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Abstract. This paper addresses the problem of vehicle detection using a less
explored LIDAR’s modality: the reflection intensity. The reflectivity attribute is
related to the type of surface the LIDAR reflection is obtained. A Dense Reflec-
tion Map (DRM) is generated from sparse 3D-LIDAR’s reflectance intensity, and
inputted to a Deep Convolutional Neural Network (ConvNet) object detection
framework (YOLOv2 [1]) for the vehicle detection. The proposed approach is
the first result using LIDAR’s reflection value in the KITTI Benchmark Suite.
Although only reflection intensity data is used in the approach presented in this
paper, the performance is superior to some of the approaches that use LIDAR’s
range-value, and hence it demonstrates the usability of LIDAR’s reflection for
vehicle detection.
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1 Introduction and Motivation

Vehicle detection is one of the key tasks in intelligent vehicle and intelligent trans-
portation systems technologies. Robust and reliable vehicle detection finds variety of
practical applications including collision warning systems, collision avoidance system,
autonomous cruise controls, advanced driver assistance systems (ADAS), and in au-
tonomous driving perception systems.

Autonomous vehicles use different types of sensors (e.g., Camera, LIDAR and
RADAR) to have a redundant perception system. Color cameras, being the most com-
monly used sensor, suffer from illumination variations, lacking direct object distance
estimation, and inability of vision through the night which restricts the reliability of
safe driving. LIDAR and RADAR measure distance by emitting and receiving waves.
RADAR, although able to work efficiently in extreme weather conditions, suffers from
narrow flied of view and low resolution, which limits its application for object detec-
tion and recognition task. In comparison with RADAR, 3D-LIDAR has a precise range
measurement and a full 360 degree field of view. Motivated by reduction in their cost
and increase in resolution and range, 3D-LIDARs are becoming a reliable solution for
scene understanding.

In this paper, we propose a sensory perception solution for vehicle detection (herein
called ‘RefCN’, which is stands for ‘Reflectance ConvNet’) using a less explored ‘3D-
LIDAR reflection’ and a Deep ConvNet-based detection framework (YOLOv2 [1]). The
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front view Dense Reflection Map (DRM) is constructed from sparse 3D-LIDAR re-
flectance data. DRMs run through the trained DRM-based YOLOv2 pipeline to achieve
vehicle detection.

The outline of the paper is as follow: Related work is presented in Section 2. The
proposed approach is described in Section 3. Experimental results are discussed in Sec-
tion 4, and Section 5 brings some concluding remarks and future work.

2 Background and Related Work

This section gives a definition and a review of works that relate to LIDAR reflection,
and surveys previous work in 3D-LIDAR-based vehicle detection.

2.1 Perception Using 3D-LIDAR Reflection

The LIDAR reflection measures the ratio of the received beam sent to a surface, which
depends upon the distance, material, and the angle between surface normal and the ray.

To our knowledge only a few works exist that use LIDAR reflection for the percep-
tion tasks. Tatoglu and Pochiraju [2] used LIDAR reflection for point cloud segmenta-
tion based on the diffuse and specular reflection behavior. Hernandez et al. [3] detect
traffic lanes on the road in urban environments by exploiting the LIDAR reflection of
lane marking.

2.2 3D-LIDAR-based Vehicle Detection

This subsection gives a concise overview of vehicle detection approaches using 3D-
LIDARs in IV and ITS domains.

Behley et al. [4] performed object detection with a hierarchical segmentation of
3D-LIDAR points followed by bag-of-word (BoW) classifiers. Wang and Posner [5]
discretized LIDAR points and reflectance values into a Voxel grid. A 3D sliding window
with a linear SVM classifier is used for obtaining detection scores. Li et al. [6] used a
2D Fully-Convolutional Network (FCN) in a 2D point map (top-view projection of
3D-LIDAR range data) and trained it end-to-end to build a vehicle detection system.
Li [7] extended it to a 3D Fully-Convolutional Network (FCN) to detect and localize
objects as 3D boxes from LIDAR point cloud data. Gonzalez et al. [8] use images and
LIDAR-based depth maps with HOG and Local Binary Patterns (LBP) features. They
split the training set in different views to take into account different poses of objects and
train a Random Forest (RF) of local experts for each view for object detection. Chen et
al. [9] use LIDAR range data and images. A top view representation of point cloud is
used for 3D proposal generation. 3D proposals were projected to color image, LIDAR’s
top and front views. A ConvNet-based fusion network is used for 3D object detection.
Oh et al. [10] use segmentation-based object proposal generation from LIDAR depth
maps and color images. They use decision level fusion to combine detections from
two independent ConvNet-based classifiers in the depth map and color image. Table 1
provides a review of vehicle detection approaches using 3D-LIDAR data.
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Table 1. Some related work on 3D-LIDAR-based Vehicle Detection.

Reference Modality Representation Detection Technique
Behley et al. [4] Range Full 3D: Point cloud Hierarchical Seg. + BoW
Wang and Posner [5] Range + Reflec. Full 3D: Voxel Sliding-window + SVM
Li et al. [6] Range Top view 2D-FCN
Li [7] Range Full 3D: Point cloud 3D-FCN
Gonzalez et al. [8] Image + Range Front view Sliding-window + RF
Chen et al. [9] Image + Range Front + Top views Top view 3D Prop. + ConvNet
Oh et al. [10] Image + Range Front view Seg.-based Prop. + ConvNet

While most of the 3D-LIDAR-based vehicle detection systems were built on range
data, in contrast, in this paper, a less probed 3D-LIDAR reflection return is used as
a medium for the vehicle detection. The front view Dense Reflection Map (DRM) is
generated and used with YOLOv2, and is shown that the DRM can be useful for the
vehicle detection purpose.

3 RefCN: Vehicle Detection Using 3D-LIDAR Reflection and
YOLOv2 Object Detection Framework

The architecture of the proposed RefCN vehicle detection system is shown in Fig. 1.
The 3D-LIDAR point cloud is projected to the camera coordinate and a Sparse Re-
flectance Map (SRM) is generated. The SRM is up-sampled for getting a Dense Re-
flectance Map (DRM). The DRM inputted to the trained DRM-YOLO to detect vehi-
cles. The RefCN has two steps: (1) DRM construction and (2) DRM-based YOLOv2
object detection framework, described as follow.

3D-LIDAR

SRM DRM DRM-YOLOSensor

Convolution Convolution

Max
Pooling

Max
Pooling

Detected Vehicles

Image Plane Image Plane Image Plane

Fig. 1. The pipeline of the RefCN.

3.1 Delaunay Triangulation-based DRM Reconstruction

The DRM is generated by projection of the point cloud on the image plane, triangulation
and interpolation as described in the following subsections.
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3D-LIDAR Image Projection Point cloud with reflection intensity P = {X ,Y,Z, I} is
filtered to the camera’s view field, and projected onto the 2D-image plane using,

P∗ =

Projection Matrix︷ ︸︸ ︷
P2×R0×VtC × P (1)

where P2 is the projection matrix from the camera coordinate system to the left color
image, R0 is the rectification matrix, and VtC is LIDAR to camera coordinate system
projection matrix. Considering P∗ = {X∗,Y ∗,Z∗, I∗}, using the row and column val-
ues {X∗,Y ∗} accompanied with reflectance data I∗, a compact Sparse Reflectance Map
(SRM) is computed, which has a lower density than the image resolution.

Delaunay Triangulation (DT) The Delaunay Triangulation (DT) is used for mesh gen-
eration from the row and column values {X∗,Y ∗} of the projected 3D-LIDAR points P∗.
The DT produces a set of isolated triangles ∆ = {δ1, · · · ,δn}, each triangle δ composed
of three vertices nk,{k : 1,2,3}, useful for building the interpolating function f (·) to
perform interpolation on reflectance values I∗.

Interpolation of Sparse Reflectance Map (SRM) The (missing) value I of a pixel
P which lie within a triangle δ , is estimated by interpolating reflectance values of
the surrounded triangle vertices nk,{k : 1,2,3} using Nearest Neighbor interpolation
(which means selecting the value of the closest vertex), ending up in a DRM.

I = f (argmin
nk

||P−nk||), {k : 1,2,3} (2)

For more details on the interpolation of scattered points, please refer to [11].

3.2 DRM-based YOLOv2 Object Detection Framework

You Only Look Once (YOLO) [12] models object detection as a regression problem.
The most-recent version of YOLO, denoted as YOLOv2 [1], is used in this paper.

The DRM is divided into 13×13 grid regions, where each grid cell is responsible for
predicting five object BB centers with their associated confidence scores. A convolu-
tional network runs once on the DRM to predict object BBs. The network is composed
by 19 convolutional layers and 5 max-pooling layers. YOLO looks at the whole DRM
during training and test time; therefore, in addition to vehicle appearances, its predic-
tions are informed by contextual information in the DRM. The constructed DRM run
through the trained DRM-based YOLOv2 pipeline to achieve vehicle detection. Fig. 2
shows different steps of the RefCN.

4 Experimental Results and Analysis

For the RefCN evaluation, quantitative and qualitative experiments using the KITTI
dataset [13] was performed.
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Fig. 2. Illustration of the RefCN process. Top to bottom: a color image with superimposed pro-
jected LIDAR points. The SRM with color coded reflectance values. The generated 2D triangula-
tion. The zoomed area within the red box. The fifth image represents the constructed DRM. The
last image shows the vehicle detection result with confidence scores.
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4.1 KITTI Object Detection Dataset

The KITTI object detection ‘training dataset’ (containing 7,481 frames) was partitioned
into two subsets: 80 % as training set (5,985 frames) and 20 % as validation set (1,496
frames). The ‘Car’ label was considered for the evaluation.

4.2 Evaluation Metrics

Following KITTI’s assessment methodology, the PASCAL VOC intersection-over-union
(IOU) metric on three difficulty levels was used as the evaluation criterion with an over-
lap of 70% for car detection. The overlap rate in 2D is given by,

IOU =
area(2D-BB∩2D-BBg)

area(2D-BB∪2D-BBg)
(3)

The precision-recall curve and Average Precision (AP), which corresponds to the area
under the precision-recall curve, were computed and reported over easy, moderate and
hard data categories to measure the detection performance.

4.3 Experimental Setup and Computational Analysis

The experiments were run on a computer with a Hexa-core 3.5 GHz processor, powered
with a GTX 1080 GPU and 64 GB RAM under Linux. The MATLAB scatteredInterpolant
function and the YOLOv21 [1] 416×416 detection framework, written in C, were used
in the RefCN implementation.

YOLOv2 Training with DRMs For training, as an initial weight, convolutional weights
of the pre-trained ConvNet on ImageNet are used. Next, the DRM-YOLOv2 is fine-
tuned for 80,200 iterations using stochastic gradient descent with learning rate of 0.001,
64 as batch size, weight decay of 0.0005 and momentum of 0.9 by training on KITTI
DRMs to adapt it to the DRM-based vehicle detection.

Computational Complexity The implementation details and the computational load of
DRM generation and YOLO detection steps are reported in Table 2. The DRM genera-
tion is the most time-consuming part which can be further reduced by reimplementation
in C/C++.

Table 2. The processing time (in seconds) of the RefCN.

Impl. Details Proc. Time Environment
DRM Generation 1.403 MATLAB
YOLO Detection 0.015 C

1https://pjreddie.com/darknet/yolo/

https://pjreddie.com/darknet/yolo/
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4.4 Quantitative Results

Two sets of quantitative experiments were conducted to assess the performance of the
RefCN.

Sparse Reflectance Map (SRM) vs DRM The RefCN is trained on training set and
evaluated on the validation set. As it can be seen in Fig. 3 and Table 3, the results show
that the DRM considerably improves the detection performance.
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Fig. 3. Precision-Recall on KITTI Validation-set (Car Class) using SRM (dashed lines) and DRM
(solid lines).

Table 3. Detection Accuracy with SRM vs DRM on Validation-set.

Input Data Easy Moderate Hard
SRM 23.45 % 17.57 % 15.57 %
DRM 67.69 % 51.91 % 44.98 %

Comparison with the State-of-the-art To compare with the state-of-the-art, the Re-
fCN is trained on the full KITTI object detection ‘training dataset’ and evaluated on
the test set. Results are reported in Fig. 4 and Table 4. Although the RefCN uses only
reflection-value, it surpasses some of the approaches that use LIDAR’s range-value, and
hence it demonstrates the usability of LIDAR’s reflection for the vehicle detection.
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Fig. 4. Precision-Recall on KITTI Test-set (Car Class).

Table 4. RefCN Evaluation on KITTI Test-set.

Approach Moderate Easy Hard
MV3D (LIDAR) [9] 79.17 % 89.01 % 78.09 %
3D FCN [7] 75.83 % 85.54 % 68.30 %
VeloFCN [6] 53.45 % 70.68 % 46.90 %
Vote3D [5] 48.05 % 56.66 % 42.64 %
RefCN (proposed) 35.72 % 50.28 % 29.86 %
CSoR [14] 26.13 % 35.24 % 22.69 %
mBoW [4] 23.76 % 37.63 % 18.44 %

4.5 Qualitative Results

Figure 5 shows some of the representative qualitative results with many cars in the
scene. A video result is available at https://goo.gl/ovQYeq. As can be seen, for most
cases, the RefCN correctly detects target vehicles.

5 Conclusions, Key Findings and Future Work

To fulfill the requirements of the redundant perception system, we presented a method-
ology for using LIDAR reflection return values for vehicle detection, and we proved the
benefits of the system through quantitative and qualitative experiments. As a direction
for the future research, based on our observations, as shown in Fig. 6, traffic signs and
license plates have high reflectance values. The DRM can be explored for car license
plate and traffic sign detection.

https://goo.gl/ovQYeq
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Fig. 5. Example screenshots of RefCN results. Detection results are shown, as green BBs in the
color-images (top) and DRMs (bottom) compared to the ground-truth (dashed-magenta). Notice
that the depicted color-images are shown only for visualization purpose.
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Fig. 6. The effect of retroreflectivity of car license plates and traffic signs in the DRM and the
corresponding color-image. The green BBs show a car license plate and traffic signs.
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