points). The pre-processing
required includes synchronization, ground detection, data
alignment and ROI formation. Data synchronization ensures
that data points between frames share the same global
coordinate system, allowing for the coordinates of objects in
different frames to be compared. Data clustering is required
to isolate the objects in the scene from the environment (i.e.,
object hypothesis generation) such that they can be classified.

B. Synchronization, Ground Detection and Alignment

The alignment of the point cloud data across multiple
frames can be achieved by using a pre-existing algorithm
that synchronises the frames based on the LiDAR odometry.
The point cloud must be aligned with the global coordinate
system to allow for manipulation of the data. The rotation
of each frame can be achieved by identifying a specific
‘reference-landmark’ in the point cloud that can be used as a

reference point. All the frames can then be rotated/translated
in such a way that they align in a global coordinate system.
In this work two distinct alignment processes are required,
however both requiring the two-step process described be-
low:

1) The identification and extraction of a common land-
mark i.e., the ground.

2) Rotating/translating the dataset based on the common
landmark.

The motion of the UAV causes the raw point cloud
data output by the LiDAR to not be synchronised. The
frame synchronisation is done by running the loam velodyne
SLAM package1 [12], however this only uses the odometry
data i.e., it does not create a map. SLAM algorithms are
generally used to generate maps by recursively adding to a
single dataset but, in our case, only the localization aspect of
the algorithm is used to synchronise the frames. Only once
the data has been synchronised may it be fed into the main
algorithm, which begins with ground detection. The data
alignment process consists of determining a fixed reference,
which can then be used to rotate the point cloud. Since all the
objects are located on the ground, the ground plane would
be an appropriate reference point in this case. Aligning the
ground plane with a Cartesian frame {B} (see Fig.5) allows
for an easy top-down, front-back or side-on projection of
the point cloud onto a plane, simplifying the occupancy grid
mapping step. The rotation of a 3D dataset was achieved by
multiplying it by a rotation matrix Rzyx(φ ,θ ,ψ), where ψ , θ

and φ correspond to the rotation angles yaw, pitch and roll,
respectively.

The type of common reference-landmark determines the
method by which to extract it, here the ground plane is the
landmark and a 3D-plane is the primitive to be extracted.
Therefore, we require an algorithm which can identify a set
of points in the point cloud which lie in a common plane
in 3D space. A plane in 3D space can be parametrized by
two parameters, describing the spatial angle of the normal
vector to the plane. RANSAC is the method implemented
to determine a plane of best fit for a 3D dataset. So, the
implementation of RANSAC returns the ground plane and its

1http://wiki.ros.org/loam_velodyne



corresponding normal. Using the normal and the coordinate
x-axis, a rotation matrix is calculated. This rotation is then
applied to all the remaining frames. This initial rotation
ensures that the ground plane is parallel with the xy-plane,
however, does not ensure the ground is set at a height of
0. This is done by translating the entire point cloud by the
current mean offset to the ground. Note that this procedure
is applicable as there is only a single ground plane (flat
ground) in the field of view (FOV). The data collection was
setup such that this was always the case. In cases where the
ground may be uneven or have several levels this method of
alignment would be inaccurate.

To finish the alignment the longitudinal axis of the point
cloud must also be aligned with a coordinate axis (x-axis).
This requires an additional rotation in the xy-plane, parallel
to the ground plane. As before, this requires identifying a
specific feature that is used as a reference to determine the
longitudinal direction. A point cloud produces a symmetrical
pattern on the ground (provided the UAV is not banked, pitch
and roll angles are equal to 0). The axis of symmetry can be
used to generate a line of best fit. Given the symmetrical
nature of the ground plane, the symmetry axis can be
calculated as the “line of best fit” of a linear data fit. This line
of best fit is used to determine the rotational offset between
the point cloud and the x-axis.

RANSAC [13] works very well for ground detection,
succeeding in identifying the ground plane in all of the
frames in the test dataset. Slight errors arise when there are
relatively significant undulations in the ground, effectively
splitting the ground into several linear elements. Occasion-
ally this can lead to the detected ground plane not being
exactly parallel with the true ground. However, these errors
are insignificant in comparison to the unevenness of the
ground and had no real impact on the result of the algorithm.
However, the second rotation was more prone to error due
to slight inconsistencies in the ground detection, creating
an unsymmetrical shape which returned an “incorrect” line
of best fit. As a result, the process for the second rotation
was carried out twice, resulting in an average error of 0.45
degrees compared to the 4.6 degree error with only a single
rotation.

C. Object hypothesis generation - clustering

The first step to classifying any objects that may be in
the LiDAR’s FOV is to identify the objects themselves. This
process is known as clustering and consists of determining
how many objects there are, the data points that belong
to each object and the centroids of each object. Clustering
is critical to the success of the algorithm as the ability to
accurately cluster the point cloud will directly affect the
accuracy of the classifier.

Prior to clustering, the point cloud must first be reduced by
creating a region of interest (ROI). The computational cost
of clustering scales with the number of data points to cluster,
as such any reduction in the size of the point cloud that does
not impact the clustering is beneficial. The generation of a
ROI is dependent on the environment in which the UAV

will operate. The data collection was designed to simplify
the process of creating a ROI; all objects (human and non-
human) are located on the ground plane and within a 10-
meter radius of the UAV (constant altitude). In the data
alignment process, RANSAC was used to determine the
ground plane, and the data points belonging to it. The first
step in creating the ROI is to remove the ground plane
from the point cloud. This ensures that no data points
associated with the ground are clustered as part of an object.
The second step consists of trimming the remaining point
cloud, removing unnecessary data points. This was done by
creating a “box” around the UAV and removing all points that
are outside of this boundary. The LiDAR odometry returns
the sensors position and this is used as the centre of the
“trimming box” (x and y positions only, the height of the
trimming box begins from the ground). The dimensions of
this box are 20× 10× 3 m and do not change as the UAV
maintains a constant altitude. This is only possible when
the operating conditions of the LiDAR are known, which is
unlikely in a real-world application.

In this paper, hierarchical clustering using Euclidean dis-
tance dE is used to identify the number of clusters in the
point cloud. Hierarchical clustering builds up a hierarchy
of clusters which requires the space being clustered to be
divided into discrete sub divisions. This is done by making
use of a 3D grid subdivision. The clustering procedure is
split in two parts. The first creates a ROI, the second clusters
objects within this ROI. The only input parameter that can be
adjusted is the dE . Several values between 1-2 m were tested
to determine which yielded the best results. The optimum
value is dependent on the number of targets in the ROI,
and the typical size of the objects and the typical distance
between them. In cases where there is only a single target
dE must be large enough to group all data points into a
single cluster. Assuming the ROI only contains data points
of objects of interest (i.e., the ground plane removal and
trimming is successful), there is no upper limit for dE for
frames with a single target. In this case, any increase in this
parameter will simply yield the same result; grouping all
data points into a single cluster. However, the assumption of
complete plane removal and trimming is not always valid,
and occasionally parts of the ground remain within the ROI.
This is due to undulations in the ground that cause some
data points to be considered outliers of the ground plane. In
these cases, a high dE would group these outlying data points
with the data points belonging to the object, an undesirable
outcome. It was found that a dE of 2 m was successful in 96%
of cases where only 1 target was present. This would also
ensure that the cluster did not group other data points that
may still be within the ROI. This value is not appropriate
for scenarios involving multiple targets, as it would often
group them into a single cluster, nullifying the process of
clustering.

In cases with multiple targets, adjusting only the dE pa-
rameter is not sufficient to yield accurate results consistently.
This is due to each individual target being split into multiple
clusters at a dE below 0.5. Yet at values above 0.5, multiple



Algorithm 1: Clustering for point cloud object hypoth-
esis generation.

Result: List of point cloud clusters C
1 Imput: point cloud data P, where pi = [x,y,z] ∈ P;
2 Create a kd-tree representation for P;
3 Setup an empty list of clusters C, and a queue of points to be checked

Q;
4 for every point pi ∈ P do
5 Add pi to the current queue Q ;
6 for every point pi ∈ Q do
7 Search for the set Pk

i of point neighbours of pi s.t. a sphere
with radius r,dE ;

8 For every neighbour pk
i ∈ Pk

i check if the point has already
been processed, else add it to Q ;

9 end
10 When the list of all points in Q has been processed, add Q to the

list of clusters C, and Q←∅ ;
11 end
12 Return The algorithm terminates when all point ∈ P have been

processed;

targets begin to be grouped together if they are in close
proximity to each other. This effect is amplified by the
relatively low resolution of the LiDAR2, as each target only
consists of two or three of the LiDARs channels. Due to the
quite large gaps between the channels, data points belonging
to target ‘A’ may actually be closer to some data points
belonging to target ‘B’. This would result in some of these
data points being grouped into the incorrect cluster. However,
if dE is reduced below 0.5 m, the individual targets begin
to be clustered as multiple objects making it impossible to
dynamically determine which clusters belong to which target.
The clustering was successful only 57% of the times when
the targets were within 1 m of each other. The steps of the
algorithm have been summarised in the Algorithm 1.

D. Environment representation using Occ.Grid mapping

The clustering algorithm returns a N×3D array containing
all the data points belonging to a cluster. The cluster classi-
fication can be performed using, basically, two approaches:
(i) by inputting the array containing all the cluster data
points as an input to a 3D-model e.g., PointNet [14]; (ii)
representing the 3D cluster as a series of 2D projections
and inputting those 2D “images” into a traditional CNN.
The first approach retains all of the features within the data
which theoretically would result in more accurate results.
However, this approach requires more post processing to be
done on the clusters. More precisely, each cluster would need
to be reduced/enlarged such that all clusters contain the same
number of data points and hence can be input into the same
CNN, as the input layer of the CNN must remain constant.
The increased complexity, the potential that the dataset may
be too small to obtain reasonable results and the difficulty
on 3D-points annotations, were all factors which led us to
select the second approach.

The reduction of a 3D space to a 2D space can simply
be done by projecting the data points onto a given plane as
shown in Fig. 3 which creates a silhouette of the object on

2The dataset was acquired using a Velodyne VLP with 16 channels.

3D points 
belonging to a 

person

2D representations: Top, Front, Side views

(T)op (F)ront (S)ide
Fig. 3. 3D-LiDAR cluster of person and the multi-view 2D representation:
Top (T), Front (F), Side (S).

the plane. The three Cartesian planes have been chosen as
the 3 planes for projection. They are the xy-plane (top/down
view), the xz-plane (front view) and the zy-plane (side view).
Instead of a direct projection, an occupancy grid mapping
[15] process was used to create a lower-resolution projection
image, in order to reduce the number of input variables
and thus the complexity of the following CNN algorithm.
This is a process in which the projection target plane is
broken down into a number of discrete cells according to
the desired accuracy. The clusters are placed in the centre of
the grid map by aligning the cluster centroid with the grid
map centre. The data points are then projected onto the grid.
The cells of the grid are then assigned a value depending
on the properties of the points projected into the grid cell,
which when visualised corresponds to a shade of grey. In the
simplest case of binary grids, each cell containing at least one
data point is considered “occupied” (black) and all other cells
are considered empty (white). Such grids are generally used
to create a top/down map of a robot’s environment, required
for navigation. However, in the context of this study the grid
was used to generate an image which could then be passed
onto the classifier.

There are two types of 2D occupancy grids: binary and
probability grids [16]. Probability grids assign a probability
(percentage) of a given cell to be occupied. These grids
convert to greyscale images (0 = white, 1 = black, shades
of grey in-between). Binary grids assign a single value to
each cell, either occupied or empty. Initially a probability
grid was used, where the probability value assigned to a
cell corresponds to the normalized height of the data points
assigned to the grid cell. Normalization here means that 0
= lowest “height” in cluster, 1 = highest “height” in cluster.
The term “height” refers to the axis perpendicular to the
projected plane. However, it was found that in terms of the
classifier accuracy, there was no difference between a binary
or probability grid. Therefore, only binary grids were used
when comparing the various CNNs. In the creation of grid
maps, there are two parameters than can be changed; the size
of the grid and the resolution (size of the cells). The grid
maps used here were all of equal overall size 3×3 meters.
The grid resolution refers to the number of cells per meter,
which determines the size of each cell.



TABLE I
NUMBER OF EXAMPLES PER VIEW (T,S,F AND TSF), IN TOTAL (TOT )
AND IN EACH SUBSET (Sub). PERCENTAGES OF THE TRAINING, TEST

AND VALIDATION SETS FOR THE CNN-MODEL

Single
View Object Human Train.

Set [%]
Valid.

Set [%]
Test

Set [%]

Augmented
Data

TOT 3124 1612 1512 60 15 25
Sub 806 428 378 - - -

Non-Augmented
Data

TOT 510 225 285 60 15 25
Sub 12t 56 71 - - -

TABLE II
CNN ARCHITECTURE DESCRIPTION.

N# Layer Description
1 Image Input 90×90× (1/3), ‘zerocentre’ normalization
2 Convolution 83×3 conv., stride [1 1], padd. [1 1]
3 Batch norm. Batch normalization
4 ReLU ReLU
5 Max Pooling 2×2 max pool., stride [2 2], pad. [0 0 0 0]
6 Convolution 163×3 conv., stride [1 1], padding ‘same’
7 Batch norm. Batch normalization
8 ReLU ReLU
9 Max Pooling 2×2 max pool., stride [2 2], pad. [0 0 0 0]
10 Convolution 323×3 conv., stride [1 1], padding ‘same’
11 Batch norm. Batch normalization
12 ReLU ReLU
13 Full connected 2 fully connected layer
14 Softmax Softmax
15 Output Classification w/ CrossEntropy

E. CNN-based classification

A CNN was trained using the same dataset with 3 different
grid resolutions using 10, 25 and 50 cells, which corresponds
to a cell side length, respectively of 10 cm, 4 cm and 2 cm.
The front projection for the same cluster in 3 resolutions is
shown in Figs. 4. Each CNN was tested on the same test
dataset (combination of positives and negatives) according
to Table I. The comparisons amongst the different CNNs
- discussed in the next section - have all been trained on
images produced with a grid resolution of 25 cells, as it has
produced the best results.

Fig. 4. 2D representations, using grid mapping technique, with resolutions
of 10, 25 and 50 cells respectively.

III. EXPERIMENTS AND CLASSIFICATION RESULTS

UAV mounted LiARs have only recently gained traction
and as such there has not been a large amount of research
done in this field. As a result, there are no publicly available
datasets, requiring therefore to collect our own.

In order to mimic the real-world situations that the air-
borne LiDAR may encounter, a total of 30 scenarios were
created. The scenarios included a mix of humans (positives)

{B}

y

x

z

Fig. 5. A point cloud frame in the {B} coordinate system, where it is
possible to visualize some people.

and objects (negatives) as well as single target and multi
target situations. Due to the narrow and long nature of the
point cloud (shown in Fig. 5), the shape of a person may vary
slightly whether they enter the LiDAR field of view from a
perpendicular or parallel direction w.r.t. the longitudinal axis
of the point cloud. Hence each scenario was carried out at
both orientations. The scenarios includes 5 adults (4 male,
1 female) to make up the positive class and a total of 10
unique objects to make up the negative class.

As samples for the negative class, objects were chosen
that are typically found outside, specifically in urban environ-
ments in which this type of technology is likely to be used.
Due to the limited number of total objects, it was ensured
that the chosen objects were of different shapes and sizes to
maximise the diversity of the dataset. The positive class is
limited to examples of adults, who are all of similar height
(between 160-185 cm). A point cloud does not have colour or
texture and hence the only difference it can pick up between
different people would be their size (height/shape). Table I
summarizes the dataset information.

A. CNN-based classification

The classification of the grid maps is performed using a
deep-CNN model. The grid maps (hereafter called images)
were generated slightly oversize to 90× 90 cells on pur-
pose, to ensure that all data from each cluster was covered
completely as the algorithm used fails if any data point lies
outside the grid area. However, this results in a large amount
of empty space around the majority of objects, increasing the
size of the image and hence the required number of nodes
in the neural network.

The dataset contains three sets of images: top (T), front
(F) and side (S) projections, where each one represents a
channel. Multiple CNNs were designed and their accuracies
compared to determine which of the three projections yields
the best result. The amount of information within a single
projection is limited, so the images were stitched together to
form one (3 channel) image (TFS). To minimize the chance
of overfitting the data was augmented. The adjustments can
be achieved in many ways e.g., the images can be cropped,
rotated, mirrored, rotated or translated. In our case, cropping
or translating the image is not particularly useful. This is
because the algorithm dynamically generates the grid maps



with the same method, resulting in the image to be classified
to always have the same size with the object in the centre
of the grid map.

The chosen method to augment the data was to apply small
rotation steps about all three axes. Each cluster was rotated
about its centroid over a range of a given degree steps. The
augmentation resulted in the 225 (objects/negatives) and 285
(humans) unique grid maps being converted into a total of
1,612 and 1,512 images. Although still relatively limited,
this is enough data to train the neural network. The input
layer must have the same number of nodes as the number
of pixels/cells in the image. In this case the input layer
is [90× 90× 3] for multi-channel (concatenated views) and
[90× 90× 1] for the single images. The number of output
layers on the network is equal to the number of classes; in
this case the classifier simply differentiates humans from all
other objects, requiring a 2-node output layer. The specific
parameters of the CNN models/architecture, the layers and
hyper-parameters are given in Table II.

B. Results and discussion

When training and verifying the learning models, the total
dataset must be split into a training set and testing set. It is
crucial that the examples in the testing set are different to
those in the training set (for a fair test, the network should
not have seen the examples before). This can be done by
simply splitting the set based on a percentage (70% training,
30% testing), or by using a cross validation technique as
in this paper. The cross-validation approach splits the total
dataset into equally sized parts; in this case the data was
divided into 4 subsets. 4 CNN-models (same architecture)
are then trained on the 4 combinations of training/testing
data available. For example; CNN subset 1 trains on subsets
2,3,4 and tests on subset 1, CNN subset 2 trains on subsets
1,3,4 and tests on subset 2 and so on. As stated earlier, it is
important that the test set is unique from the training sets,
including augmented images thus, the augmented images of
each parent image were assigned to the same subset.

A CNN was trained on each of the four image types
(T, F, S and TFS) with the non-augmented and augmented
training set. The testing accuracy of the 4 CNNs (for each
subset combination) within each image type are averaged to
give a more accurate result. The full results are provided
in Table III. Except for the Side-view, the accuracy for the
Augmented model is, on average, significantly higher than
those for the non-augmented model; specially for the Top-
view. As generally, more training data is expected to improve
the performance of a CNN. In terms of AUC (calculated from
the ROC curves shown in Figs 6 and 7), the performance
obtained with the models are to be read with caution as
the testing set is not large enough to have captured all the
possible variations of real-world scenarios. Notice that all
the CNN models were tested on non-augmented testing set.

Although the algorithm operates successfully, there are
improvements that can be made to enhance its robustness
and speed. Clustering has the highest failure rate amongst the
components in the algorithm and hence this sub-algorithm

TABLE III
PERFORMANCE MEASURES, IN %, FOR EACH “VIEW” ON THE

AUGMENTED AND NON AUGMENTED MODELS.

Augmented CNN Non-Augmented CNN

View: S F T TFS S F T TFS

Accuracy 95.5 97.1 78.2 98.8 96.5 97.8 69.6 95.8
AUC 99.2 99.7 91.0 99.9 99.5 99.7 83.9 99.7

Precision 92.3 96.1 87.0 98.4 95.4 97.1 97.1 99.4
Recall 99.6 98.6 79.8 99.5 98.2 98.9 66.9 93.7
F-score 95.7 97.3 81.5 98.9 96.7 98.0 78.68 96.4

ZOOM

Fig. 6. ROC curves for the CNN models trained on the non-augmented
dataset.

should be revised or replaced by an alternative. Improved
clustering would also have positive knock-on effects on
the classification. The current algorithm assumes that the
entire ROI has the same “flat” ground plane, however this is
not representative of real environments, where the ground
is often uneven and multileveled. A new data alignment
strategy would need to be implemented to work effectively
in these cases. Depending on the application and required
accuracy, an improved (high resolution) sensor could be used
which should yield better results.

The classification/detection components of the algorithm
can be improved by linking them through a feedback loop.
This is especially necessary when tracking multiple targets
in close proximity, where the clustering or classification
components may fail individually. The estimated position of
an object can be used to aid in the clustering and classifying
of the object. The number of output classes would have
to be increased significantly for the proposed approach to
be applicable in more challenging situations. This would
require obtaining a significantly larger dataset, especially for
non-human objects (negatives). To increase the robustness,
the dataset should include a variety of environments with
significantly different weather and lighting conditions.

IV. CONCLUSION AND FUTURE WORK

This is a unique research topic and seems to be promising
because the cost and size of LIDAR technology is being cur-



ZOOM

Fig. 7. ROC curves for the augmented dataset.

rently seeing a large reduction whilst keeping the resolution
high. On the other hand, with the increasing capacity of deep
learning approaches to extract rich and useful information
from 3D LiDAR data, new applications will foster the use
of airborne LiDAR sensor in small drones.

This study is focused on the design of algorithms that
output the classification of a target (human vs non-humans).
Data from a UAV mounted 3D LiDAR was collected in real-
world conditions and a binary classification dataset was built.
A pipeline comprising pre and post-processing stages and ob-
ject classification are proposed. Direct and augmented CNN
models were trained, tested and compared according to a
cross-validation strategy. Detailed experiments are described
and the results are promising.

In real-world applications, UAVs require a navigation
system that takes the targets location as an input and outputs
the vehicles required actions. Only with such a system could
allow a 3D LiDAR-equipped UAV autonomously track and
follow a person; this could be considered in the future work.
Alternatively, this algorithm could be adapted for use on
other vehicles or in alternative environments. Finally, a more
sophisticated approach like Complex-YOLO [17] could be
explored as well.

V. ACKNOWLEDGMENTS

This paper is based on the first author’s dissertation [11].
This work has been supported by the project MATIS -
CENTRO-01-0145-FEDER-000014, Portugal, and partially
supported by FCT through grant UID/EEA/00048/2019.

REFERENCES

[1] Z. Yan, T. Duckett, and N. Bellotto, “Online learning for human clas-
sification in 3D LiDAR-based tracking,” in IEEE/RSJ Int. Conference
on Intelligent Robots and Systems (IROS), 2017, pp. 864–871.

[2] A. Rangesh and M. M. Trivedi, “No blind spots: Full-surround multi-
object tracking for autonomous vehicles using cameras and lidars,”
IEEE Transactions on Intelligent Vehicles, vol. 4, no. 4, 2019.

[3] C. Premebida, O. Ludwig, and U. Nunes, “Lidar and vision-based
pedestrian detection system,” Journal of Field Robotics, vol. 26, no. 9,
pp. 696–711, 2009.

[4] L. Wallace, A. Lucieer, and C. S. Watson, “Evaluating tree detection
and segmentation routines on very high resolution uav lidar data,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 12,
Dec 2014.

[5] F. Azevedo, A. Dias, J. Almeida, A. Oliveira, A. Ferreira, T. Santos,
A. Martins, and E. Silva, “Lidar-based real-time detection and mod-
eling of power lines for unmanned aerial vehicles,” Sensors, vol. 19,
no. 8, 2019.

[6] M. Tulldahl, H. Larsson, G. Tolt, F. Bissmarck, C. Gronwall, and
J. Nordlof, “Application and capabilities of LiDAR from small UAV,”
in Laser Radar Technology and Applications XXI, M. D. Turner and
G. W. Kamerman, Eds., vol. 9832, International Society for Optics
and Photonics. SPIE, 2016.

[7] M. U. de Haag, C. G. Bartone, and M. S. Braasch, “Flight-test evalu-
ation of small form-factor LiDAR and radar sensors for sUAS detect-
and-avoid applications,” in 2016 IEEE/AIAA 35th Digital Avionics
Systems Conference (DASC), Sep. 2016.

[8] L. Zheng, P. Zhang, J. Tan, and F. Li, “The obstacle detection method
of uav based on 2D lidar,” IEEE Access, vol. 7, 2019.

[9] G. Omans, “Phoenix LIDAR systems overview,” 2018. [Online].
Available: https://www.phoenixlidar.com/team/#phoenix-overview/

[10] A. Hussey and Velodyne, “Velodyne LiDAR partners
with YellowScan for integrated LiDAR for UAVs,” 2017.
[Online]. Available: https://velodynelidar.com/press-release/
velodyne-lidar-partners-with-yellowscan-for-integrated-lidar-for-uavs/

[11] J. N. C. Hayton, “Human identification and tracking using an airborne
lidar,” Master dissertation, Loughborough University, 2019.

[12] J. Zhang and S. Singh, “LOAM: Lidar odometry and mapping in real-
time,” in Proceedings of the RSS Conference, 2014.

[13] M. Fischler and R. Bolles, “Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, 1981.

[14] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning
on point sets for 3D classification and segmentation,” Proc. Computer
Vision and Pattern Recognition (CVPR), IEEE, 2017.

[15] A. Elfes, “Occupancy grids: A stochastic spatial representation for
active robot perception,” ArXiv, vol. abs/1304.1098, 2013.

[16] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT Press,
2005.

[17] M. Simony, S. Milzy, K. Amendey, and H.-M. Gross, “Complex-
YOLO: An Euler-region-proposal for real-time 3D object detection
on point clouds,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018.


