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Abstract—Autonomous speaker identification suffers issues of
data scarcity due to it being unrealistic to gather hours of speaker
audio to form a dataset, which inevitably leads to class imbalance
in comparison to the large data availability from non-speakers
since large-scale speech datasets are available online. In this
study, we explore the possibility of improving speaker recognition
by augmenting the dataset with synthetic data produced by
training a Character-level Recurrent Neural Network on a short
clip of five spoken sentences. A deep neural network is trained
on a selection of the Flickr8k dataset as well as the real and
synthetic speaker data (all in the form of MFCCs) as a binary
classification problem in order to discern the speaker from
the Flickr speakers. Ranging from 2,500 to 10,000 synthetic
data objects, the network weights are then transferred to the
original dataset of only Flickr8k and the real speaker data, in
order to discern whether useful rules can be learnt from the
synthetic data. Results for all three subjects show that fine-tune
learning from datasets augmented with synthetic speech improve
the classification accuracy, F1 score, precision, and the recall
when applied to the scarce real data vs non-speaker data. We
conclude that even with just five spoken short sentences, data
augmentation via synthetic speech data generated by a Char-
RNN can improve the speaker classification process. Accuracy
and related metrics are shown to improve from around 93% to
99% for three subjects classified from thousands of others when
fine-tuning from exposure to 2500-1000 synthetic data points.
High F1 scores, precision and recall also show that issues due to
class imbalance are also solved.

Index Terms—Data Augmentation, Speaker Identification,
Speech Recognition, Generative Models, Human-robot Interac-
tion, Autonomous Systems

I. INTRODUCTION

Although there is a large amount of speech-related audio
data available in the form of public datasets, autonomous
speaker classification suffers issues of data scarcity due to
users understandably unwilling to provide multiple hours of
speech to form a dataset which inevitably leads to a heavy
class imbalance. Methods such as weighting of classes during
the learning process often help with the issues posed by
unbalanced datasets, but this can also be detrimental depending
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Fig. 1: Pepper (left) and Nao (right) are state-of-the-art robots
that can perform general speech recognition but not speaker
classification.

on the severity of the underrepresented classes. This is one of
the reasons that autonomous machines, for example Pepper
and Nao shown in Fig. 1 often have the ability of speech
recognition in the form of transcription of words and phrases
but do not possess the ability to classify a specific speaker in
the form of a biometric measurement.

A relatively new idea based on the development of
generative models is that of dataset augmentation. That is,
to learn rules within data in order to be able to produce
new data that bares similarity. The most famous example of
this, at the time of writing, is the field of ‘AI Art’ where
models such as the Generative Adversarial Network learn to
generalise a set of artworks in order to produce new images.
Though experiments like this are the most famous, dataset
augmentation is a rapidly growing line of thought in multiple
fields, the question asked is “can the synthetic data produced
by a generative model aid in the classification process of the
original data?”. If this is possible, then problems encountered
due to class imbalance and under-representation may possibly
be mitigated by exposing algorithms to synthetic data that
has been produced by a generative model, based on learning
from a limited set of scarce data points. In this work, in
terms of contribution, we perform the first benchmarks
of data augmentation fine-tune learning of Mel-Frequency
Cepstral Coefficients (MFCCs) for speaker classification1.

1to the best of our knowledge and based on literature review.



These original findings and results support the hypothesis that
synthetic MFCCs are useful in improving the classification of
an unbalanced speaker classification dataset when knowledge
gained from deep learning is transferred from the augmented
data to the original set in question. This is attempted for
2,500, 5,000, 7,500 and 10,000 synthetic data objects for
three subjects from the United Kingdom, Republic of Ireland,
and the United States of America.

The remainder of this work is as follows. Firstly, Section II
explores the background philosophy of the processes followed
by this work and related experiments as well as discussing the
state-of-the-art in the field. Section III outlines the Method
followed including data collection, synthetic data generation,
feature extraction to form datasets, and the learning processes
to discern whether augmentation of MFCCs improves speaker
recognition. The results of the experiments are then discussed
in Section IV before future work is outlined and conclusions
drawn in Section V.

II. BACKGROUND AND RELATED WORK

A. Speaker Identification

Speaker Identification, also known as recognition or veri-
fication, is a pattern recognition classification task in which
an individual’s voice data is classified on a personal level i.e.,
”is person A speaking?” [1]. The task is useful in multiple
domains, for Human-robot Interaction [2], Forensics [3] and
Biometrics [4]. Identifying speakers has shown to be a rel-
atively easy problem when a small sample size are defined,
for example it is possible to perfectly classify database of
21 speakers’ MFCC data extracted from audio [5]. On the
other hand, researchers have pointed out an open issue in the
state of the art where far more data is present, noting the then
much more difficult speaker identification problem [6]–[8]. In
this work, we attempt to improve the classification process
of a speaker when many thousands of alternative speakers
are present, through pattern matching against a large-scale
dataset. The idea behind this as well as related work are further
explored in Section II-B.

B. Dataset Augmentation through Synthesis

Many philosophical, psychological, and sociological
studies have explored the idea of learning from imagined
situations and actions [9]–[12]. Researchers argue that the
ability of imagination is paramount in the learning process
by improving abilities and skills through visualisation and
logical dissemination. Research has also shown that imagined
situations are not a perfect reflection their counterparts in
reality [13]–[15]. The conclusion thus is that humans regularly
learn from imagined data that does not truly reflect reality, and
yet, this process is important for effective learning regardless
of how realistic the imagination is, or most importantly, isn’t.

The idea of data synthesis and dataset augmentation for
fine-tune learning on basis data is generally inspired by
the above psychological phenomenon. This is the process

of generating (or ‘imagining’) new data that is inspired
by the real data. Although the data is not a reflection of
the basis dataset, since it does not technically exist, the
idea is that patterns and rules within the basis data will be
further reflected and explored in a more abstract sense in
the synthetic data, and that this exercise can further improve
learning processes when applied to the original basis dataset
prior to any synthesis or augmentation. This idea in machine
learning is a very young field of thought, becoming prominent
only during the latter part of the 2010’s where success has
been shown in several preliminary experiments.

Though the state-of-the-art is young, there are multiple
published works that show the philosophy behind this
experiment in action. In Xu et al., researchers found that data
augmentation leads to an overall best F-1 score for relation
classification of the SemEval dataset when implemented
as part of the training process for a Recurrent Neural
Network [16]. Augmentation was performed by leveraging
the direction of relation. A related experiment shows that
NLP-based word augmentation helps to improve classification
of sentences by both CNN and RNN models [17]. Of the
small number of works in the field, many focus on medical
data since many classification experiments suffer from an
extreme lack of data. In Frid-Adar et al., researchers showed
that the classification of liver lesions could be improved
by also generating synthetic images of lesions using a
convolutional generative adversarial network [18]. Following
this, Shin et al., argued the same hypothesis for the image
classification of both Alzheimer’s Disease via neuroimaging
and multimodal brain tumour image segmentation via a set
of differing MRI images [19].

In terms of audio, related works have also argued in
favour of the hypothesis being tested in this experiment. A
closely related work showed that acoustic scene classification
of mel-spectrograms could be improved through synthetic
data augmentation [20]. Models such as Tacotron [21]
learn to produce audio spectrograms from training data in
order to perform realistic text-to-speech from either textual
representation or internationally recognised phonemes. In
terms of the problem faced by this study, speaker recognition,
limited work with i-vector representations of utterances have
shown promise in terms of classification after augmentation
has been performed via a GAN [22].

In this work, we implement a Character-level RNN in
order to generate synthetic speech data by learning from
the speaker’s utterances. Character-level RNNs have shown
to be effective when generating natural written text [23],
[24], composing music [25], and creating artwork [26].
More importantly related to this study, RNNs have also been
effective in generating accurate timeseries [27] and moreover,
also MFCC data [28]. Recurrence in deep learning has proved
to be revolutionary in the field of speech processing [29]–
[31]. Most importantly for the idea behind this work, the
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Fig. 2: Overall diagram of the experiment in which a neural
network is compared to another which has been exposed to
synthetic data prior to weight transfer to the clean dataset.
Note that metrics regarding models trained with synthetic data
are not considered.

technology has shown to be likewise as useful for the
synthesis of new speech based on statistical rules within
audio [28], [32], [33]. The idea is that we generate synthetic
speech based on short utterances by a subject, and attempt to
increase the ability of identification by also learning from the
synthetic data generated by an RNN. Should this be possible,
it would reduce data requirements by introducing similar
speech autonomously, without the need of more extensive
audio recordings.

Though some works have considered human speech in the
related state-of-the-art, this work is the first preliminary explo-
ration of synthetic data augmentation in MFCC classification
for speaker identification, to the best of our knowledge.

III. METHOD

In this section, the method of the experiment is described.
Figure 2 shows a diagram of the experimental method. To gain
a set of results, three networks are trained; without synthetic
data, with synthetic data, and a third without synthetic data
but with the weights transferred from training when exposed
to synthetic data. Thus, the comparison of the first and third
models are performed since they derive directly comparable
results.

A. Real and Synthetic Data Collection

The data for each experiment is split into a binary classi-
fication problem. Class 0 denotes ‘not the speaker’ whereas
class 1 denotes ‘the speaker’.

In order to gather a large corpus of speech for class 0,
the Flickr8k dataset is gathered [34]. The dataset contains

40,000 spoken captions of 8,000 images by many speakers
(unspecified by dataset authors). The process in subsection
III-B is followed to generate features, and 100,000 data objects
are selected at random. 50,000 of the data objects are selected
in blocks of 1,000 and the remaining 50,000 are selected at
random - this produces a set populated by lengthier spoken
text as well as short samples of many thousands of speakers
additionally.

To gather real data for class 1, three subjects as observed in
Table I were asked to speak five random Harvard Sentences,
based on the IEEE recommended practice for speech quality
measurements [35]. This short process gathers several seconds
of speech in a user-friendly manner. Users are asked to record
the data via their smartphone microphone, subjects 1 and 2
used an iPhone 7 whereas subject 3 used a Samsung Galaxy
S7. Although the same data is provided by all three subjects,
subjects 2 and 3 spoke at a much quicker pace and thus
provided far fewer data objects than subject 1.

Synthetic data for class 1 is generated by a Character level
Recurrent Neural Network (Char-RNN) [36], [37], topology
of the network for subject 1 is shown in Table II. The Char-
RNN learns to model the probability distribution of the next
character in a sequence after observing a sequence of previous
characters, where previous characters are those that the RNN
has also generated. By performing this one character at a time,
the model initially learns the CSV formatting of the dataset
(26 comma separated numerical values followed by class label
’1’ and a line break character) and then learns to form MFCC
data based on observing the provided dataset.

An RNN is trained for each individual subject’s MFCC data
(see subsection III-B) for 100 epochs before producing 10,000
synthetic data objects. This is approximately a sequence of
2,000,000 characters for each subject. An example of some
data generated can be seen in Fig. 3, what seems like sound
wave behaviour can be observed in the synthetic data but the
nature is also noticeably different. Behaviours such as the
peaks observed in the synthetic data may aid in classification
of real data through augmentation, provided there are useful
patterns within the probability distribution observed from the
real data. This argues the need for fine-tune learning rather
than transfer, since this would allow the neural network to then
discard the information in the synthetic data that is unnatural,
but could possibly carry forward useful rules within the nature
of the generative model output.

B. Feature Extraction

The non-stationary nature of audio poses a difficult classi-
fication problem when single data points are considered [38],
[39]. To overcome this, temporal statistical features are ex-
tracted from the wave. In this work, we extract the first 26
Mel-Frequency Cepstral Coefficients (MFCC) [40], [41] of the
audio clips through a set of sliding windows of 0.025 seconds
in length at a step of 0.01 seconds.
The MFCC extraction process is as follows:



TABLE I: Information regarding the data collection from the three subjects

Subject Sex Age Nationality Dialect/Accent Time Taken (s) Data Objects Captured

1 M 23 British Birmingham 24 4978
2 M 24 American Tampa, Florida 13 2421
3 F 28 Irish Dublin 12 2542

Flickr8K 100,000

(a) 2500 Real MFCCs from Subject 1 (b) 2500 Synthetic MFCCs from Subject 1

Fig. 3: Two sets of values from 26 MFCCs for 2500 time windows for subject 1, one is real whereas the second is generated
by the Char-RNN. A difference in patterns can be seen between the two since synthetic human speech is imperfect. X axis is
temporal (each 0.025s window) and the Y axis is the MFCC value.

TABLE II: Topology of the Character-level Recurrent Neural
Network

Layer Output Parameters

Embedding (16, 64, 512) 7680
CuDNN LSTM (16, 64, 256) 788,480
Dropout (0.2) (16, 64, 256) 0
CuDNN LSTM (16, 64, 256) 526,336
Dropout (0.2) (16, 64, 256) 0
CuDNN LSTM (16, 64, 256) 526,336
Dropout (0.2) (16, 64, 256) 0
Time Distributed
(size of vocabulary) (16, 64, 15) 3855

Softmax (16, 64, 15) 0

1) The Fourier Transform (FT) of the time window data ω
is calculated:

X(jω) =

∫ ∞
−∞

x(t)e−jωtdt. (1)

2) The powers from the FT are mapped to the Mel scale, the
psychological scale of audible pitch [42] via a triangular
temporal window.

3) The Mel-Frequency Cepstrum (MFC), or power spec-
trum of sound, is considered and logs of each of their
powers are taken.

4) The derived Mel-log powers are treated as a signal, and
a Discrete Cosine Transform (DCT) is measured. This
is given as:

Xk =

N−1∑
n=0

xncos
[
π
N (n+ 1

2 )k
]
k = 0, ..., N − 1, (2)

where x is the array of length N , k is the index of
the output coefficient being calculated, where N real
numbers x0...xn−1 are transformed into the N real
numbers X0...Xn−1 by the formula.

The amplitudes of the spectrum are known as the MFCCs.
The resultant data then provides a mathematical description
of wave behaviour in terms of sounds, each data object made
of 26 attributes produced from the sliding window are then
treated as the input attributes for the neural networks.

This process is performed for all of the selected Flickr8K
data as well as the real data recorded from the subjects. The
MFCC data from each of the three subjects’ audio recordings
is used as input to the Char-RNN generative model.

C. Speaker Classification Learning Process

Datasets are organised into the following for each subject:
1) Flickr data + recorded audio
2) Flickr data + recorded audio + 2,500 synthetic data
3) Flickr data + recorded audio + 5,000 synthetic data
4) Flickr data + recorded audio + 7,500 synthetic data
5) Flickr data + recorded audio + 10,000 synthetic data

A baseline is given through the classification of set 1. Follow-
ing this, models are trained on sets 2-5 in order to produce
models that have been exposed to the base dataset as well as
synthetic data produced by the subject’s RNN model. Finally,
the results are gathered by applying the model weights trained
by models 2-5 and applying each of them individually to
set 1 through a method of fine-tune learning. Should the
classification metrics of set 1 be improved by introducing
weights trained on sets 2-5 then this supports the hypothesis



TABLE III: Classification metrics for the three subjects with
regards to fine-tune learning from synthetic data (scores are
given for transfer learning, NOT classification of synthetic
data)

Subject Synthetic
Data

Metrics

Accuracy F1 Precision Recall

1

0 93.57 0.94 0.93 0.93
2500 98.31 0.98 0.98 0.98
5000 98.56 0.99 0.99 0.98
7500 99.03 0.99 0.99 0.99
10000 98.33 0.98 0.98 0.98

2

0 95.13 0.95 0.95 0.95
2500 98.43 0.98 0.98 0.98
5000 99.19 0.99 0.99 0.99
7500 99.11 0.99 0.99 0.99
10000 97.37 0.97 0.97 0.97

3

0 96.58 0.97 0.97 0.97
2500 97.77 0.97 0.97 0.97
5000 97.83 0.98 0.98 0.98
7500 98.35 0.98 0.98 0.98
10000 98.83 0.99 0.99 0.99

that synthetic data allows for better classification of speaker.
This process is shown as a flow diagram in Fig. 2, note that the
synthetic data is not part of the two models that are compared
to derive results, rather, they provide weights to be transferred
to the third network. Thus, the two networks compared are
trained with identical data, and differ only in terms of starting
weight distribution for fine-tune learning. The hyperparameters
and topology of the deep neural network are selected based
on an evolutionary search approach that three deep layers
of 30, 7, and 29 hidden neurons were a strong solution for
the classification of MFCC attributes. Activation functions of
the layers are ReLu and the ADAM optimiser [43] is used.
Training is not limited to a set number of epochs, rather, early
stopping is introduced at a threshold of 25 epochs with no
improvement of ability before training is ceased. This therefore
allows all networks to stabilise to an asymptote. Classification
errors are weighted by the prominence of the class in the
dataset.

All of the deep learning experiments performed in this work
were executed on an Nvidia GTX980Ti GPU.

IV. PRELIMINARY RESULTS

The results for the three subjects can be seen in Table III. It
is shown that introducing synthetic data and then transferring
weights to the non-synthetic dataset network improves over
no data augmentations (0 in column 2) in every case for all
subjects. That is, all transfer networks outperform all non-
transfer networks for each of the subjects. In each of the 12
fine-tuning experiments, classification metrics were shown to
improve when the learnt knowledge was applied to the non-
synthetic dataset which argues in favour of the hypothesis that
the false data produced by the RNN helps to improve the
speaker classification process and overcome difficulties faced
by data scarcity and imbalance. Interestingly, the two male
subjects hit peak performance at 5,000 to 7,500 synthetic data

objects, whereas the female subject peaks at 10,000 which
suggests the possibility of difference based on either gender
or accent, which must be explored further in order to identify
the cause (providing that it is not a fluke occurrence). This
should be performed with a larger range of subjects in order to
show why statistical differences may occur for improvement of
classification ability. The performance for the first two subjects
seemingly begins to decrease at fine-tuning from exposure to
10,000 synthetic data objects, suggesting that the generative
model could be improved to prevent confusion in the model.
In terms of the best improvements to classification accuracy,
Subject 1 increased by 5.46% (93.57% to 99.03%) with the
introduction of transfer learning from 7,500 synthetic data
objects. Subject 2 increased by 4.06% (95.13% to 99.19%)
by transfer learning from 5,000 synthetic data objects, and
classification of Subject 3 was improved by 2.25% (96.58%
to 98.83%) with transfer learning from 10,000 synthetic data
objects. On average, this is a classification accuracy improve-
ment of 3.92%. Also observed in Table III are improvements
to the F1 score, precision and recall metrics for each of the
models when transfer learning from synthetic datasets.

V. FUTURE WORK AND CONCLUSION

Since this work has provided argument in favour of the
hypothesis that exposing a speech classification network to
synthetic data improves speaker recognition, further work is
enabled to explore this in more detail. A large limitation to
the RNN was the time spent on simply learning the format of
the data, that is, comma separated numerical values strictly 26
in length before being followed by a new line character. Mod-
els such as a Generative Adversarial Network (GAN) could
have these rules as standard (i.e., 26 Generator outputs, 26
Discriminator inputs, 1 Discriminator output) which enables
the learning to focus purely on values of attributes and their
relationships with one another as well as the class label. As
an extension, this experiment should be repeated with data
produced by a GAN in order to compare the two methods of
data synthesis.

Additionally, more subjects should be considered in future
for a wider range of languages and locales for further compari-
son. This study was somewhat ranged with American, Irish and
English subjects but further exploration should be performed
in order to discern whether the effects of augmentation may
change for some accents, as well as the effects that are
observed should the speakers and comparison dataset speakers
use a language other than English.

On a more generalised view of augmentation for learning,
literature review revealed that the majority of work was
performed only in the latter part of the last decade. There
are many fields of machine learning in which augmentation
has either been explored only slightly or even not at all, and
as such cross-field co-operation is needed to further exploit
the possibilities of generative augmentation processes.

To conclude, all of the experiments in this work that
were augmented to any extent by synthetic data then had a
measurably better classification ability of the original dataset



when compared to the learning process on said original data.
This preliminary work enables much future exploration in
terms of both learning models and application of findings
since the issues arising from dataset imbalance are somewhat
mitigated by exposure to new data.
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