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Abstract

This paper addresses the problem of online quality prediction in processes with multiple operating modes. The paper proposes a

new method called mixture of partial least squares regression (Mix-PLS), where the solution of the mixture of experts regression

is performed using the partial least squares (PLS) algorithm. The PLS is used to tune the model experts and the gate parameters.

The solution of Mix-PLS is achieved using the expectation-maximization (EM) algorithm, and at each iteration of EM algorithm

the number of latent variables of the PLS for the gate and experts are determined using the Bayesian information criterion. The

proposed method, shows to be less prone to overfitting with respect to the number of mixture models, when compared to the

standard mixture of linear regression experts (MLRE). The Mix-PLS was successfully applied on three real prediction problems.

The results were compared with five other regression algorithms. In all the experiments, the proposed method always exhibits the

best prediction performance.
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1. Introduction

Today, soft sensors have many applications in industry (e.g.

fault detection, process monitoring, prediction of critical vari-

ables, and control) [1, 2, 3]. The major number of soft sensors

applications consists on the prediction of critical or hard-to-

measure1 variables, where easy-to-measure variables (i.e. phys-

ical sensors) are used in a model to predict the hard-to-measure

variable. Such model can be learned using the underlying

knowledge about the process (white-box modeling), or using

the available historical data to learn a data-driven model (data-

driven modeling, or black-box modeling) or using both the un-

derlying knowledge and the available data (gray-box model-

ing). The most popular data-driven models used in soft sen-

sors applications are the multiple linear regression, with least

squares (LS) or partial least squares (PLS) estimation methods,

neural networks based models (NN), and support vector regres-

sion (SVR) models. The PLS solution is the most popular and

mostly applied solution when comparing to the other methods

[4, 5, 6, 7, 8, 9]. Its popularity is motivated by its robustness un-

der data collinearity, under measurement errors and under high

dimensionality of input space, which are common characteris-

tics in most industrial soft sensors applications. NN and SVR
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1The term hard-to-measure variable, employed here, refers to a variable

which can not be measured by physical sensors, due the unavailability of sensor.

Usually, this kind of variable is measured by laboratory analysis.

models are usually applied in situations where the input-output

relationship is non-linear.

In almost all soft sensor applications, a single model is tuned

using all available training samples, without distinguishing the

operating modes of the process during the training phase. How-

ever, the existence of multiple operating modes in a process

is an inherent characteristic of most industrial applications.

Sometimes multiple operating modes result from external dis-

turbances, as for example a change in feedstock or product

grade or even changes such as the diurnal load variation of

a power plant or the summer-winter operation of a refinery

[10, 11]. In these situations, it would be beneficial for the pre-

diction accuracy and reasonabilily, to consistently train a model

for each operating mode of the process [12], or train a model

for each set of correlated operating modes [13]; And during on-

line operation, when a new sample is made available, the model

which is the most adequate for this new sample is identified

and then used to make the prediction. The identification of

which model will be used is a key issue in the development

[13, 14, 15], which can be done using expert knowledge [13]

or using automatic tools, as finite mixture of Gaussian models

(FMGM) [12].

In this context, in [13] the authors work on modeling the op-

erating modes in a polymerization batch process case study.

The correlated operating modes have been grouped, and then

a separate PLS model is tuned for each set of correlated oper-

ating modes. During online operation, the incoming sample is

assigned to the corresponding mode and its model is used for

the prediction. However, in [13] the expert knowledge of op-

erators has been used to determine the operating modes and in

some cases this information can be not available.
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Figure 1: Mixture of linear regression models with P experts, where

x(i) is an input sample, υp(x(i),V) is the output of gating function for

model p and f (x(i), θp) is the output of the linear model of expert p.

Another approach, based on the FMGM, was proposed in

[12]. In this work, the FMGM is used to automatically iden-

tify the different operating modes of the process. Then multiple

localized Gaussian process regression models in the nonlinear

kernel space were built to characterize the different dynamic

relationships between process and quality variables within the

identified operating modes. During online operation, the in-

coming sample is assigned automatically to the corresponding

submodel, using the FMGM. The major drawback of [12] is that

the determination of the operation modes and model tuning are

done separately, i.e. the set of operating modes are determined

independently of the model used. However, as verified in the

case of study of [13], a model can be set for more than one

operating mode, with the advantage of reducing the number of

necessary models and increase the available number of samples

for tuning each model. Another drawback of [12] is that the

number of samples used for tuning each model is constrained

by the number of samples of each operating mode, which can

lead to poor modeling on the corresponding operating mode,

depending on the chosen model and the available samples.

In this work, for the first time, the use of a mixture of partial

least squares (PLS) experts (Mix-PLS) for dealing with online

prediction of critical variables in processes with multiple oper-

ating modes is proposed. The Mix-PLS will be derived from the

framework of mixture of experts (ME) [16]. The ME models

input-output observations by assuming that they have been pro-

duced by a set of different random sources (the random sources

can be thought of as operating modes). Each random source in

the ME framework is modeled by an expert, and during the on-

line operation the decision about which experts should be used

is modeled by a gating function. Fig. 1 illustrates this approach.

The learning of parameters in ME can be done using the max-

imum likelihood method and the expectation and maximization

(EM) algorithm [17]. By modeling the experts by a Gaussian

linear regression and the gating functions as a softmax function,

the ME is then reduced to a mixture of linear regression experts

(MLRE) [16, 18]. However, the standard MLRE cannot handle

input collinearity, and its solution is more prone to overfitting

with respect to the number of experts used [19].

In this work the parameters of each expert and for each gating

function are determined using the PLS algorithm. The solution

of the parameters using the PLS algorithm overcomes the prob-

lem of collinearity of input data and also makes the Mix-PLS

less prone to overfitting with respect to the number of mixture

models. For the best of the authors’s knowledge, there is no

reference in the literature for solving the MLRE using PLS. See

[19] for a recent complete survey about mixture of experts.

In the experimental part, the Mix-PLS is then applied in three

real prediction problems. Moreover, the proposed Mix-PLS is

compared with the state of the art methods of soft sensors: a sin-

gle PLS model, a single layer neural network (SLNN) trained

using the gradient descent training algorithm, a least squares

support vector regression (LS-SVR) with Gaussian kernel [20]

and with the multiplicative linear regression (MLR). The exper-

imental results indicate that the recursive Mix-PLS outperforms

the other methods. Moreover, the Mix-PLS has the advantage

of being more interpretable than the non linear models with re-

spect to the parameters.

The paper is organized as follows. Section 3 reviews the PLS

algorithm and its parameters selection. The proposed Mix-PLS

method is presented in Section 4. Section 5 presents experi-

mental results. Section 6 presents a discussion. Finally, Section

7 gives concluding remarks.

2. Notation

The notation used here is defined as follows, x(i) =

[x1(i), . . . , xD(i)]T and y(i) are the vector of input variables and

the output target at instant i, X, with elements Xi j = x j(i), and y,

with elements yi,1 = y(i) are the input matrix and output vector

containing all the k examples. Moreover, X = X1 × . . . × XD,

and Y, denote the space of input variables values and the space

of output values, respectively, where X ⊂ R
D and Y ⊂ R. A

subscript k will be used to denote the value of the corresponding

variable after k samples.

3. Partial Least Squares

PLS regression is a method for finding the parameters θ =

[θ1, . . . , θD]T of a linear model of the form f (x, θ) = θ
0
+

∑D
j=1 θ j

x j from a given a set of input-output samples Φ =

{(x(i), y(i)); i = 1, . . . , k}. This model is composed by a lin-

ear combination of the inputs for regression. The objective of

the design of the linear combination is to maximize the covari-

ance between the input and output spaces. The PLS estimation

method is attractive because it works well on high dimensional

data, noisy data, and data with collinearity, which are common

characteristics in most industrial applications.

More specifically, PLS projects the information of the data

into a low dimensional space defined by a small number of

orthogonal latent vectors tm and um, with T = (t1, . . . , tM) ∈

R
k×M (with M ≤ D as the number of latent variables) and



U = (u1, . . . ,uM) ∈ Rk×M:

X = TPT + E =

M
∑

m=1

tmpT
m + E, (1)

y = TBQT + F =

M
∑

m=1

umqT
m + F, (2)

where U = TB, P = (p1, . . . ,pM) ∈ R
D×M and Q =

(q1, . . . ,qM) ∈ R
1×M are the loading matrices, E and F are the

input and output data residuals, B = diag(b1, . . . , bM) is a diag-

onal matrix with the regression weights bm. Then, the estimated

output ŷ, given an input sample x, is given by:

ŷ = xT
θ, (3)

where θ = P†BQT , and P† = (PPT )−1P is the pseudo-inverse

of P. The values of bm (m = 1, . . . ,M), T, P, U, Q from the

above problem can be computed by using the classical Nonlin-

ear Iterative Partial Least Squares (NIPLS or NIPALS) method

[21].

3.1. Selecting the Number of Latent Variables

LetM be such that M ∈ M, for any possible/eligible number

of latent variables, M. The major concern regarding the PLS al-

gorithm is to select the number of latent variables M. Usually

it is determined by a K-fold cross-validation procedure applied

on the training set [22, 23, 24]. In K-fold cross validation the

training set is split randomly into K subsets or folds, then the

PLS is trained using the samples from the (K − 1) folds and

evaluated in the remaining fold using any performance metric,

usually the residual sum of squares (RSS); e.g. lower values

of RSS indicate better models. It is repeated for all folds K,

and with different values for the number of latent factors. The

selected number of latent factors M is the one that produced

the lowest average cross-validation performance metric among

these K realizations. However, the K-fold cross-validation pro-

cedure is very efficient as long as k (the number of samples)

is not too large, since it needs to run the PLS algorithm K|M|

times. A fast way of selecting the number of latent variables is

using information criterion methods, like the Akaike Informa-

tion Criterion (AIC) [25] or the Bayesian Information Criterion

(BIC) [26], which measure the quality of a model in terms of its

accuracy-complexity trade-off (ACT). Using information crite-

rion methods, the PLS algorithm runs just |M| times [27].

However, the major concern when applying information cri-

terion methods to evaluate the ACT in the PLS algorithm is to

determine the number of its degrees of freedom (DOF) (num-

ber of free parameters) of the PLS. Usually the DOF is set to

be equal to the number of latent variables, but this is a wrong

assumption and does not lead to satisfactory results in the se-

lection of the number of latent variables [28, 29]. This problem

of determining the DOF in a PLS model was addressed in [29],

where an unbiased estimate of the DOF has been proposed. The

use of 10-fold cross validation (using the RSS measure), and

AIC and BIC criteria (both with the proposed DOF estimate)

to select the number of latent variables has been compared. It

has been concluded that BIC and 10-fold cross validation pro-

vide the best results, with similar performance for both, and

with much lower computational cost associated with the BIC

computations.

Thus, in this work, the BIC criterion will be used to select

the number of latent vectors for the PLS algorithm, for each

expert and each gate of the Mix-PLS (the proposed implemen-

tation will be detailed in Section 4). Assume that variable y

has an approximation uncertainty modeled by a Gaussian pdf

N(y(i)| f (x(i), θ), σ2), where f (x, θ) is the mean, and σ2 is the

variance. For a linear model f (x, θ) = xTθ, where θ is deter-

mined using the PLS method with m ∈ M latent vectors, the

BIC of the model for the data set {X, y} is equal to:

BIC(m) = −2 ln

k
∏

i=1

N(y(i)| f (x(i), θ), σ2) + d(m,X, y,T) ln(k),

(4)

where the quantity ln
∏k

i=1N(y(i)| f (x(i), θ), σ2) is the log like-

lihood which accounts for the model accuracy, and the second

term d (m,X, y,T) is the number of DOF of the PLS regressor,

which relates to model complexity (see [29] for implementation

details of d(·)).

4. Mixture of Partial Least Squares Regression Experts

In this section, the formulas for the learning of the Mix-PLS

are going to be derived. For the learning, the parameters of the

Mix-PLS are tuned using a set of observations Φ. This section

also discusses the determination of the number of experts to be

used.

4.1. Mixture of Experts

The ME approximates the true pdf p(y(i)|x(i)) with the fol-

lowing superposition of individual pdfs:

p(y(i)|x(i),ϑ) =

P
∑

p=1

υp (x(i),V) p
(

y(i)| fp(x(i), θp),Ω
)

, (5)

where P is the number of experts, ϑ = {V,E}, V and E = {Θ,Ω}

are defined as the sets of parameters of the gates and model

experts, respectively, Θ = {θp| p = 1, . . . , P}, υp(x(i),V) is the

gating function of expert p, and p
(

y(i)| fp(x(i), θp),Ω
)

is the pdf

of expert model p, with mean fp(x(i), θp) and additional pdf

parameters Ω. From Eq. (5), the prediction equation of the ME

is obtained as the following conditional mean of y:

F(x(i)) =

∫

y p
(

y|x(i),ϑ
)

dy

=

∫

y

P
∑

p=1

υp (x(i),V) p
(

y| fp(x(i), θp),Ω
)

dy

=

P
∑

p=1

υp (x(i),V) fp(x(i), θp). (6)



In the ME the log likelihood of Eq. (5), given a set of obser-

vations Φ is given by [16]:

ln p(y|X,ϑ) = ln
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(7)

where Z denotes a set of hidden variables Z = {zp(i)| p =

1, . . . , P, i = 1, . . . , k}, and z(i) = [z1(i), . . . , zP(i)]T is the vector

of hidden variables for a sample i, where zp(i) ∈ {0, 1}, and for

each sample i, all variables zp(i) are zero, except for a single

value of zp(i) = 1, for some p. The hidden variable zp(i) in-

dicates which expert p was responsible for generating the data

point i. The distributions p(z(i)|x(i),V) and p(y(i)|x(i), z(i),E)

are defined as follows [30]:

p(z(i)|x(i),ϑ) = p(z(i)|x(i),V)

=

P
∏

p=1

[

p(zp(i)|x(i),V)
]zp(i)

= p
(

zp(i) = 1|x(i),V
)

, (8)

p(y(i)|x(i), z(i),ϑ) = p(y(i)|x(i), z(i),E)

=

P
∏

p=1

[

p(y(i)|x(i), zp(i),E)
]zp(i)

= p
(

y(i)|zp(i) = 1, x(i),E
)

. (9)

Then, from Eqs. (7)-(9):

ln p(y|X,ϑ) =

k
∑

i=1

ln

















P
∑

p=1

p
(

zp(i) = 1|x(i),V
)

p
(

y(i)|zp(i) = 1, x(i),E
)

















.

(10)

The maximization of Eq. (10) is not straightforward [30, 16].

In order to maximize Eq. (10) the Expectation-Maximization

(EM) algorithm is going to be employed. The EM algorithm is a

general method for finding the maximum-likelihood estimate of

the parameters of an underlying distribution from a given data

set when the data has hidden variables [17, 30]. The learning of

the mixture of experts by the EM algorithm is summarized in

Algorithm 1. During the Expectation step (E step) of the EM,

the current parameter values ϑ
(old)

are used to estimate the pos-

terior distribution of hidden variables p(Z|y,X,ϑ
(old)

). Then,

in the Maximization step (M step), this posterior distribution

is used to find the new parameters values ϑ
(new)

, which maxi-

mize the expectation of the complete-data (output and hidden

Algorithm 1 EM Algorithm

1. Initialize ϑ to be equal to some initial ϑ
(old)

;

2. Repeat 3) to 5) until the EM algorithm converges*;

3. E step:

a) Estimate the distribution p(Z|y,X,ϑ
(old)

) using (12);

4. M step:

a) Find the new parameters values ϑ
(new)

, which maxi-

mize the expectation of the complete-data log likeli-

hood Q(ϑ,ϑ
(old)

).

i. ϑ
(new)
= arg maxϑ Q(ϑ,ϑ

(old)
) =

= arg maxϑ

(

∑

Z ln p(y,Z|X,ϑ)p(Z|y,X,ϑ
(old)

)
)

(Equation (17));

5. Set ϑ
(old)
← ϑ

(new)
;

6. Return ϑ
(new)

.

*The convergence of the EM algorithm can be verified by ana-

lyzing the convergence of the expectation Q(ϑ,ϑ
old

). It is also

possible to set pre-specified maximum number of iterations.

variables) log likelihood

Q
(

ϑ,ϑ
(old)
)

= EZ[ln p(y,Z|X,ϑ)]

=
∑

Z

ln p(y,Z|X,ϑ) p(Z|y,X,ϑ
(old)

). (11)

To perform the E step, the Bayes theorem and equations (7)-
(9) are used to calculate the posterior distribution of the hidden
variables, p(Z|y,X,ϑ), as follows:

p(Z|y,X,ϑ) =
p(y|X,Z,ϑ)p(Z|X,ϑ)

p(y|X,ϑ)
,

=

k
∏

i=1

P
∏

p=1

















p
(

y(i)|zp(i), x(i),E
)

p
(

zp(i)|x(i),V
)

∑P
p=1

[

p
(

zp(i)|x(i),V
)

p
(

y(i)|zp(i), x(i),E
)]

















zp(i)

.

(12)

For the M step, the value of p(y,Z|X,ϑ), necessary to com-

pute Q(ϑ,ϑ
(old)

) Eq. (11) is obtained using Eqs. (8)-(9) as fol-

lows:

p(y,Z|X,ϑ) = p(y|X,Z,ϑ) p(Z|X,ϑ),

=

k
∏

i=1

P
∏

p=1

[

p
(

zp(i)|x(i),V
)

p
(

y(i)|zp(i), x(i),E
) ]zp(i)

.

(13)

The expectation of the complete-data log likelihood (11) can

be computed using Eqs. (12) and (13). First, taking the loga-

rithm of p(y,Z|X,ϑ):

ln p(y,Z|X,ϑ) =

k
∑

i=1

P
∑

p=1

(

zp(i)
[

ln p
(

zp(i) = 1|x(i),V
)

+ ln p
(

y(i)|zp(i) = 1, x(i),E
) ]

)

,

(14)



and then computing the expectation of ln p(y,Z|X,ϑ) with re-

spect to the posterior distribution of hidden variables Z:

Q(ϑ,ϑ
(old)

) =
∑

Z

ln p(y,Z|X,ϑ) p(Z|y,X,ϑ
(old)

),

=

k
∑

i=1

P
∑

p=1

γ(old)
p (i) ln p

(

zp(i) = 1|x(i),V
)

+

k
∑

i=1

P
∑

p=1

γ(old)
p (i) ln p

(

y(i)|zp(i) = 1, x(i),E
)

= Qg(V,ϑ
(old)

) + Qe(E,ϑ
(old)

), (15)

where γ
(old)
p (i), defined as the responsibility of model p, is the

expectation of zp(i) with respect to its distribution (12), and it
accounts for the probability of model p generating the data sam-
ple i:

γ(old)
p (i) =

p
(

zp(i) = 1|x(i),V(old)
)

p
(

y(i)|zp(i) = 1, x(i),E(old)
)

∑P
l=1

[

p
(

z
l
(i) = 1|x(i),V(old)

)

p
(

y(i)|z
l
(i) = 1, x(i),E(old)

)] .

(16)

In Eq. (15), Qg and Qe are the contributions of gate and expert

parameters for the expectation of complete-data log likelihood.

Then, the M step of the EM algorithm can be performed, by

separately maximizing the gate and expert contributions, as fol-

lows:

ϑ
(new)
= arg max

ϑ

Q(ϑ,ϑ
(old)

),

=

{

arg max
V

Qg(V,ϑ
(old)

), arg max
E

Qe(E,ϑ
(old)

)

}

. (17)

Thus, the determination of the parameters for the gates V and

the experts E is independently performed by the maximizations

in Eq. (17). In the Mix-PLS, such maximizations are done using

the PLS algorithm, as derived in Subsections 4.2 and 4.3 below.

4.2. Modeling the Experts With the PLS Algorithm

In this paper, it is assumed that each pdf

p
(

y(i)|zp(i) = 1, x(i),E
)

in Qe(E,ϑ
(old)

) Eq. (15) is described

by a Gaussian distribution N
(

y(i)| fp(x(i), θp), ωp

)

, where

fp(x(i), θp), and ωp are the mean and variance of the model of

expert p, respectively. The mean is modeled by a linear model

fp(x(i), θp) = xT(i)θp. Specifically, the experts parameters

E = {Θ,Ω}, include the parameters of Θ = {θp| p = 1, . . . , P},

andΩ = {ωp| p = 1, . . . , P}. Thus, the contribution Qe(E,ϑ
(old)

)

of all experts to the expectation of complete data log likelihood

(15) can be rewritten as:

Qe(E,ϑ
(old)

) =

P
∑

p=1

Qe,p

({

θp, ωp

}

,ϑ
(old)
)

, (18)

Qe,p

({

θp, ωp

}

,ϑ
(old)
)

=

k
∑

i=1

γ(old)
p (i) lnN

(

y(i)| fp(x(i), θp), ωp

)

,

(19)

where Qe,p

({

θp, ωp

}

,ϑ
(old)
)

is the contribution of expert p, and

from Eq. (16) the responsibility γ
(old)
p (i) is equal to:

γ(old)
p (i) =

υ
(old)
p (i)N

(

y(i) | fp

(

x(i), θ
(old)
p

)

, ω
(old)
p

)

∑P
l=1 υ

(old)

l
(i)N

(

y(i) | fl
(

x(i), θ
(old)

l

)

, ω
(old)

l

) , (20)

where υ
(old)
p (i) = p

(

zp(i) = 1 | x(i),V(old)
)

is the probability of

model p generating sample i, which is going to be determined

in Section 4.3.

Then, Qe(E,ϑ
(old)

) is maximized with respect to E by solving

equations
∂Qe

(

E,ϑ
(old)

)

∂θp
= 0, and

∂Qe

(

E,ϑ
(old)

)

∂ωp
= 0, which gives the

following solution:

θ
(new)
p =

(

XT
ΓpX
)−1

XT
Γpy, (21)

ω(new)
p =

∑k
i=1 γ

(old)
p (i)

(

y(i) − fp

(

x(i), θ
(new)
p

))2

∑k
i=1 γ

(old)
p (i)

=

∣

∣

∣

∣

∣

∣y(Γ,p) − X(Γ,p)θ
(new)
p

∣

∣

∣

∣

∣

∣

2

Tr(Γp)
, (22)

where Γp = diag
(

γ
(old)
p (1), γ

(old)
p (2), . . . , γ

(old)
p (k)

)

is a diagonal

matrix, and y(Γ,p) and X(Γ,p) are defined in Eqs. (23)-(24). As

can be noticed, the maximization of Qe Eq. (18) is equivalent

to a weighted least squares problem, where the responsibility

γ
(old)
p (i) is the importance of each sample.

In this work, the parameters of each model θ
(new)
p Eq. (21) is

going to be solved using the PLS algorithm. In the PLS algo-

rithm, from Eqs. (1)-(2), the inputs X and output y are tradition-

ally represented through their approximation with M latent and

loading variables representation, i.e. X ≈ TPT and y ≈ TBQT .

However, solving Eq. (21) after replacing these approximations

is not straightforward. A simpler approach is to multiply both

X and y by
√

Γp, so that the weighted representation of X and

y becomes equal to:

X(Γ,p) =

√

ΓpX ≈ T(Γ,p)P
T
(Γ,p), (23)

y(Γ,p) =

√

Γpy ≈ T(Γ,p)B(Γ,p)Q
T
(Γ,p), (24)

where X(Γ,p) and y(Γ,p) are the weighted inputs and output matri-

ces of model p with weight matrix Γp. T(Γ,p) and P(Γ,p) are the

PLS latent and loading matrices of the weighted input X(Γ,p),

and B(Γ,p) and QT
(Γ,p) are the PLS latent and loading matrices

of the weighted output y(Γ,p). It is assumed that the weighted

input and output decomposition for expert p through the PLS

algorithm are made with Mep latent variables.

Then, by replacing Eq. (23) and Eq. (24) into Eq. (21), the
parameters of model p can be written as:

θ
(new)
p =

(

XT
(Γ,p)X(Γ,p)

)−1
XT

(Γ,p)y(Γ,p),

=

(

(

T(Γ,p)P
T
(Γ,p)

)T (

T(Γ,p)P
T
(Γ,p)

)

)−1 (

T(Γ,p)P
T
(Γ,p)

)T
T(Γ,p)B(Γ,p)Q

T
(Γ,p),

=
(

P(Γ,p)P
T
(Γ,p)

)−1
P(Γ,p)B(Γ,p)Q

T
(Γ,p). (25)



At each new iteration of the EM algorithm, the values of re-

sponsibility γ
(old)
p (i) computed in the expectation step change.

Consequently the values of weighted input matrix X(Γ,p) and

output vector y(Γ,p) change. Then, the number of latent vari-

ables Mep necessary to represent X(Γ,p) and y(Γ,p) should be re-

computed for a proper representation.

As discussed before, the use of K-fold cross validation to

determine Mep would computationally overload the EM algo-

rithm, since at each new iteration the cross validation would

need to be run K|M| times. Then, at each new iteration, the

number of latent variables is going to be determined using the

BIC measure (4), which needs to run just |M| times. Since

each sample y(i) has a weight γ
(old)
p (i), then the weighted log-

likelihood (WLL, lnLw) [31] is going to be used instead of the

log-likelihood in the first term of the r.h.s. of Eq. (4). Thus,

to compute the BIC for expert p, it is necessary to determine

the WLL of its approximation model. From the definition of

weighted likelihood [31], the WLL of a PLS model with sam-

ple weights γ
(old)
p (i), is equal to:

lnLw = ln

k
∏

i=1

N
(

y(i) | fp

(

x(i), θp

)

, ωp

)γ
(old)
p (i)

=

k
∑

i=1

γ(old)
p (i) lnN

(

y(i) | fp

(

x(i), θp

)

, ωp

)

, (26)

and it is equal to Qe,p

({

θp, ωp

}

,ϑ
(old)
)

in Eq. (19). Then, the

BIC when using m latent variables for expert p is:

BICE(p,m) = −2Qe,p

({

θp, ωp

}

,ϑ
(old)
)

+
1

2
d

(

m,

√

ΓpX,

√

Γpy,T(Γ,p)

)

ln(k),

= −2

k
∑

i=1

γ(old)
p (i) lnN

(

y(i)| fp(x(i), θp), ωp

)

+
1

2
d
(

m,X(Γ,p), y(Γ,p),T(Γ,p)

)

ln(k),

=

k
∑

i=1

γ(old)
p (i)





















ln(2πωp) +

(

xT (i)θp − y(i)
)2

ωp





















+
1

2
d
(

m,X(Γ,p), y(Γ,p),T(Γ,p)

)

ln(k),

= Tr
(

Γp

)

ln
(

2πωp

)

+

∣

∣

∣

∣

∣

∣X(Γ,p)θp − y(Γ,p)

∣

∣

∣

∣

∣

∣

2

ωp

+ d
(

m,X(Γ,p), y(Γ,p),T(Γ,p)

)

ln(k). (27)

Then, at each iteration of the EM algorithm, the number of la-

tent variables used for the PLS model of expert p is determined

by:

Mep = arg min
m∈M

BICE(p,m). (28)

4.3. Modeling the Gates with the PLS Algorithm

Let the gate parameters be V = {vp| p = 2, . . . , P}, where vp

is the regression coefficient of gate p. In this work, the gate of

each expert in Eq. (5) is modeled using the softmax function as

follows:

υp(i) = p
(

zp(i) = 1|x(i),V
)

=



















1

1+
∑P

l=2 exp(xT(i)vl)
, p = 1,

exp(xT(i)vp)
1+
∑P

l=2 exp(xT(i)vl)
, p = 2, . . . , P,

(29)

where υp(i) is used as a simplified notation for υp(x(i),V).

It can be seen that Eq. (29) keeps valid the constraint
∑P

p=1 p
(

zp(i) = 1|x(i),V
)

= 1. Then, the gate contribution

Qg(V,ϑ
(old)

) to Q(ϑ,ϑ
(old)

) (see Eq. (15), Eq. (17)) can be

rewritten as:

Qg(V,ϑ
(old)

) =

k
∑

i=1

P
∑

p=1

γ(old)
p (i) ln p

(

zp(i) = 1|x(i),V
)

,

=

k
∑

i=1

















P
∑

p=2

γ(old)
p (i) xT(i)vp

−

P
∑

p=1

γ(old)
p (i) ln















1 +

P
∑

l=2

exp
(

xT(i)vl

)































. (30)

In order to find the parameters V to update the gating param-

eters in the M step, it is necessary to maximize Eq. (30). The

maximization of Qg(V,ϑ
(old)

) with respect to each gate param-

eter vp is going to be obtained by the iterative reweighted least

squares (IRLS) method [18, 32] as follows:

v(new)
p = v(old)

p +















−
∂2Qg(V,ϑ

(old)
)

∂vpvT
p















−1 












∂Qg(V,ϑ
(old)

)

∂vp















. (31)

From Eq. (30), the derivatives in Eq. (31) can be obtained:















−
∂2Qg(V,ϑ

(old)
)

∂vpvT
p















−1

=
(

XT RpX
)−1
, (32)















∂Qg(V,ϑ
(old)

)

∂vp















= XT up, (33)

where Rp = diag(υp(1)(1 − υp(1)), υp(2)(1 −

υp(2)), . . . , υp(k)(1 − υp(k))) is a diagonal matrix and

up =
[

γ
(old)
p (1) − υp(1), γ

(old)
p (2) − υp(2), . . . , γ

(old)
p (k) − υp(k)

]T
.

After some manipulations, Eq. (31) can be transformed to:

v(new)
p =

(

XT RpX
)−1

XT Rpzp, (34)

where zp = Xv
(old)
p − R−1

p up. Now the parameters vp for p > 1

can be solved using the PLS algorithm, similarly to the method

that was used to determine the expert parameters (Section 4.2).

Using Eqs. (1)-(2), the weighted input and output values are

written in terms of their latent and loading variables as follows:

X(R,p) =

√

Rp X ≈ T(R,p)P
T
(R,p), (35)

z(R,p) =

√

Rp zp ≈ T(R,p)B(R,p)Q
T
(R,p), (36)



where X(R,p) and z(R,p) are the weighted input matrix and

weighted output vector of model p with weight matrix Rp,

and T(R,p) and P(R,p) are the latent and loading matrices of

weighted input X(R,p) and similarly, B(R,p) and QT
(R,p) are

the latent and loading matrices of weighted output z(R,p) =

[z(R,p)(1), . . . , z(R,p)(k)]T . It is assumed that the weighted input

and output decompositions through the PLS algorithm are made

with Mgp latent variables.
Then, from Eqs. (34)-(36) the parameters vector of each gate

p is updated using the PLS algorithm as follows:

v(new)
p =

(

XT
(R,p)X(R,p)

)−1
XT

(R,p)z(R,p),

=

(

(

T(R,p)P
T
(R,p)

)T (

T(R,p)P
T
(R,p)

)

)−1 (

T(R,p)P
T
(R,p)

)T
T(R,p)B(R,p)Q

T
(R,p),

=
(

P(R,p)P
T
(R,p)

)−1
P(R,p)B(R,p)Q

T
(R,p). (37)

As in the case of the expert model parameters, the number of

latent variables to represent X(R,p) and z(R,p) should be recom-

puted at each new iteration. The parameter vector solution (37)

of gate p has a weighted least squares solution, similar to the

solution (25) of parameter vector of expert p. Then, the BIC

for a gate p can be computed by adapting the expression for the

BIC of expert p (27) by changing the weighted input, X(Γ,p),

and output, y(Γ,p), to X(R,p) and z(R,p), respectively, and redefin-

ing the variance ωp to ̟p. Then, the BIC value for a gate p,

represented by BICG(p,m) is equal to:

BICG(p,m) = Tr
(

Rp

)

ln
(

2π̟p

)

+

∣

∣

∣

∣

∣

∣X(R,p)vp − z(R,p)

∣

∣

∣

∣

∣

∣

2

̟p

+ d
(

m,X(R,p), z(R,p),T(R,p)

)

ln(k), (38)

where̟p is the variance of the Gaussian model that models the

uncertainty of z(R,p):

̟p =

∣

∣

∣

∣

∣

∣z(R,p) − X(R,p)vp

∣

∣

∣

∣

∣

∣

2

Tr(Rp)
. (39)

Then, the number of latent variables Mgp used for the PLS

gate at each iteration is determined by:

Mgp = arg min
m∈M

BICG(p,m). (40)

The parameter vp for p = 1, . . . , P, of the softmax function,

Eq. (29), is known to suffer from instability in the maximum

likelihood estimation of the parameters when the data samples

are separable or quasi-separable. In these situations, the vec-

tor vp tends to infinity in the maximization of log likelihood

(Eq. (30)). However, the PLS estimation (37) tends to alleviate

this problem by combining the input variables into a new set

of latent variables, reducing the effect of input variables which

are responsible for the data separation. Nonetheless, during the

Mix-PLS learning by the EM algorithm, it is possible to detect

the instability of parameter estimation by using the Hessian ma-

trix (Eq. (32)). If the values of the terms in Eq. (32) are very

large or if it is not possible to compute the inverse, then it is pos-

sible to restart the learning of Mix-PLS or just reset the value

of vector vp to its initial value.
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Figure 2: Output y defined in equation (41).

4.4. Selecting the Number of Mixture Models

The standard mixture of linear regression models (MLRE) is

sensitive to the number of experts used to compose the mixture.

As the number of expert models increases, the training data is

better fitted. However, the mixtures with too many experts tend

to overfit the training data and show poor generalization perfor-

mance.

On the other side the Mix-PLS is less prone to overfitting,

even with a large number of models. This happens because the

parameters of each expert and each gate are solved in a low di-

mensional space spanned by the results of the PLS algorithm.

Moreover, the number of latent variables selected to represent

each expert and each gate through the PLS algorithm is deter-

mined using the BIC criterion which penalizes complex models,

then avoiding overfitting.

4.4.1. Mix-PLS and Overfitting

A small example was studied to demonstrate the robustness

of Mix-PLS to overfitting with respect to the number of ex-

perts. An artificial data set containing 500 samples was created

to compare the performance of Mix-PLS with the MLRE with

respect to the number of mixture models. The output y of the

artificial model is defined as follows:

y(k) =

{

2x1(k) +N(0, 0.1), if x1(k) ≤ 0.5,

2 − 2x1(k) +N(0, 0.1), if x1(k) > 0.5,
(41)

where x1 was randomly generated with a uniform distribution

over [0, 1] and N(0, 0.1) is a zero-mean Gaussian random vari-

able with 0.1 variance. From the 500 generated samples, 300

were used for training and the remaining 200 were used to test-

ing. The output y of the training data set is represented in Fig. 2.

In this experiment the Mix-PLS and the MLRE were learned us-

ing variable x1 jointly with more 20 irrelevant variables which

were added to the data set. The irrelevant variables were gen-

erated from a multivariate Gaussian distribution with randomly

selected mean and covariance matrix. The values of variables

were normalized to be over [0, 1].

The results of using Mix-PLS with two mixture models (P =

2) to learn the function (41) are shown in Fig. 3. Fig. 3a shows

the fitting results on the test data set, where it is possible to

conclude that the performance of Mix-PLS is good. Fig. 3b
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Figure 3: (a) Prediction results and (b) gate outputs on the Mix-PLS on the test set of the artificial data set.

shows the output of the gating functions, used to select which

model is responsible to predict the output.

Fig. 4a and 4b show the performance of Mix-PLS and the

MLRE. As can be noticed, on the training data set, the tradi-

tional solution fits better as the number of expert models in-

creases. On the other hand, the Mix-PLS results show a con-

stant performance on the training data set. On the test results,

it is possible to see that the MLRE tends to overfit the training

data, then providing poor generalization results. The perfor-

mance of the Mix-PLS on the test data set is much better, and

as mentioned before Mix-PLS is less prone to overfitting.

4.4.2. Number of Experts Selection

To select the number of mixture models this paper will use

the criterion suggested by [33, 34], where for each expert p, a

worth index is defined as:

Ip =
1

k

k
∑

i=1

γp(i). (42)

In a mixture of Pe experts, without loss of generality assume

that I1 ≥ I2 ≥ . . . ≥ IPe
. Then, as defined in [33], the number

of experts, P, is selected as the minimum number of experts

with the largest worth indices for which the sum of their worth

indices exceeds some threshold value τ, i.e.:

P = min



















P∗ :

P∗
∑

p=1

Ip > τ, and P∗ ≤ Pe, and I1 ≥ I2 ≥ . . . ≥ IPe



















.

(43)

The (Pe−P) models with the lowest worth indices can be pruned

from the mixture of experts. In [33] it is suggested the value of

τ = 0.8, which has shown to work well in practice.

5. Experimental Results

This section presents experimental results of the Mix-PLS

applied in three real prediction problems. In two of the three

data sets, two targets are to be predicted. The prediction will

be performed separately for each of the outputs in these data

sets. A summary of the data sets is given in Table 1. As the

objective of this work is to evaluate the proposed method, and

not to discuss the process itself, only a short description of each

process/dataset is given as follows:

1. SRU: This data set covers the estimation of hydrogen sul-

fide (H2S) and sulfur dioxide (SO2) in the tail stream of

a sulfur recovery unit [1, Chapter 5]. The original data

set contains 10072 samples, and in this work the learn-

ing set includes the first 2000 samples for training and the

remaining 8072 samples for test (as in the original work

[1]). The data set contains five input variables: x1 , x2 ,

x3, x4, x5. By considering lagged inputs, the inputs con-

sidered in the models, are: x1(k), x1(k−5), x1(k−7), x1(k−

9), . . . , x5(k), x5(k − 5), x5(k − 7), x5(k − 9), making a to-

tal of 20 input variables. According to the authors [1], the

preferred models are the ones that are able to accurately

predict peaks in the H2S and SO2 concentrations in the tail

gas.

2. Polymerization: The objective in this data set is the esti-

mation of the quality of a resin produced in an industrial

batch polymerization process [13]. The resin quality is

determined by the values of two chemical properties: the

resin acidity number (NA) and the resin viscosity (µ). The

data set is composed of 24 input variables and the authors

[13] have predefined 521 samples for training and 133 for

test.

3. Spectra: The objective in this data set is the estimation of

octane ratings based on the near infrared (NIR) spectral

intensities of 60 samples of gasoline at 401 wavelengths

[35]. This data set was split in 80% for training and the

remaining 20% was used for test.

In all experiments, the values of both the training samples,

and the testing samples, were normalized to have zero mean

and unit variance. In the experiments with exception for the

Spectra data set, the Mix-PLS, MLRE, MLR and PLS models

will be tuned by using as input of the model the original vari-

ables plus the squared values of these variables; the objective

while using the squared values of input variables is to introduce

some nonlinearity into the linear models (Mix-PLS, MLRE and
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Figure 4: Performance comparison between the Mix-PLS and the MLRE on the artificial data set for different numbers of mixture models: (a)

training data set, and (b) test data set.

Table 1: Summary of data sets.

Data set name #Inputs #Train samples #Test samples

SRU: (H2S) [1] 20 2000 8072

SRU: (SO2) [1] 20 2000 8072

Polymerization (Viscosity) [13] 24 521 133

Polymerization (Acidity) [13] 24 521 133

Spectra [35] 401 48 12

PLS). In the experiments, for all data sets presented in Table

1, the proposed Mix-PLS method will be compared with the

MLRE, a single PLS model, a SLNN trained using the gradient

descent training algorithm, and a LS-SVR with Gaussian kernel

[20, Chapter 3]. From the results, it can be seen that Mix-PLS

attains better results when compared with MLRE, PLS and to

the SLNN and LS-SVR non-linear models. Moreover, the Mix-

PLS has the advantage of having more interpretability with re-

spect to its parameters when compared with non linear models

SLNN and LS-SVR.

In all data sets the normalized root mean square error

(NRMSE) was used as a performance measure to compare the

results of the methods:

NRMSE =

1
k

√

∑k
i=1

(

y(i) − ŷ(i)
)2

max (y) −min (y)
, (44)

where y(i), and ŷ(i) are the observed and predicted targets, re-

spectively, and max(y), and min(y) are the maximum and mini-

mum values of the observed target. NRMSE is often expressed

in percentage. The closer the NRMSE is to 0 the better is the

quality of prediction.

5.1. Evaluation and Discussion

The number of hidden nodes N of the SLNN and the regu-

larization parameter γLS-SVR and the Gaussian kernel parameter

σLS-SVR of the LS-SVR were determined using a 10-fold cross

validation. For the PLS model the number of latent variables

M, was determined using the BIC criterion as discussed in Sec-

tion 3.1. For the MLRE, and Mix-PLS the numbers of experts

P were obtained from Eq. (43). Additionally, for the Mix-PLS

the set that contains the numbers of latent variables for each ex-

pert Me = {Me1, . . . ,Mep} was obtained from Eq. (28), and the

corresponding set of numbers of latent variables for the gates

Mg = {Mg2, . . . ,Mgp} was obtained from Eq. (40). Table 2

shows the parameters obtained for each model and for each data

set in the experiments.

5.1.1. SRU Data-Set

For the prediction of H2S in the SRU data set, the NRMSE

performances on the test set for all models, are indicated in Ta-

ble 3. These results indicate that the Mix-PLS has the best per-

formance among all the models. Further analysis on the Mix-

PLS results, in Fig. 5, indicates that for the H2S prediction, the

Mix-PLS was able to identify two different operating modes,

which are modeled by two experts. The first expert is the most

used for predicting in the regular operation and the second ex-

pert is most used to predict peaks, as can be verified by the gates

output in Fig. 5. The prediction results on the test set, shown in

5b, indicate that, on unseen data, the Mix-PLS performs very

well during the prediction, including in the prediction in peak

periods.

For the SO2 prediction, the performances of all models using

the NRMSE criterion are indicated in Table 3. It is shown that in

this experiment, the Mix-PLS has the best performance among

all the models, and the SLNN model has results close to Mix-

PLS. However, the Mix-PLS is more attractive than the SLNN,

because of the interpretability of its parameters. On this data

set, the Mix-PLS was able also to identify two operating modes.



Table 2: Parameters selected for each model and for each data set.

Data set name Mix-PLS MLRE PLS SLNN LS-SVR

SRU: (H2S) [1]

P = 2

P = 2 M = 10 N = 9 γLS-SVR = 50, σLS-SVR = 5Mep = {14, 17}

Mgp = {7}

SRU: (SO2) [1]

P = 2

P = 2 M = 12 N = 3 γLS-SVR = 50, σLS-SVR = 5Mep = {14, 15}

Mgp = {10}

Poly.: (Viscosity) [13]

P = 2

P = 2 M = 10 N = 3 γLS-SVR = 50, σLS-SVR = 10Mep = {18, 8}

Mgp = {2}

Poly.: (Acidity) [13]

P = 2

P = 2 M = 17 N = 3 γLS-SVR = 50, σLS-SVR = 25Mep = {20, 15}

Mgp = {2}

Spectra [35]

P = 4

P = − M = 24 N = 6 γLS-SVR = 50, σLS-SVR = 25Mep = {40, 25, 26, 27}

Mgp = {1, 1, 36}

Table 3: NRMSE results on the test set.

Data set name Mix-PLS MLRE PLS SLNN LS-SVR MLR

SRU: (H2S) [1] (C) 4.59 5.75 6.43 10.41 9.14 7.40

SRU: (SO2) [1] (C) 3.35 5.36 3.57 3.95 5.66 5.54

Poly.: (Viscosity) [13] (B) 8.07 23.43 24.23 9.95 12.38 14.52

Poly.: (Acidity) [13] (B) 3.62 5.54 4.25 3.93 5.94 7.93

Spectra [35] (C) 6.91 − 9.14 8.61 28.52 7.26
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Figure 5: Plots of H2S prediction on the SRU data set. (a) Train results, gates and prediction. (b) Test results, gates and prediction. For better

visualization, only 2000 samples are shown.

The prediction results on the train and test sets are shown in Fig.

6.

From the H2S and SO2 results on the SRU data set, it is pos-

sible to conclude that the Mix-PLS was able to identify two

different operating modes, in the two data sets. According to

[1], on the SRU data set, the preferred models are the ones that

are able to accurately predict peaks. From the SRU results it is

possible to note that one expert is more responsible for predict-

ing the regular operation mode, while the other expert is able to

predict the peaks.

5.1.2. Polymerization Data-Set

This data set was studied in [13], and the objective is to esti-

mate the viscosity and acidity of a resin produced in an indus-

trial batch polymerization process. According with Table 3, for

predicting the viscosity, the Mix-PLS reached the best results

among all the models in terms of NRMSE. Inspecting the re-

sults from the gates activation on the train and test sets which

are presented in Fig. 7, it is possible to note that the predic-

tion of the first expert is predominant at the beginning of each

batch, and later the predictions of the two models are combined,

usually at the end of each batch. The Mix-PLS suggests, that

for viscosity prediction, just two models are necessary and that

their prediction should be combined at the end of each batch.
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Figure 6: Plots of SO2 prediction on SRU data set. (a) Train results, gates and prediction. (b) Test results, gates and prediction. For better

visualization, only 2000 samples are shown.
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Figure 7: Plots of viscosity prediction on Polymerization data set. (a) Train results, gates and prediction. (b) Test results, gates and prediction.
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Figure 8: Plots of acidity prediction on Polymerization data set. (a) Train results, gates and prediction. (b) Test results, gates and prediction.



For predicting the acidity, the Mix-PLS also reached the best

results in terms of NRMSE, as indicated in Table 3. The Mix-

PLS used 2 experts to predict the acidity. The plots of gates and

prediction on the train and test sets are shown in Fig. 8. Differ-

ently from the viscosity prediction, the models are combined at

the beginning of each batch and then, one expert is predominant

in the rest of the batch.

As can be seen the Mix-PLS was successfully applied on the

Polymerization data set, delivering satisfactory prediction re-

sults. Moreover, Mix-PLS has shown better results when com-

pared with the nonlinear models.

5.1.3. Spectra data set

This Spectra data set was analyzed in [35], and the objec-

tive is the estimation of the octane ratings based on the near

infrared (NIR) spectral intensities of 60 samples of gasoline at

401 wavelengths. This data set is characterized by having only

a few samples and a large number of input variables. Moreover,

it is known a priori that this data set does not have multiple

operating modes, then the analysis is focused in the prediction

performance. According to Table 3, the Mix-PLS reached the

best results among all the models in terms of NRMSE and the

MLRE method did not converge in this experiment. Moreover,

Mix-PLS has shown much better results when compared with

the nonlinear models in this data set.

6. Discussion

The selection of the number of latent variables on each iter-

ation of Mix-PLS algorithm, in our case by the BIC criterion,

is not obligatory, but it is recommended. Other options are to

run the Mix-PLS algorithm with a fixed number of latent vari-

ables or select it after the overall run of the algorithm. The use

of a validation data set can also be a good option to select the

number of latent variables.

The expectation of the complete data log likelihood value

(Eq. (11)) in EM algorithm with the PLS and the selection of

the number of latent variables (i.e. the Mix-PLS) is monotoni-

cally increasing in most iterations. This is more evident in the

first iterations of the algorithm, however, very infrequently, in

some iterations the likelihood decreases its value. However, the

overall trend is to obtain an increasing likelihood. Such char-

acteristic is expected in the proposed Mix-PLS approach, since

the selection of the latent variables by the BIC criterion avoids

overfitting on the training data. By avoiding complex models,

the BIC criterion penalizes the likelihood of the algorithm, dur-

ing the selection of the latent variables.

It is already known that the first two data sets, Polymeriza-

tion and SRU, have multiple operating modes, and the analy-

sis of the results in both data sets has emphasized this case.

From the results it is seen that Mix-PLS is more than a good

non-linear regression method, also it picks/assigns different op-

erating modes in/to different experts. However, although these

results are representative, they are also conditioned to the prob-

lem under study, i.e. it is not possible to assure that the separate

assignment of different modes to different experts is a general

property that holds for all other conceivable problems. How-

ever, the application of the proposed approach is not limited to

multiple operating modes and it can also be used as a non-linear

regression method, as in the case of Spectra data set.

7. Conclusion

This paper proposed the use of a mixture of linear regression

models for dealing with multiple operating modes in soft sensor

applications. In the proposed Mix-PLS method, the solution of

the mixture of linear regression models is done using the partial

least squares regression model. The formulas for learning were

derived based on the EM algorithm. Furthermore, in this work

the proposed method has been evaluated and compared with

the current state of art methods on three real-world data sets,

encompassing the prediction of five variables.

In comparison with the traditional solution of the mixture of

linear regression models, the Mix-PLS is much less prone to

overfitting with respect to the number of mixture models to be

used, while still attaining good prediction results, as demon-

strated in an artificial data set experiment. In the real-world data

sets experiments, all the results obtained with Mix-PLS were

superior when compared with a MLRE, a single PLS, a SLNN,

LS-SVR and MLR models. Differently of the non linear mod-

els, the Mix-PLS gives more interpretability to the prediction.

The source code of Mix-PLS is available for download in the

authors web page2. Future directions of this work are to re-

search on the implementation of the method in an online man-

ner, further increasing the applicability.
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