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Abstract— In this work, we present a human-centered robot
application in the scope of daily activity recognition towards
robot-assisted living. Our approach consists of a probabilistic
ensemble of classifiers as a dynamic mixture model considering
the Bayesian probability, where each base classifier contributes
to the inference in proportion to its posterior belief. The
classification model relies on the confidence obtained from an
uncertainty measure that assigns a weight for each base clas-
sifier to counterbalance the joint posterior probability. Spatio-
temporal 3D skeleton-based features extracted from RGB-D
sensor data are modeled in order to characterize daily activities,
including risk situations (e.g.: falling down, running or jumping
in a room). To assess our proposed approach, challenging public
datasets such as MSR-Action3D and MSR-Activity3D [1] [2]
were used to compare the results with other recent methods.
Reported results show that our proposed approach outperforms
state-of-the-art methods in terms of overall accuracy. Moreover,
we implemented our approach using Robot Operating System
(ROS) environment to validate the DBMM running on-the-fly
in a mobile robot with an RGB-D sensor onboard to identify
daily activities for a robot-assisted living application.

I. INTRODUCTION

Nowadays with the advances of technology and the broad
research worldwide, a cognitive robot can act as human
assistant in the context of robot-assisted living, and also
having the potential to offer social and entertaining interac-
tion experiences through human-robot interaction. For that,
in order to enable this natural human-robot interaction, the
robot needs to infer the human intentions, their daily routine
and potential risk situations by observing them. In this work,
we focus our attention in the domain of human daily activity
recognition. In this context, a robot that can recognize daily
activities will be useful for assisted care: human-robot or
child-robot interaction (e.g. in coping tasks); and also mon-
itoring elderly and disabled people regarding their activities
at home. In our previous work [3], we proposed a Dynamic
Bayesian Mixture Model (DBMM) that was applied as a
probabilistic loop, where the model recursively uses the prior
information to reinforce current classification as a first-order
Markov process. Herein, we are extending this model by
using the memory of the system for dynamic update of the
weighted ensemble, adjusting the weights based on previous
behaviors of the base classifiers to improve the performance
of classification. We validated the DBMM performance using
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different datasets and also using a mobile robot in an on-
the-fly application for monitoring tasks. In the scope of
human daily activity recognition, experimental results show
that our proposed probabilistic ensemble is robust and with
better performance than single classifiers and state-of-the-art
approaches as well. Notice that, our framework relies only on
3D skeleton-based features, which is enough to characterize
different classes of activities. The main impact of this work
are the following:
• Employing a local update of weights on the DBMM

using the memory of the system (i.e. previous base
classifier behaviors) to obtain better classification per-
formance.

• Modeling meaningful spatio-temporal features relying
on skeleton distances, energy model and autocorrelation
of joint translational movements, which can successfully
characterize different activities.

• Assessment and validation: (i) comparing with single
classifiers and state-of-the-art activity recognition ap-
proaches; and (ii) on-the-fly tests using a mobile robot
for robot-assisted living.

The remainder of this paper is organized as follows. Sec-
tion II covers selected related works. Section III introduces
our approach, detailing the extended model with dynamic
update of weights. The proposed skeleton-based features is
presented in section IV. Section V presents the performance
of the DBMM using state-of-the-art datasets and using a
mobile robot for assisted living. Finally, Section VI brings
the conclusion and future work.

II. RELATED WORK

By looking to recent advances of works that use RGB-
D sensors, several works focus on human-pose detection
for human activity recognition [4] [5]. In [6], a maximum
entropy Markov model (MEMM) for human activities classi-
fication was adopted, where features were modeled using the
Histogram of Oriented Gradient (HOG). In [7], each activity
is modeled into sub-activities, while object affordances and
their changes over time were used with a multi-class Support
Vector Machine (SVM) classifier. In [8], a bag of kinematic
features was used with a set of SVMs, for activity classifi-
cation. Other works on the recognition of human activities
focus their research on how to model the attributes efficiently,
to successfully obtain reliable classification [9] [10] [11].
In [12], a descriptor which couples depth and spatial infor-
mation to describe humans body-pose was proposed. This
approach is based on segmenting masks from depth images
to recognize an activity. Sparse coding and temporal pyramid



matching is proposed in [13] for human action recognition.
They use depth data for a learning algorithm that employs
a discriminative class-specific dictionary. In [14], a feature
descriptor for action recognition is presented. Depth motion
maps are built given projection views in order to capture
motion cues. Later on, a compact feature representation is ob-
tained by using local binary patterns. Regarding our proposed
framework, it allows the combination of different classifier
models, which is advantageous to increase the classification
performance. The DBMM dynamically reinforces the clas-
sification as a probabilistic loop, updating the initial learned
weights given a confidence level to generate a distribution
conditioned to the previous posteriors. Moreover, the DBMM
approach has success in obtaining better results compared
with benchmarked methods for activity recognition.

III. PROBABILISTIC CLASSIFICATION MODEL: DBMM

DBMM is an ensemble of classifiers designed to combine
a set of single classifiers (also referred as base classifiers)
towards obtaining more accurate results than any of its
individual members. For that, a probabilistic approach was
adopted, using the concept of mixture models in a dy-
namic form in order to combine conditional probabilities.
A weight is assigned to each base classifier, according to
previous knowledge (learning process), using an uncertainty
measure as a confidence level, and can be updated locally
during the online classification. In our solution, the local
weight update assigns priority to the base classifier with
more confidence along the temporal classification, since
they can vary along the different frame classifications. Fig-
ure 1 depicts an example of DBMM classification, where
base classifiers are integrated as weighted posterior distri-
butions, and previous posteriors and weights are used to
update the model. The DBMM uses a set of models A =
{A1

m,A
2
m, ...,A

T
m} where At

m is a model with m attributes; i.e.,
observed variables generated for some dynamic process at
t = {1,2...,T}. The DBMM probability distribution function
for each class P(C,A)=∏

T
t=1 P(Ct |Ct−1)×∑

n
i=1 wi×Pi(A|Ct)

can be rewritten holding the Markov property by taking the
posterior of previous time instant as the new prior as follows:

P(C|A) = β × P(Ct |Ct−1)︸ ︷︷ ︸
dynamic transitions

×
n

∑
i=1

wt
i×Pi(A|Ct),︸ ︷︷ ︸

mixture model with dynamic w

with
{

P(Ct |Ct−1)≡ 1
C (uniform), t = 1

P(Ct |Ct−1) = P(Ct−1|A), t > 1
,

(1)
where:
• P(Ct | Ct−1) is the transition probability distribution

among class variables over time. A class Ct is condi-
tioned to Ct−1. This means a non-stationary behavior
applied recursively, then reinforcing the classification at
time t.

• Pi(A|Ct) is the posterior result of each ith base classifier
at time t, becoming the likelihood in this model.

• The weight in the model for each base classifier wt
i is

initially estimated using an entropy-based confidence on
the training set (offline) as shown in our previous work
[3], and afterwards (t > 5) it is updated as explained in
the next subsection.

• β = 1
∑ j

(
P(Ct

j |C
t−1
j )×∑

n
i=1 wi×Pi(A|Ct

j)
) is a normalization fac-

tor, ensuring numerical stability once continuous update
of belief is done.

A. Dynamic Update of Weights using the System’s Memory

During a classification task, base classifiers can change the
performance over time. Thus, the local update of the weights
during the on-line classification will benefit from the fact
that the adjusted weights will produce a higher belief when
priority is assigned to a base classifier with more confidence
on previous classifications. We update the ensemble model
using the temporal information on the test set as the memory
of the system (set with previous posteriors for each base
classifier Ωs

i = {P(C|A)t−1...P(C|A)t−s} together with the
weights at the previous time instant wt−1

i . Thus, in order
to apply an update on the current weights, we compute:

wt
i =

wt−1
i ×P(wi|Hi(Ω

s))

∑
n
i=1 wt−1

i ×P(wi|Hi(Ωs))
, (2)

where wt
i is the estimated weight for each base classifier

(updated); wt−1
i is the previous weight at t− 1. In order to

obtain Hi(Ω
s), we use the memory of the system during the

classification by keeping the previous posteriors (up to 5th

order), and consequently, we acquire the the entropy on each
set of posteriors Hi(Ω

s) as follows:

Hi(Ω
s) =−

s

∑
j

Hi(Ω
j) log(Hi(Ω

j)). (3)

Knowing Hi(Ω
s) for each base classifier, the weights

P(wi|Hi(Ω
s)) are estimated inversely proportional to the

entropy:

P(wi|Hi(Ω
s)) =

[
1−
(

Hi(Ω
s)

∑
n
i=1 Hi(Ωs)

)]
∑

n
i

[
1−
(

Hi(Ωs)
∑

n
i=1 Hi(Ωs)

)] , i = {1, ...,n}, (4)

where wi is the result for each base classifier, and Hi is the
current value of entropy given by (3). The denominator in
(4) ensures that ∑i wi = 1.

B. Base Classifiers for DBMM Fusion

In this work, we have used the Naive Bayes Classifier
(NBC), Support Vector Machines (SVM) and an Artificial
Neural Network (ANN) as base classifiers for the DBMM.
The NBC assumes the features are independent from each
other given a class, P(Ci|A) = αP(Ci)∏

m
j=1 P(A j|Ci). For the

linear-kernel multiclass SVM implementation, we adopted
the LibSVM package [15], trained according to the ‘one-
against-one’ strategy, with soft margin (or Cost) parameter
set to 1.0, and classification outputs were given in terms
of probability estimates. The ANN adopted is a multilayer
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Fig. 1: Example of DBMM during frame to frame classification in activity recognition. The left image shows that during the
dynamic classification, initially the weights are learned from the training set, and later on, during the test they are updated.

feedforward network (with 40 neurons in the hidden layer),
where the hidden layer transfer function is a hyperbolic tan-
gent sigmoid and a normalized exponential (softmax) is used
for the output of the transfer function as posterior probability
estimates, conditional on the input, i.e., ∑

n
i=1 P(Ci|x) = 1.

IV. SPATIO-TEMPORAL SKELETON-BASED FEATURES

It is of utmost importance to find discriminative features of
daily activity relying on existing relations between skeleton
body parts to model their motion by correlating different time
instants. The skeleton detection and tracking is made using
depth images, adopting the OpenNi’s software development
kit for RGB-D sensor to obtain the joint locations of the
human body.

We defined a set F with 51 features per frame to dis-
criminate daily activities. Features based on skeleton joint
distances, velocities and difference of skeleton poses along
different frames are used in this work. Three types of spatio-
temporal features are substantiated in the energy concept: 1)
energy-based features using the joint velocities, 2) log-energy
entropy-based features using skeleton poses, and 3) sample
autocorrelation-based features using the distances of skeleton
poses in different time instants. The velocities energy of the
upper joints of the skeleton (i.e. seven joints: head; left and
right shoulders, hands and elbows) are computed as follows:

Euv = ∑
N
j=1(Vjx)

2 +∑
N
j=1(Vjy)

2 +∑
N
j=1(Vjz)

2,

with Vjd =
St

jd−St−s
jd

∆T , d = {x,y,z},
(5)

where for each dimension {x,y,z}, S j is a vector of di-
mension 7 × 1, whose elements are the skeleton joints;
for the computation of Vjd , the numerator corresponds to
the skeleton joints distances from t to ts preceding frames
(herein, s = 10), and the denominator corresponds to the
elapsed time ∆T = frate×ϖ (a frame rate frate = 1/30 and
a temporal slide window ϖ = 10 were used).

The second feature is based on the sum of log-energy
entropy logEs using the global skeleton joints in each di-
mension as follows:

logEs = ∑
j

log(S2
jx)+∑

j
log(S2

jy)+∑
j

log(S2
jz). (6)

The two aforementioned features enclose key poses of
movements, i.e., when the skeleton joints alternately show
acceleration and deceleration in repeated movements that
leads to changes in the energy model representation. This
information helps the characterization of drastic changes in
direction and velocities of the skeleton. The energy model
(5) is applied to the upper body part and the log-entropy (6)
is applied to all body joints.

The third feature is based on the autocorrelation function
employed on the difference of skeleton poses at time t and
t−1. The first step before computing the autocorrelation is
to obtain the translation of each skeleton joint S j from a time
instant t− 1 to the current time instant t by employing the
Euclidean distance δ{St

jd ,S
t−1
jd }

=
√

(St
jd−St−1

jd )2, d = {x,y,z},
obtaining a matrix of N×d (i.e., number of joints N and d-
dimensional space). Subsequently, the sample autocorrelation
is computed by:

r(τ) =
1

T−1 ∑
T−τ

t=1

(
δ t
{St ,St−1}−µ t

δ

)(
δ

t+τ

{St ,St−1}−µ
t+τ

δ

)
σ2 (7)

where σ2 = 1
N ∑

N
i=1

(
δ{St ,St−1}−µδ

)2
is the sample variance

and µδ is the sample mean value; and τ is the lag vari-
able of a process at different times. Since we are working
with 3D skeleton arranged in a matrix δ{St ,St−1} of 20× 3
(joints by 3 dimensions), then in order to facilitate the
autocorrelation computation, we applied a self-convolution,
whereas the autocorrelation is alike to a convolution, apart
from it does not need to flip an input about the origin.
Thus, 2D convolution in spatial form for finite intervals is
achieved by f ∗ g = c(i, j) = ∑

p
k ∑

q
l f (k, l)× g(i− k, j− l),

where f = δ{St ,St−1}, and g which commonly has the role of
the filter in convolution, herein it is in charge of the shift
of f with respect to itself (rotates about the origin) in the
plane p×q. A resulting matrix that is given by f ∗g has a
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Fig. 2: Classification results: cross-validation confusion matrix for each action set using the DBMM for the “new person”
setting (training five persons and testing on other “unseen” five). Global Prec.: 97.34%, Rec.: 97.33%, Acc.: 97.33%.

dimension of m× n (2× size(δ{St ,St−1})− 1) = 39× 5, was
then reshaped as a feature vector r of (m×n)×1 elements
to compute the autocorrelation energy Er = ∑i r2

i .
Additionally, a set of features based on Euclidean dis-

tances of the skeleton joints δ{Sd
j1,S

d
j2}

was used, as similarly
presented in [3]: 1) the minimum distance from hand (left
or right) to the head, e.g. min(δ{Sd

j1,S
d
j2}
,δ{Sd

j1,S
d
j3}
); 2) the

minimum distance from elbow (left or right) to the head; 3)
the minimum distance from hand (left or right) to the center
of the skeleton; 4) distance from the left hand to the right
hand; 5) distance from the head to the center of the hip; 6)
distance from the central knee (mean coordinate taking into
account the left and right knees) to the center of the hip; 7)
the minimum distance from foot (left or right) to the head;
8) the hand with higher changes in directions (i.e., using
the difference of the current position to a previous one); 9)
six angles obtained from triangles formed by: shoulder, hand
and elbow; hip, shoulder and knee; hip, knee and foot, all
considering left and right sides. The angle computation is
given by θi = arccos(δ 2

j12
+δ 2

j23
−δ 2

j13
/ 2×δ j12×δ j23), where

δ j12 is the Euclidean distance between two joints. These
angles are useful to discriminate stand and seated positions
or torso inclination.

Then, a stage consisting of derivatives and accumulative
values was employed on the aforementioned set of extracted
features F. We first applied a discrete derivative y = Ft−Ft−s

∆T
on each feature, where s represents a temporal slide window
of ten frames. Subsequently, we accumulated each feature
value over the frames: yt

cum = ∑
t
k=1 Fk. Thus, with these two

steps we obtained more 34 features, and F sums up to a total
of 51 features. To ensure a higher classification performance,
an essential step is employed; the extracted set of features
are normalized in such a way that, values of minimum and
maximum obtained during the training were applied on the
normalization of the test set.

V. ASSESSMENT OF THE PROPOSED FRAMEWORK ON
DATASETS AND ROBOTIC APPLICATION

Experimental tests using a mobile robot and two datasets
were performed to assess our framework. Looking at the per-

formance attained, we can state that our framework has good
potential for activity recognition in robot-assisted living.

A. Performance on MSR-Action3D Dataset

The MSR-Action3D dataset [1] contains skeleton data
from depth images captured by an RGB-D sensor at 15Hz.
MSR-Action3D comprises twenty actions, and each action
was performed by ten subjects for three times. The actions
cover various movement of arms, legs, torso and their
combinations. For performance evaluation purposes, and
concerning this dataset, we followed the same methodology
as described in [1] [2], where the dataset is split into 3 action
sets with eight actions each one as shown in Fig. 2. As stated
in [1], AS1 and AS2 group actions with similar movements,
while AS3 groups actions that are more complex. We follow
the cross-validation test as defined by [2] and [16]. The
tests were performed by training five subjects out of ten,
and testing on the other five subjects (testing on “unseen
persons”), e.g., training persons {1,3,5,7,9} and testing on
persons {2,4,6,8,10}; afterwards the opposite (even, odd);
then, training on persons {1...5} and testing on persons
{6...10}, and so on. Taking into consideration 5× 5 splits,
there are 252 possible splits in total. The overall accuracy
(average) was computed to compare our proposed frame-
work with other state-of-the-art methods. Results show that
our proposed framework outperforms other state-of-the-art
benchmarked methods using this dataset up to the current
date. The overall accuracy obtained with the DBMM was
97.33%, taking the average of all attained performances.
Figure 2 presents the overall confusion matrix for the cross-
subject classification for each action set. Table I summarizes
the results attained by the DBMM in comparison with each
single classifier and an averaged ensemble for AS1, AS2
and AS3, showing that our approach outperforms the other
classifiers (all using our skeleton features). Finally, Table II
presents the results of our DBMM approach in comparison
with other state-of-the-art methods evaluated using the MSR-
Action3D dataset. This table references some selected works,
the ones with higher overall accuracy up to date.

Our approach using only 3D skeleton features outperforms
other approaches that use features from skeleton, from depth



TABLE I: Accuracy on action sets using single classifiers, a
simple averaged ensemble (AV) and the proposed DBMM.

.

Action Set SVM Bayes ANN AV DBMM
AS1 92.8% 89.3% 90.8% 90.9% 96.6%
AS2 91.7% 88.4% 90.4% 90.1% 96.7%
AS3 94.6% 89.9% 92.7% 92.4% 98.6%

Average 93.0% 89.2% 91.3% 91.1% 97.3%

TABLE II: Comparison of approaches that use the MSR-
Action3D in terms of overall accuracy. Columns 3 an 4 point
out the feature types used by the approaches.

Method Acc SK joints Depth
Proposed framework (DBMM) 97.33% 7

* Luo et al. [13] 97.26% 7 7
Chen et al. [14] 94.90% 7

Ohn-Bar and Trivedi [17] 94.84% 7 7
Yang, Zhang and Tian [18] 91.63% 7

Chaudhry et al. [19] 90.00% 7
Evangelidis et al. [20] 89.86% 7
Oreifej and Liu [16] 88.89% 7

Wang et al. [2] 88.20% 7 7
*The approach in [13] obtained 96.7% when using only skeleton features

and even approaches that combine both.

B. Performance on MSR-DailyActivity3D Dataset

The MSR-DailyActivity3D [2] is another dataset with
depth images and 3D skeleton data from an RGB-D sensor
that was used herein to evaluate our approach. It contains
16 activities: 1-drink, 2-eat, 3-read book, 4-call cellphone,
5-write on a paper, 6-use laptop, 7-use vacuum cleaner, 8-
cheer up, 9-sit still, 10-toss paper, 11-play game, 12-lie down
on sofa, 13-walk, 14-play guitar, 15-stand up, 16-sit down
performed by 10 subjects twice, where one trial is in standing
position, and the second in sitting position on a sofa. We
followed the state-of-the-art methodology [2] for evaluation
of our framework. This dataset has all 16 activities in a single
scenario, i.e., a multi-class cross-subject classification. The
tests were performed in the same way of the MSR-Action3D
by training five subjects out of ten, and testing on the other
five subjects (“unseen persons”). The results attained are
shown by means of a confusion matrix in Fig. 3. To the best
of our knowledge, our results outperforms other state-of-the-
art methods applied on MSR-DailyActivity3D dataset up to
the current date. The overall performance obtained with the
DBMM approach are: precision of 97.39%; recall of 96.83%;
and accuracy of 96.83%. Table III shows the overall accuracy
of our approach compared with some selected works of the
state-of-the-art, i.e. the ones with higher accuracy for this
dataset up to the current date.

C. Performance using a Mobile Robot

In order to evaluate our approach using a mobile robot,
we built a dataset (e.g. Fig. 4) with RGB-D image sequences
and skeleton data to learn human daily activities, such as 1-
walking, 2-stand/still, 3-talking on the phone, 4-working on a
computer and 5-sitting; and for suspicious or risk situations:
6-jumping, 7-falling down, 8-running. We recorded 4 persons
performing 3 times each activity during 30 up to 45 seconds.

Fig. 3: Confusion Matrix obtained from the DBMM classi-
fication applied on the MSR-DailyActivity3D dataset.

TABLE III: Comparison of approaches that use the MSR-
DailyActivity3D in terms of overall accuracy. Columns 3 an
4 point out the feature types used by the approaches.

Method Acc SK joints Depth
Proposed framework (DBMM) 96.83% 7

Luo et al. [13] 95.00% 7 7
Xia and Aggarwal [21] 88.20% 7 7

Wang et al. [2] 85.75% 7 7

Robot Operating System (ROS) packages in hydro version
were used to program the mobile robot to navigate in
an indoor environment. For that, the robot has different
sensors onboard, such as laser for mapping and localization,
avoiding obstacle collision, and an RGB-D sensor for human
body detection for skeleton tracking and human activity
recognition. Reminding that, in this work, the focus of our
attention is on the evaluation of our probabilistic approach
for activity recognition on-the-fly, thus, herein we do not
detail other robot functionalities (e.g., navigation and robot
(re)actions). Once the skeleton is detected in a range of two
up to five meters to the RGB-D sensor, the robot starts the
activity recognition. In this experiment, a robot response is
assigned for each activity that is recognized (e.g. during a
monitoring task, when a usual activity is classified, the robot
will just re-position itself to keep monitoring). For each risk
situation detected, the robot is supposed to assist somehow,
by sending warnings or calling relatives to report the current
situation. Figure 5 shows the cognitive system for activity
recognition in robot-assisted living (monitoring task) using
ROS environment1.

The strategy to test an on-the-fly application using a
mobile robot is a little different than the evaluation on
datasets. In this case, the DBMM classification is made in
3 up to 5 seconds to guarantee a confidence for a final
decision, i.e., after recognizing the activity, the robot will
respond with an action. Figure 6 shows few snapshots of the
experiments of daily activities including a risk situation that

1A video demonstrating our approach for robot-assisted living can be
seen at https://youtu.be/FAfLj28_iSM

https://youtu.be/FAfLj28_iSM


Fig. 4: Few examples of the dataset (RGB and depth images)
which was built to learn some daily and risk situations.
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Fig. 5: Architecture in ROS of our artificial cognitive system
for robot-assisted living.

our mobile robot correctly recognized. During the on-the-fly
experiments using a mobile robot, all activities performed
twice by two “unseen” persons were correctly classified. The
overall confidence of classification in the context of robot-
assisted living is presented in a confusion matrix as shown
in Fig. 7, with overall accuracy of 90.46%. We noticed that
the activities can be correctly classified with a high certainty
within 3 up to 6 seconds of frames by frame classification.
The activities walking and running were the ones with more
misclassification due to their strong similarities.

VI. CONCLUSION AND FUTURE WORK

A dynamic probabilistic ensemble of classifiers (DBMM)
using a local update of weights was designed for activity
recognition. The local weighting strategy to update the model
has shown through experimental results to be very effective
given a set of suitable features. Two well-known state-of-the-
art datasets of human daily activities, Microsoft Research [1]
[2], were used to evaluate the performance of our approach.
The classification performance in terms of overall accuracy
has shown that our proposed framework outperforms other
methods in the scope of human daily activity recognition. In
addition, we performed experimental tests of our approach
running on-the-fly in a mobile robot for monitoring daily
activities and risk situations, showing that it has potential
to successfully be used in robot-assisted living applications.
Future work will exploit and extend our framework for robot-
assisted living and natural human-robot interaction scenarios.
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