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Abstra
t

Soft sensors for regression appli
ations (SSR) are inferential models that use on-line available sensors (e.g. temperature,

pressure, �ow rate, et
) to predi
t quality variables whi
h 
annot be automati
ally measured at all, or 
an only be

measured at high 
ost, sporadi
ally, or with high delays (e.g. laboratory analysis). SSR are built using histori
al data

of the pro
ess, usually provided from the supervisory 
ontrol and data a
quisition (SCADA) system or obtained from

laboratory annotations/measurements. In the SSR development, there are many issues to deal with. The main issues

are the treatment of missing data, outlier dete
tion, sele
tion of input variables, model training, validation, and SSR

maintenan
e. In this work a literature review, on ea
h of these topi
s will be performed, reviewing the most important

works in these areas. Emphasis will be given to the methods and not the appli
ations.
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1. Introdu
tion

Industrial pro
esses are well equipped with a variety of

sensors, su
h as temperature, �ow rate and pressure sen-

sors, designed for online supervision, monitoring and 
on-

trol, and to maintain 
onsistent produ
t quality. Some

variables, whi
h may be quality variables for example, 
an-

not be automati
ally measured online, due to the la
k of

sensors, or due to the high 
ost of the sensor, thus leading

to the la
k of enough information about the system state

in real-time. Usually, laboratory tests of produ
t samples

are 
ondu
ted to measure o�-line the produ
t quality on

a spe
i�ed interval base. In order to measure the quality

variables in real-time, one 
an use 
omputational intel-

ligen
e methodologies to build intelligent/
omputational

sensors to infer the value or the quality target variables

from other on-line measured pro
ess variables. The basis

for building su
h intelligent sensors is that the values of

target variables, or the produ
t quality, have a fun
tional

relationship with other pro
ess variables that 
an be mea-

sured on-line. Su
h kind of intelligent sensors is one of

the appli
ations of soft sensors [1; 2℄, refereed here as soft

sensor for regression appli
ations (SSR). They are impor-

tant tools for many industrial pro
esses, su
h as pulp and

paper mills, wastewater treatment systems, 
ement kilns,

re�neries, and polymerization pro
esses, just to give a few
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examples. In general terms, soft sensors 
an be de�ned

as inferential models that use online available sensor mea-

surements (easy to measure variables) for on-line estima-

tion of quality variables (hard to measure variable) whi
h


annot be automati
ally measured at all, or 
an only be

measured at high 
ost, sporadi
ally, or with high delays

(e.g. laboratory analysis).

A SSR is a regression model whi
h uses easy-to-measure

variables to predi
t a hard-to-measure variable. It is sub-

je
t of resear
h in many areas. Originally, SSRs were stud-

ied as part of 
hemometri
s, whi
h stands for statisti
al

methods for extra
ting information from data sets that

often 
onsist of many measured variables [3℄. A

ording

to Wold [3℄: �Chemometri
s, is heavily dependent on the

use of di�erent kinds of mathemati
al models (high in-

formation models, ad ho
 models, and analogy models).

This task demands knowledge of statisti
s, numeri
al anal-

ysis, operation analysis, et
., and in all, applied mathe-

mati
s.�, i.e. 
hemometri
s is not an isolated/sole resear
h

area. From the 
hemometri
s literature it is possible to see

the use of di�erent approa
hes in
luding ma
hine learning

and pattern re
ognition [4℄, arti�
ial intelligen
e [5℄, sys-

tem identi�
ation [6℄, and statisti
al learning theory [7℄.

Despite the fa
t that the obje
tives and emphasis on all

these areas are di�erent, they are intrinsi
ally 
onne
ted

by the ne
essity to learn models from data. This point of

view is further justi�ed in the work done in [8℄, where the

author revises the problem of system identi�
ation.

Then, the state of the art dis
ussed here will not be

limited the 
hemometri
s literature, it will also dis
uss the

main and re
ent 
ontributions from the other areas.

SSR development en
ompasses the same design 
y
le of


lassi
al regression systems [9; 6℄. However, it has its own
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pe
uliarities. SSR development has the following main

steps [1; 2℄: (I) data 
olle
tion and �ltering, (II) sele
-

tion of input variables, (III) model 
hoi
e and training,

(IV) model validation, and (V) model maintenan
e. In

the �rst stage the data is 
olle
ted, and the goals of this

stage in
lude the handling of missing data and outliers.

The goals of the se
ond stage are the sele
tion of most

relevant inputs, and possibly also the respe
tive time lags.

The model 
hoi
e and training requires the 
orre
t sele
-

tion and learning of the model. The model validation step

is ne
essary to judge if the learned model reprodu
es the

target variables within a

eptable quality or performan
e

levels. The last step is SSR maintenan
e, where the goal

is to maintain a good SSR response under the presen
e of

pro
ess variations or some data 
hange.

2. Data Colle
tion and Pre-Pro
essing

Industries are usually required to store their data from

the pro
esses. This is the basis for the subsequent use of

su
h data for system optimization, or other related data

driven methods. Unfortunately, data 
olle
tion in real in-

dustrial appli
ations 
omes with well know problems to

deal with, su
h as problems with sampling time, missing

data, outliers, working 
onditions, a

ura
y, and so on.

2.1. Sampling Time

In industrial systems some variables are a
quired at dif-

ferent time rates. This is most evident when analyzing

the sample rates of easy-to-measure and hard-to-measure

variables. In the majority of problems the a
quisition fre-

quen
y of easy-to-measure variables is mu
h higher than

the a
quisition frequen
y of hard-to-measure variables. In

su
h 
ases there is the ne
essity to syn
hronize the vari-

ables. This problem is usually refereed in literature as

multirate 
hara
ter, or multiple-rate phenomenon [10℄. In

pra
ti
e the following two approa
hes are most 
ommonly

adopted:

1. Down-sample of the easy-to-measure data samples, in

a

ordan
e with the slow sampling rate of the hard-

to-measure variables, by ex
luding the samples of the

easy-to-measure variables that do not have a 
orre-

sponding hard-to-measure (target) value [11; 12℄;

2. Instead of ex
luding the samples that do not have

the respe
tive target, a �nite impulse response (FIR)

model is estimated and applied on the samples in or-

der to estimate the hard-to-measure, low sampling

rate, variables. The big 
on
ern in this approa
h is

the sele
tion of weighting values and length of the

FIR �lter, in [10℄ a heuristi
 approa
h was adopted,

while in [13℄ an approa
h based on the expe
tation

maximization (EM) was proposed.

Although down-sampling by ex
luding is straightforward

to implement in pra
ti
e, it has a 
riti
al drawba
k of in-

formation loss and may lead to ina

urate models, mainly

if the hard-to-measure variable is sampled s
ar
ely and/or

with un
ertain delays [13℄. A better approa
h is to model

the data by using the FIR �lter. However, the weights and

length of the FIR �lter should be designed or estimated


arefully.

2.2. Missing Data

It is quite 
ommon to have observations with missing

values for one or more variables. The problem of missing

data o

urs when no value is stored for a variable in an

observation. There are two 
ommon approa
hes to deal

with missing data. The �rst one is the removal of samples


ontaining missing data, an approa
h also known as list-

wise deletion. The se
ond approa
h is to �ll-in the missing

values using some imputing method. The �rst approa
h


an be used if the number of missing values is small, but

otherwise it should be avoided [7℄. In the se
ond 
ase, the

simplest strategy is to impute the missing value with a

mean or median of non missing values for that variable.

Another approa
h is the hot-de
k imputation, where a

missing value is imputed from a randomly sele
ted value

of the input for similar target values [14℄. These methods

of mean/median imputation, and hot-de
k imputation, are

usually referred as multiple imputation.

Two other methods whi
h are often employed for han-

dling missing data are the maximum likelihood (ML)

method and the EM method. The ML method models

the missing variable/s based on the available data. Essen-

tially, the ML assumes some model for the data distribu-

tion of the missing variable, and then the parameters of the

model are estimated using ML. In [15℄ the authors assumed

linear relationships, while in [16℄ several nonlinear models

were used to model the relationship among the non-missing

variables and the variable with missing values. In both


ases, the authors reported signi�
ant improvement when


ompared to multiple imputation methods (hot-de
k, and

mean/median imputations). The EM approa
h to handle

missing data is reported in [17℄, it works similarly to the

ML pro
edure, although it is an iterative pro
edure. First

it estimates the missing data using the observed data and

the �rst estimates of the model parameters. In the se
ond

step, the estimated missing data are used together with

observed data to estimate the parameters. This iterative

pro
ess repeats until there are no signi�
ant 
hanges in pa-

rameters estimates. In [18℄ it is made an extensive review

on methods for missing data imputation.

2.3. Outliers

Outliers are observation values that deviate signi�
antly

from the typi
al, meaningful range of values. Observations

take in
onsistent values when 
ompared to the majority of

re
orded data, and this 
an greatly a�e
t the performan
e

of the SSR design [2℄. Outliers 
an be 
aused, for ex-

ample, by sensor malfun
tion, 
ommuni
ation errors, or

sensor degradation. To alleviate the e�e
ts of outliers it

is ne
essary �rst to dete
t them, and then to treat them.
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However, when applying outlier dete
tion methods, usu-

ally the results have to be validated manually by the model

developer and/or pro
ess expert. The goal of the manual

inspe
tion is to dete
t any possible outlier maskings (i.e.

false negative dete
tions - not dete
ted outliers) and out-

lier swamping (i.e. false positive dete
tions - 
orre
t values

labeled as outliers).

Typi
al outlier dete
tion methods are based on statis-

ti
al te
hniques. The most simple approa
h is the 3σ-
rule [19℄, whi
h is based on an univariate distribution of

variables. The 3σ-rule works as follows: assuming that a

variable is drawn from a Gaussian distribution with mean

µ and standard deviation σ, the samples of that variable

whi
h are outside the bounds [µ− 3σ, µ + 3σ] are 
onsid-
ered outliers. A robust version of 3σ-rule is the Hampfel

identi�er [20℄, whi
h 
onsiders the absolute mean and ab-

solute mean deviation. The Hampfel identi�er is suitable

in the 
ases where the data is severely a�e
ted by out-

liers, and it has shown to be pra
ti
ally e�e
tive in real

appli
ations [21; 19℄. The above approa
hes are 
onsid-

ered as univariate outlier dete
tion methods, sin
e they

are applied on ea
h variable separately. However, in many


ases outliers 
annot be dete
ted by 
onsidering the vari-

ables individually. Then, multivariate te
hniques should

be adopted. Outlier dete
tion based on multivariate te
h-

niques takes into 
onsideration the intera
tion among vari-

ables, and it 
an deliver most a

urate results, as demon-

strated by [1; 22℄. It often works by using distan
e mea-

sures to indi
ate those samples whi
h are far from the


enter of data distribution. A 
ommon distan
e measure

adopted is the Mahalanobis distan
e, where the samples


onsidered outliers are the ones with a large value of Ma-

halanobis distan
e [23℄. Other multivariate approa
h 
om-

monly used in the SSRs 
ontext is based on data pro-

je
tion/dimensionality redu
tion te
hniques, su
h as prin-


ipal 
omponent analysis (PCA) or partial least squares

(PLS), together with the Jolli�e parameters [24; 25℄. It

works by de
omposing the original data using PCA or

PLS, and then using the de
omposed data to 
ompute the

Jolli�e parameters [24℄. The Jolli�e parameters help to

identify the samples that do not 
onform with the 
orre-

lation stru
ture of data and the ones that in�ate the data

varian
e. In [25; 1℄ outlier dete
tion based on PCA, PLS,

and Jolli�e parameters was studied and has been shown

to be a powerful alternative for outlier dete
tion in SSRs

appli
ations.

In [26℄ several outlier dete
tion methods were 
ompared

(six in total), and the authors 
on
luded that the e�
a
y

of the proposed methods depends strongly on the problem

domain. In parti
ular, the e�
a
y depends on whether

the data is multivariate normal, on the dimension of data

set, on the type of outliers, and on the amount of out-

liers in the data set. The authors re
ommend a battery of

multivariate outlier dete
tion tests to dete
t outliers. In

the SSR 
ontext, [22℄ 
ompared several outlier dete
tion

methods in the modeling of a sulfur re
overy unit. The use

of outlier dete
tion improved 
onsiderably the SSR a

u-

ra
y in the 
ase-study, and PCA-based outlier dete
tion

a
hieved the best results.

The book of [27℄ provides several dis
ussions regarding

pre-pro
essing te
hniques and their appli
ation in the SSR


ontext. Real-world examples as well 
omparison of te
h-

niques are also presented. In [2; 28℄ general overviews on

pre-pro
essing te
hniques are also presented.

3. Variable Sele
tion

In SSR appli
ations there is frequently a large amount of


andidates for input variables 
oming from the supervision

stru
ture of the pro
ess. The number of 
andidates 
an

range to thousands [29; 30℄. The use of bla
k-box models

already suggests that the SSR designer has few knowledge

about the system to be modeled, and 
onsequently about

the variables whi
h a�e
t the target variable. However,

this not true in all the 
ases, sin
e in most of SSRs appli-


ations the sele
tion of a set of most relevant variables is

made by system experts. Nonetheless, for physi
ally large

and highly integrated pro
esses, enumeration and sele
-

tion of 
andidate variables based on pro
ess insight may

not be feasible [25℄. Moreover, most of the works in the

literature indi
ate that frequently only few variables are

ne
essary to 
ompose the SSR model. A redu
ed number

of variables has several advantages, su
h as the redu
tion

of model development time, possibility of aggregation of

the information about the physi
al interpretation of the

pro
ess, or the improvement of the model performan
e.

Moreover, a redu
tion of the number of variables implies

a lower number of required real sensors, de
reasing 
osts,

and in
reasing or enabling feasibility of appli
ations.

The following are possible approa
hes 
on
erning vari-

able sele
tion that may be adopted during SSR design [31℄:

Use of all inputs: This approa
h leads to extremely

high dimensional approximation problems. The prob-

lems asso
iated with learning of a model with many

input variables su�er from large 
omputational de-

mand, large probability of o

urring over�tting, and

poor performan
e of the regression model. Over�t-

ting means that the model is very a

urate on train-

ing data, but it has poor a

ura
y on previously un-

seen test data. A large number of input variables

and a limited number of samples 
auses a 
urse of di-

mensionality phenomena [32℄, whi
h refers to some,

normally problemati
, phenomenon that o

urs in

high-dimensional spa
es but does not o

ur in low-

dimensional spa
es. In the 
ase of a variable sele
tion

setting, one 
urse of dimensionality problem that o
-


urs is that the number of samples required to repre-

sent an input spa
e in
reases exponentially with the

number of variables. Another problem that o

urs is

the in
rease of 
omputational 
osts in algorithms deal-

ing with high-dimensional spa
es. Variable sele
tion

is one way to prevent over�tting, in
rease the model
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performan
e, and also to avoid the 
urse of dimen-

sionality phenomena;

Unsupervised variable sele
tion: The typi
al ap-

proa
h for unsupervised variable sele
tion is based on

prin
ipal 
omponent analysis (PCA) [24℄. It works

by proje
ting the input spa
e into a latent spa
e,

where the �rst latent variable (also 
alled prin
ipal


omponent) has the largest possible varian
e (i.e. it

a

ounts for as mu
h of the variability in the data as

possible), and ea
h su

eeding 
omponent in turn has

the highest varian
e possible under the 
onstraint

that it is orthogonal to (i.e. un
orrelated with)

the pre
eding 
omponents. Then, few 
omponents

obtained by PCA are used to learn the model.

The sele
tion of the number of latent variables is


ru
ial to attain satisfa
tory results. In a re
ent

paper [33℄ dis
usses the ways to sele
t the number

of 
omponents to retain in a PCA. Appli
ations of

PCA as a basis for unsupervising variable sele
tion

are vast in SSRs literature [34; 35; 36℄;

Supervised variable sele
tion: In this approa
h the

sele
tion of input variables is dire
tly guided by the

goal of attaining the highest possible model a

ura
y;

the relation between the model a

ura
y and a sub-

set of inputs 
an be a

essed independently or depen-

dently of the model. Any pro
edure for input variable

sele
tion must be based on two main 
omponents [37℄.

First, a 
riterion to measure the quality of a subset

must be de�ned, to judge whether one subset is better

than another (this is usually refereed as 
ost/�tness

fun
tion). Se
ond, a sear
h pro
edure must be de-

�ned to sear
h through 
andidate subsets of variables.

The sele
tion 
riteria 
an be 
lassi�ed into three dif-

ferent 
lasses: �lter methods, wrapper methods, and

embedded methods [38; 39℄. Filter methods use statis-

ti
al measures (e.g. 
orrelation 
oe�
ient (CC), mu-

tual information (MI)) to quantify the quality of a

subset, and are independent of the model used. On

the other hand, wrapper 
riteria use the performan
e

of the model as the 
riterion, using for example the

mean square error (MSE), the Akaike information 
ri-

terion (AIC), or the Cp statisti
s (all these methods

will be later explained in Se
tion 4). In the third


lass, the embedded methods use a spe
i�
 
ara
ter-

isti
 about the model itself or the pro
ess of model

learning to de�ne the 
riterion (e.g. pruning methods,

regularization). For all the three 
lasses of methods,

to a
hieve the optimal solution, the sear
h pro
edure


an 
onsist of an exhaustive sear
h of all possible sub-

sets of variables. However, exhaustive sear
h is highly


omputationally/time expensive, even for a moderate

number of input variables. Then, in pra
ti
al appli-


ations, simpli�ed sear
h methods su
h as sequential

sear
h, or sto
hasti
 sear
h are usually employed in

order to limit the 
omputational 
omplexity of the

sear
h pro
edure. Appendix A gives an overview on

sear
h pro
edures.

3.1. Filter Variable Sele
tion

The use CC is the most popular method employed for

input variable sele
tion in SSRs. In su
h CC variable sele
-

tion method, the linear strength between ea
h input and

the target is 
omputed using the Pearson 
orrelation 
o-

e�
ient, and the variables are ranked a

ording to their

strength [1; 40; 41℄. For nonlinear regression settings, the

Pearson 
orrelation is usually repla
ed by the univariate

mutual information (MI) [42℄, and similarly to CC-based

methods the variables are ranked a

ording with their im-

portan
e (see ranking sear
h in Appendix A). The vari-

able ranking algorithms based on the 
orrelation 
oe�
ient

and/or univariate MI 
an be used as the prin
ipal sele
-

tion me
hanism or as an auxiliary sele
tion me
hanism

[39℄. As a prin
ipal sele
tion me
hanism, the sele
ted in-

puts are used in the learning of the regression model. As

an auxiliary me
hanism, the variable ranking is used as a

kind of s
reening step, removing only irrelevant variables,

and then the remaining variables are passed to another

variable sele
tion algorithm to �nally sele
t the variables.

The multivariate MI approa
h for variable sele
tion is

a extension of the univariate MI approa
h, and it mea-

sures the dependen
y of a set of input variables on the

target. In [43℄ it was demonstrated that the multivariate

MI is an adequate 
riterion for variable sele
tion in regres-

sion settings. However, the estimation of multidimensional

probability density fun
tions (pdfs) in the multivariate MI

approa
h is not an easy task: spar
ity of data, and high


omputational demand are some problems asso
iated with

this task.

In SSRs/regression appli
ations, the nonparametri
 k-

nearest neighbors algorithm (KNN) [44℄ and the histogram

based estimators are the most 
ommonly employed meth-

ods for pdf estimation in the multivariate MI approa
h

[45; 46℄. The KNN approa
h tends to be used be
ause of

the good results reported in the literature [47; 48℄, and the

histogram method is used be
ause of its easy implementa-

tion and good results when working with a small number

of variables [49℄.

However, when dealing with a large number of input

variables, the use of multivariate MI as a quality 
riterion

for evaluating subsets of variables is not adequate. The

problems asso
iated with pdf estimation are highly aggra-

vated with the in
rease in problem dimensionality. In [50℄,

instead of estimating the multivariate MI, the authors ap-

proximate it by using the univariate MI. In the work of

[51℄, inspired in the work of [50℄, the authors developed an

algorithm 
alled as the �minimum redundan
y maximum

relevan
e� (mRMR) prin
iple for variable sele
tion based

on univariate MI. It is a well a

epted method for variable

sele
tion (with more than 3313

1


itations sin
e 2005). Fur-

thermore, in [52℄ it was demonstrated that the algorithms

1

A

ording to Google S
holar
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of [50; 51℄ are equivalent to maximization of the multivari-

ate MI between inputs and the target. Another variant of

[50; 51℄ was proposed in [53℄ and is 
alled normalized mu-

tual information feature sele
tion (NMIFS). The NMIFS


riterion 
hanges the form of how the mRMR 
riterion is

de�ned, to redu
e its bias and improve the quality of the

sele
tion of variables.

Several appli
ations of MI in SSRs and related areas

have been developed. In [49℄ a 
ombination of geneti


algorithms (GAs) and the mRMR prin
iple was used to

sele
t the dynami
s (i.e. time lags) of input variables of a

MLP model. In [54; 29℄, the dis
rete mutual information

was used to sele
t the variables and 
orresponding time-

lags in di�erent SSRs and regression problems. In [29℄, it

has been demonstrated that the KNN estimator of mul-

tivariate MI, together with the sequential forward sear
h

(SFS) pro
edure (see Appendix A), has a superior per-

forman
e when 
ompared with the CC variable sele
tion

method in two SSRs problems. In [29℄, the sele
ted vari-

ables were employed in a support ve
tor regression (SVR)

model to predi
t the targets. In [55; 56℄, the KNN esti-

mator of multivariate MI, together with the SFS pro
e-

dure was su

essfully employed as a variable sele
tion tool

in several real-world 
ase-studies, and the model utilized

was the MLP model. Another re
ent �lter method for in-

put variable sele
tion was based on the nearest 
orrelation

spe
tral 
lustering [57℄. The PLS model was learned with

the sele
ted inputs and then used for estimating the ethane


on
entration in an ethylene fra
tionator.

3.2. Wrapper Variable Sele
tion

Another approa
h for sele
ting input variables is by as-

sessing the performan
e of the learning model (wrapper

approa
h). Usually this approa
h a
hieves more a

urate

predi
tion results when 
ompared with �lter methods, be-


ause it takes into a

ount the approximation model. How-

ever, in the wrapper approa
h it is ne
essary to learn a

regression model every time a subset of variables is going

to be evaluated, whi
h is therefore 
omputationally expen-

sive. Appli
ations of wrapper methods in SSRs/regression

appli
ations are given below.

In [58℄, to over
ome the problem asso
iated with a lim-

ited number of samples and a large number of inputs, a

bootstrapping resampling on data was applied. Then, a se-

quential forward �oat sear
h (SFFS) (an improved version

of SFS; see sequential sear
h in Appendix A for an explana-

tion on the SFFS pro
edure) together with a linear model

(LM) with its parameters estimated by the least squares

(LS) estimator, was used to sele
t the relevant variables.

The error of the LS model was used as the 
ost fun
tion.

The sele
ted variables were used in a PLS method to pre-

di
t the vinyl 
hloride in a polimerization pro
ess. The

reason for the use of LS instead of PLS, in sele
ting the

variables, lies in the fa
t that LM has low 
omputational


ost when 
ompared to PLS model.

A geneti
 algorithm (GA) (see sto
hasti
 sear
h in Ap-

pendix A) together with the PLS model was applied in

[59℄ to sele
t the input variables. Another method based

on GA and PLS to sele
t the variables and the dynami
s

of the system (i.e. the time lags) was proposed in [60℄. In

both these two works, the error of the PLS model was used

as 
ost fun
tion.

In [61℄ a vision-based model was developed for the pre-

di
tion of ore quality at the mine level. Due to the large

number of available variables, a GA 
ombined with a MLP

network was applied to sele
t the most relevant variables.

The MLP error was used as the 
ost fun
tion.

To sele
t the variables and the dynami
s of the system,

a SVR model together with a variant of GA en
oding [62℄

was used in [63℄. The SVR error was used as the 
ost

fun
tion. In [64℄ the variables and the parameters of a SVR

model were determined using a hybrid geneti
 simulated

annealing sear
h. To sele
t the models with a 
omplexity

as small as possible, the �tness fun
tion was based on the

AIC.

In [65℄ the input variables were sele
ted based on their

individual predi
tion performan
e, based on the error of

a Takagi Sugeno (TS)-fuzzy model. The authors 
om-

pared sele
tion performed by the expert with the auto-

mati
 sele
tion of the inputs, and it was 
on
luded that

both approa
hes are 
ompetitive, but in the presented 
ase

of study, better results were a
hieved with the automati


method.

In [66℄ variable sele
tion based on MLP model and se-

quential ba
kward sear
h (SBS) (see sequential sear
h in

Appendix A) was studied. Dis
ussion about the stop-

ping 
riterion, a

ura
y, and 
omputational time was per-

formed. The authors 
on
luded that the MLP together

with SBS provides good results, but the main problem

regarding this approa
h is its demanding 
omputational

time.

3.3. Embedded Variable Sele
tion

Embedded algorithms form a 
lass of variable sele
tion

algorithms where the sele
tion of variables is embedded

within the model or the model learning. They share simi-

lar 
hara
teristi
s with the wrapper algorithms, so it may

be di�
ult or 
onfusing to distinguish between embed-

ded and wrapper approa
hes in some 
ases [67℄. How-

ever, the main di�eren
e between them is that an embed-

ded method whi
h is based on a spe
i�
 model 
annot be

used/employed in 
ombination/integration with another

model.

Regularization methods are a 
lass of embedded vari-

able sele
tion approa
hes. Su
h methods work by adding

a penalty term to the model parameters in the model er-

ror fun
tion. This penalization shrinks the freedom of the

model parameters during learning. For linear models they

are used as an alternative to the LS solution, and in 
ases

of poorly 
onditioned or ill-
onditioned problems. From

the statisti
al theory, the most well know regularization

methods are the least absolute shrinkage and sele
tion op-

erator (LASSO) [7℄, ridge regression (RR) [68℄, and elasti
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net (EN) [69℄. Another regularization method, widely em-

ployed in the 
hemometri
s theory, is the PLS. In [70℄ the

authors give the statisti
al point of view on the PLS, and


on
luded that PLS plays a role similar to the RR.

The regularization approa
h 
an also be expanded to

appli
ation in neural networks (NN), by adding a penalty

fun
tion in the error fun
tion. A penalization method

whi
h penalizes both useless input variables and hidden

nodes was proposed by [71℄. It was shown that the

method outperforms the traditional regularization meth-

ods for weight de
ay penalization [37℄ and input de
ay [72℄.

In predi
tions settings based on NN models, variable se-

le
tion 
an be based on sensitivity analysis approa
hes,

also referred as pruning methods [73; 74℄. In sensitiv-

ity analysis, the importan
e of an input is measured by


omputing the variation of the output when the input is

perturbed. Usually, all inputs are used to train the net-

work, and then irrelevant inputs are removed sequentially

if they are 
onsidered irrelevant from the sensitivity metri


point of view. After the removal of irrelevant variables, the

model is retrained and the sensitivity analysis 
an be per-

formed again. This pro
edure 
ontinues until the results

get satisfa
tory. This is the same pro
edure as the SBS

sear
h (see Appendix A). Garson [75℄ proposed a metri


of importan
e based on the weights of the NN input layer.

Several other proposed methods evaluate the relevan
e of

a 
ertain variable by 
omputing the partial derivatives of

the output with respe
t to that variable [76; 77℄. In [78℄

the importan
e is measured by varying the values of one

variable while keeping all the others untou
hed, and the

input variable whose 
hanges mostly a�e
t the output is

the one that has the most relative in�uen
e. In [79℄ a NN

is trained with all variables, and then useless variables are

sequentially removed a

ording to an ex
lusion 
riterion

based on the sensitivity metri
 proposed in [75℄. However,

in 
ontrast with [75℄, when a variable is removed the exist-

ing NN model is adjusted with a lower 
omputational 
ost

when 
ompared to performing again a 
omplete retraining

of the network.

A majority of the embedded methods proposed for sup-

port ve
tor ma
hine (SVM) models are targeted for 
las-

si�
ation tasks, but some methods 
an be easily extended

from 
lassi�
ation to regression [80℄. Despite their appli-


ability, their use on SSR appli
ations has not been tested

yet, but they are worth mentioning here. Input sele
tion

based on SVM models pro
eeds in the same way as in MLP

input sele
tion based on sensitivity analysis, i.e. the sele
-

tion pro
ess is usually performed as follows: train a SVM

with all variables, sele
t and remove the least relevant vari-

ables a

ording to the sensitivity metri
, re-train the SVM

model and pro
eed in the same manner until satisfa
tory

results are obtained. In [81℄ the input weights of the SVM

model were used as the sensitivity metri
. The approa
h

was applied in a 
an
er 
lassi�
ation problem where the

number of inputs is larger than 7000 and only few samples

were available. A di�erent approa
h to de�ne the sensi-

tivity metri
 was adopted by [82℄, where the sensitivity

metri
 was based on the upper bound of the leave one out


ross validation (LOOCV) error of the SVM model.

The embedded variable sele
tion method based on the

SVR model whi
h is proposed in [80℄ is primarily de-

voted to regression. It exploits the 
hara
teristi
 that the

SVR output 
an be interpreted as the 
onditional den-

sity fun
tion of the target, given the input variables, un-

der the assumption that the output error is 
hara
terized

by a Lapla
e or a Gaussian probability distribution (su
h

interpretation that the output error is 
hara
terized by

the Lapla
e or the Gaussian probability distributions is

demonstrated in [83℄). Thus, the proposed sensitivity met-

ri
 measures the di�eren
e over the input variable spa
e

of the 
onditional density fun
tions of the SVR predi
tion

with and without the feature.

3.4. Hybrid Approa
hes

Several SSRs appli
ations 
ombine several methods to

promote the sele
tion of input variables.

In [84; 1℄ a 
ombination of three variable sele
tion meth-

ods was used to sele
t the variables. The methods used

were the 
orrelation 
oe�
ient/s
atter plots, partial 
or-

relation, and the Mallows Cp statisti
s [85℄. The s
atter

plots and 
orrelation 
oe�
ient were used as pre-�ltering,

to form a preliminary subset. Then, the Cp statisti
s and

the partial 
orrelation were used to aid in the sele
tion of

the best subset.

In [25℄, PCA pre-pro
essing was applied on the variables

as an unsupervised variable sele
tion. It provided better

results when 
ompared with the variable sele
tion method-

ology used in [84; 1℄ (dis
ussed in the previous paragraph).

In [86℄, it is demonstrated that 
ollinearity in
reases the

varian
e of the MLP model, and then it is proposed to use

the PLS as a pre-pro
essing step for a MLP model, sin
e

PLS eliminates the 
ollinearity in the input spa
e. The

PLS together with a MLP model provided good results

when 
ompared to a single MLP.

In [40℄ the input variables of a fuzzy model are pre-

sele
ted from the variables of the dynami
al pro
ess by

means of 
orrelation 
oe�
ients, Kohonen maps and Lip-

s
hitz quotients.

In [87℄ a hybrid approa
h based on wrapper and em-

bedded methods was proposed. It approximates the re-

sponse/results of variable sele
tion based on the MLP pre-

di
tion error and the SBS sear
h pro
edure, de�ned here as

SBS-MLP, but with mu
h less 
omputational e�ort. The

proposed method presents similar or better approxima-

tion performan
e when 
ompared to two �lter methods

based on MI 
riterion proposed in [51℄ and [53℄, the em-

bedded method proposed in [79℄, and the wrapper method

based on SBS-MLP [88; 66℄. Moreover, it has been shown

that the proposed method has similar predi
tion perfor-

man
e when 
ompared to the traditional SBS-MLP algo-

rithm, and has the advantage of having lower 
omputation


ost. The proposed method presents similar or better ap-

proximation performan
e when 
ompared to the other four

methods.
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4. Model Choi
e and Training

There are two distin
t model approa
hes applied for

SSRs development. The �rst is based on white-box mod-

els, obtained through a physi
al knowledge of the pro
ess,

and the se
ond 
lass is based on bla
k-box or data-driven

models, based ex
lusively in 
onstru
ting a model from

empiri
al data of the pro
ess. Modeling by the white-box

approa
h requires strong knowledge about the pro
ess and

demands a long time of modeling work to build the mod-

els [89℄. It usually fo
uses on the des
ription of the ideal

steady-states, not being able to des
ribe the real pro
ess


onditions [2℄. For 
omplex systems, the white-box mod-

eling approa
h may be virtually infeasible. Bla
k-box or

data-driven models are based on empiri
al observations

of the pro
ess (the methods themselves are empiri
al pre-

di
tive methods). Bla
k-box modeling is able to des
ribe

real 
onditions of the pro
ess, and it requires few knowl-

edge about the system to be modeled. Nevertheless, it

requires intensive work on pro
ess data. Some di�
ulties

with these types of approa
hes are related to the di�
ulty

of 
hoosing the 
orre
t model type and stru
ture, the fun
-

tions to be used, and the quantity of fun
tion terms ne
-

essary for the development.

In bla
k-box modeling, the �rst aspe
t to de
ide about

is whi
h kind of model is going to be used. There are al-

ways two 
hoi
es: a linear model or a non-linear model.

A

ording to many authors, a linear model should always

be 
onsidered before a nonlinear model. If the linear model

does not provide satisfa
tory results, one possible expla-

nation, besides many other possibilities, is that the system

possesses a non-linear behavior, then a non-linear model

should be the best 
hoi
e [31℄. Good overviews of bla
k-

box stru
tures for regression ranging from linear models

(e.g. PLS, LASSO, RR), to nonlinear models (e.g. NN,

SVR, Fuzzy Systems (FS)) are reported in the 
lassi
al

books [6; 5; 31; 7; 4℄.

The most popular data-driven models used in SSRs ap-

pli
ations are the linear models with LS or PLS estimation

methods [90; 91℄, PCA [24℄ in 
ombination with a predi
-

tion model, NNs (mainly the MLP stru
ture), SVRs, FS,

and Neuro-Fuzzy Systems (NFS) [92; 93; 94℄. The PLS

solution is the preferred and mostly applied solution in


ombination with linear models when 
omparing to LS,

sin
e it 
an handle data-
ollinearity, whi
h is a 
ommon


hara
teristi
 in industrial appli
ations.

Soft sensors are not always 
omposed of a single regres-

sion model. A 
ombination of a 
olle
tion of models is of-

ten employed. This is denominated an ensemble approa
h,

whi
h forms an ensemble of models. Ensemble methods

play an important role in SSRs appli
ations, mainly when

the number of samples for modeling is small [95℄. The en-

semble of NN models was detailed and dis
ussed in [96℄,

where the authors proposed a method for building an en-

semble of NN models based on GA. A related approa
h

was used in [97℄ where a framework to optimize the stru
-

ture of an ensemble of MLP models was presented. Sev-

eral MLP models with di�erent stru
tures were trained

using the bootstrap resampling. Then, GA and simulated

annealing (SA) were used to perform the optimization of

the model ar
hite
ture. In [98℄, an evolutionary ensemble

learning using NN and based on negative 
orrelation learn-

ing was presented. However, [98℄ has some short
omings

su
h as not 
onsidering the possibility of linear 
ombina-

tion among models, and using pre-de�ned models' ar
hi-

te
tures.

Fuzzy models are knowledge-based models. In some


omplex appli
ations it is di�
ult to tune su
h models.

Some approa
hes try to over
ome this di�
ulty by opti-

mizing the fuzzy model using evolutionary algorithms. In

[40℄ the TS-fuzzy model is tuned using a GA-based ap-

proa
h. In [93℄ the work of [40℄ was expanded to learn the

TS-fuzzy TS stru
ture together with the sele
tion of input

variables and delays.

In almost all soft sensor appli
ations, a single model is

tuned using all available training samples, without distin-

guishing the operating modes of the pro
ess. However,

the existen
e of multiple operating modes in a pro
ess is

an inherent 
hara
teristi
 of most industrial appli
ations.

Sometimes, multiple operating modes result from exter-

nal disturban
es, as for example a 
hange in feedsto
k or

produ
t grade or even 
hanges su
h as the diurnal load

variation of a power plant or the summer-winter operation

of a re�nery [99; 100℄. In these situations, 
onsistently

training a model for ea
h operating mode or for ea
h set of


orrelated operating modes of the pro
ess has been shown

to be reasonably 
onsistent and to be bene�
ial for the

predi
tion a

ura
y [101; 102℄. During online operation,

when a new sample is made available, the model whi
h

is the most adequate for the new sample is identi�ed and

then used to make the predi
tion. The identi�
ation of

whi
h model will be used is a key issue in the development

[102; 103; 104℄, whi
h 
an be done using expert knowledge

[102℄ or using automati
 tools, su
h as �nite mixture of

Gaussian models (FMGM) [101℄.

In this 
ontext, in [102℄, the authors work on modeling

the operating modes in a polymerization bat
h pro
ess


ase study. The 
orrelated operating modes have been

grouped, and then a separate PLS model was tuned for

ea
h set of 
orrelated operating modes. During online

operation, the in
oming sample is assigned to the 
orre-

sponding mode and its model is used for the predi
tion.

However, in [102℄, the expert knowledge of the operators

was used to determine the operating modes and in some


ases or problems su
h information might not be available.

Another approa
h, based on the FMGM, was proposed

in [101℄. In this work, the FMGM is used to automat-

i
ally identify the di�erent operating modes of the pro-


ess. Then, multiple lo
alized Gaussian pro
ess regression

models in the nonlinear kernel spa
e were built to 
har-

a
terize the di�erent dynami
 relationships between pro-


ess variables (inputs to the predi
tion setting) and qual-

ity variables (outputs of the predi
tion setting) within the

identi�ed operating modes. During online operation, the
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in
oming sample is assigned automati
ally to the 
orre-

sponding submodel, using the FMGM. The major draw-

ba
k of [101℄ is that the determination of the operating

modes and model tuning is done separately, i.e. the set of

operating modes is determined independently of the model

used. However, as veri�ed in the 
ase study of [102℄, a

model 
an be set for more than one operating mode, with

the advantage of redu
ing the number of ne
essary models

and in
reasing the number of samples available for tuning

ea
h model. Another drawba
k of [101℄ is that the num-

ber of samples used for tuning ea
h model is 
onstrained

by the number of samples of ea
h operating mode, whi
h

is de�ned by the FMGM. The approa
h of [101℄ leads to

�hard� partition boundaries, and 
onsequently just a part

of the total of samples is used for tuning the predi
tion

model of ea
h operating mode. Su
h an approa
h 
an lead

to poor modeling on the 
orresponding operating mode,

depending on the 
hosen model and the available samples

In [105℄ a method for dealing with online predi
tion of

the quality variables in pro
esses with multiple operating

modes is proposed and derived. The method is 
alled mix-

ture of partial least squares (PLS) experts (Mix-PLS). The

Mix-PLS was be derived based on the mixture of experts

(ME) framework [106℄ and the PLS algorithm. The ME

models input-output observations by assuming that they

have been produ
ed by a set of di�erent random sour
es

(the random sour
es 
an be thought of as operating modes)

and the parameters of ea
h expert, and of ea
h gating fun
-

tion, were determined using the PLS algorithm. It was

demonstrated that the solution of the parameters using

the PLS algorithm over
omes the problem of 
ollinearity

of input data and also makes the Mix-PLS less prone to

over�tting with respe
t to the number of mixture models.

The Mix-PLS was 
ompared with the SVR, MLP, Linear

and PLS models, with superior performan
e in all the pre-

sented 
ases of study.

5. Model Validation

The obje
tive of the model validation step is to evalu-

ate the 
apability/ability of the trained model to perform

generalization to new samples. Generalization a

ura
y


an also be used as an estimator for model ranking in a

variable sele
tion approa
h (e.g. in wrapper variable se-

le
tion) [9℄. For a large data set, usually the model is

learned using only a part of the data set and then the

model performan
e is measured on the remaining data,

usually 
alled validation data set, using some performan
e

metri
, usually the MSE (e.g. lower values of MSE indi
ate

better models) or the normalized root mean square error

(NRMSE). The NRMSE is a normalized version of MSE,

often expressed in per
entage, whi
h gives a more intu-

itive analysis on the performan
e of the model. For small

data sets, a 
ross-validation te
hnique is usually employed

to evaluate the performan
e of the model. The 
ommon


ross validation te
hniques are the K-fold 
ross validation

and the leave-one-out 
ross validation (LOOCV). In K-

fold 
ross validation, the training data set is randomly split

into K folds, and then the model learning is performed

using the samples from (K − 1) folds, and the resulting

model is evaluated on the remaining fold, using some per-

forman
e metri
. This pro
ess is repeated for all K folds,

and the performan
e of the model is the average of the

performan
e metri
 on the K folds. The LOOCV is usu-

ally employed when the number of samples is very small,

and it is equivalent to the K-fold 
ross validation when

the number of folds K is equal to the number of samples.

Other approa
hes measure the quality of a model in terms

of its a

ura
y-
omplexity trade-o� (ACT), using 
riteria

su
h as the AIC [107℄, the Bayesian Information Criterion

(BIC) [108℄, or the Cp statisti
s [85℄.

For dynami
 linear systems, the auto
orrelation fun
-

tion of the residuals and the 
ross-
orrelation fun
tions

between the residuals and the input over a set of unseen

data [109℄ are usually employed to evaluate the 
apabil-

ity of the trained linear dynami
 model. For non-linear

dynami
 systems, the work of [110℄ has provided several

metri
s to evaluate non-linear dynami
 models based on

NN.

6. Soft Sensor Maintenan
e

During SSR design the histori
al data of the pro
ess is

used to learn the SSR model. However, the histori
al data


ontains limited information, 
orresponding to a limited

period of time, and possibly also fo
using on a limited set

of operation areas of the state spa
e. When dealing with

new events, not des
ribed in the histori
al data, the SSR

tends to de
rease its performan
e. In this 
ontext, and

to over
ome su
h performan
e deterioration, the obje
tive

of SSR maintenan
e is to maintain a good SSR response

even in the presen
e of pro
ess variations, or some data


hange. Generally, this is done by updating the SSR model

online/re
ursively, in bat
h or sample wise mode, using

the in
oming samples of the pro
ess (in this 
ontext the

SSRs are 
alled �adaptive SSRs� [111℄). From the ma
hine

learning perspe
tive, the area of adaptive SSRs is related

to the problem of 
on
ept drift. Con
ept drift means that

the statisti
al properties of the target variable 
hanges over

the time, the term 
on
ept means the obje
t/target to be

predi
ted [112℄.

There are three types approa
hes 
ommonly employed

in dealing with 
on
ept drift: (1) sample sele
tion, (2)

sample weighting, and (3) ensemble learning (or learning

with multiple 
on
ept des
riptors) [113℄. Moreover, as al-

ready dis
ussed before, the mostly used models in SSR

appli
ations are based on multivariate statisti
al meth-

ods (LS, PLS, PCA) or arti�
ial intelligen
e te
hniques

(NNs (mainly the MLP stru
ture), SVRs, FS, and NFS).

In adaptive SSRs su
h models 
an also be employed, but

there is the 
on
ern regarding the learning/adaptation of

parameters. The model(s) 
an be applied as a single

8



model, in the sample weighting or sample sele
tion ap-

proa
hes, or several models 
an be applied together in the

ensemble approa
h.

6.1. Sample Sele
tion

In sample sele
tion, the idea is to sele
t relevant sam-

ples related to the 
urrent 
on
ept. The next step is to

use su
h samples to update or retrain the existing model.

Normally, this sele
tion is done using window-based ap-

proa
hes, where the samples whi
h are inside of a win-

dow are used to retrain/update the model, while samples

outside of the window are dis
arded. The issues of se-

le
ting the size of the window and de
iding when to re-

train/update the model are 
ru
ial for a su

essful imple-

mentation. If the sele
tion of the window size is poorly

handled, there is a danger that the SSR adapts to noise

(if the window size is too short) or, in the 
ase of a too

long window, it 
an lead to limited adaptation 
apability

[114℄. Some adaptive methods based on ANN models in

the sample sele
tion strategy were proposed in the liter-

ature. In [115; 116℄, a moving window was adopted to

retrain the ANN model. When a new bat
h of samples is

available the old data is dropped out of the window and

the neural model is retrained adapting to the 
on
ept of

the new data. In [116℄ the most relevant features were se-

le
ted o�ine using the �rst part of the training data by

using a forward sear
h pro
edure in 
ombination with a

MLP network.

Adaptive learning methods for NFS and SVR have been

proposed in the literature, and they are usually based on

sample sele
tion or ensemble learning. NFS are widely ap-

plied for predi
tion [2; 93℄, but their parameters are usu-

ally learned o�ine. Online tuning of NFS 
an be done by

Evolving Fuzzy Systems (EFS) [117℄. A step-wise online

learning algorithm for SVR training was proposed by [118℄,

where the update 
an be done by removing or adding new

support ve
tors, an appli
ation in the soft sensor 
ontext is

given in [119℄. In [120℄ it is proposed the Adaptive Kernel

Learning (AKL) framework for predi
tion and monitoring

tasks. In this 
ase, the SVR optimization problem was

solved by the least squares approa
h [121℄. In [122℄, an

adaptive kernel learning method was used. The examples

were sele
ted, and the ex
lusion of redundant examples

was performed to redu
e the 
omplexity of training. It

was shown to be superior to RPLS in the presented 
ase

of study.

6.2. Sample Weighting

In the sample weighting strategy, the samples are

weighted a

ording to their age (the importan
e of the

samples de
reases over time). The learning/adaptation

of parameters is usually done using adaptive learning by

means of exponentially re
ursive learning. The adaptive

learning has relation to the re
ursive or online learning

where ea
h sample is presented on
e and only on
e to

learn/adapt the parameters, but in adaptive learning there

is the ability to forget old examples by exponentially as-

signing low weights to old samples, usually by setting a

forgetting fa
tor 0 < λ < 1, su
h that the model 
ould


apture the information of the re
ent data [113; 111℄. Us-

ing su
h sample weighting approa
hes, there is no need to

use memory to store the samples.

In the sample weighting approa
h, the following learning

strategies have been used in the literature for the LS, PLS,

and arti�
ial neural networks (ANN) models. For the LS

solution, there is the re
ursive LS (RLS) method, whi
h

is a well known example of re
ursive learning, where the


oe�
ients of a linear model that minimize the linear least

squares 
ost fun
tion are re
ursively 
omputed. The PLS

is implemented with its re
ursive/adaptive form, the re
ur-

sive PLS (RPLS) [123℄. It is the most popular method in

adaptive SSRs [124; 125; 126; 127; 128; 129; 59; 11; 130℄.

For the other state of the art methods, there are some

adaptive learning strategies in the literature. For single

layer feedforward ANN, a fast learning algorithm with of-

�ine and online solutions, 
alled online sequential extreme

learning ma
hine (OS-ELM) was proposed in [131℄. All

these methods are able to forget old samples by setting a

forgetting fa
tor. In [132℄ the problem related with expo-

nential weighting of samples in adaptive soft sensors was

studied. It was assumed that when learning the adaptive

models with small values of forgetting fa
tor, the model

su�ers from problems similar to the ones asso
iated with

learning of stati
 models with small number of samples.

Then, based on this, a mixture of low dimensional models

was proposed and derived, based on the mixture of uni-

variate linear regression models. Mixtures of other types

of models, possibly nonlinear, but linear in the parameters

were also 
onsidered. The proposed method was evaluated

in two time-varying real-world data sets, and 
ompared in

di�erent settings with the state of the art methods in adap-

tive soft sensors. The proposed method demonstrated to

provide the best results in almost all 
ases, mainly when

using small values of forgetting fa
tor.

6.3. Ensemble Learning

In the ensemble learning strategies, the goal is to 
on-

stru
t a model for ea
h 
on
ept in the data distribution.

When a new input arrives, the �nal predi
tion value is a


ombination of the results of all the models built previ-

ously for all the 
on
epts, su
h as a weighted average of

su
h results. Moreover, in the ensemble method, there are

two possible areas that may be subje
t to adaptation: at

the level of the model 
ombination, or at the level of the

models. The ensemble method is less attra
tive be
ause of

its 
omputational demand, ne
essary to pro
ess and store

several models and/or samples.

Ensemble learning methods �nd di�erent 
on
epts in

the histori
al data and learn a model for ea
h of these


on
epts. In [11℄ a PLS model was 
onstru
ted for ea
h

di�erent 
on
ept found (an approa
h based on the PLS

model error was used to determine the di�erent 
on
epts).
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The �nal predi
tion is a 
ombination of the set of the avail-

able models, where the 
ombination takes into a

ount a

probability of ea
h model being responsible for the data

to be predi
ted. The adaptation is performed at the level

of model 
ombination and at the level of re
ursive adapta-

tion of the models. The authors termed this method the

in
remental lo
al learning soft sensing algorithm (ILLSA).

[133℄ developed a SSR method using an ensemble learning

strategy where a 
lustering method, based on the fuzzy C-

means 
lustering (FCM) algorithm, was used to �nd dif-

ferent 
on
epts, and then a SVR model was learned to

predi
t in ea
h 
on
ept. During online operation, when

a new sample arrives, the FCM algorithm sets the 
orre-

sponding adequate SVR model to be used to predi
t the

output.

7. Con
lusions

The soft sensor te
hnology has important potential for

industrial appli
ations and a
ademi
 resear
h. From the

industry perspe
tive, the soft sensor has an enormous po-

tential to be used as a 
ommer
ial tool to improve perfor-

man
e, e�
ien
y, automation degree, and output quality

in industrial systems. From the a
ademy/resear
h per-

spe
tive, the soft sensors 
an be stated as a multidis
i-

plinary topi
 of resear
h, that en
ompasses several areas

of study, su
h as ma
hine learning, pattern re
ognition,

arti�
ial intelligen
e, system identi�
ation, and statisti
al

learning theory. Moreover, it has several topi
s to be re-

sear
hed, where the most emergent topi
s, are the problem

of variable sele
tion (in
luding dynami
 sele
tion) and soft

sensor maintenan
e. Another topi
 of resear
h, is regard-

ing the learning of soft sensor models in multiple operating

s
enarios/modes.
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Appendix A. Sear
h Pro
edures

In a variable sele
tion algorithm, a sear
h pro
edure is

used to guide the sear
h for the best subset of variables.

For D input variables, there are a total of 2D − 1 pos-

sible subsets, where only some of the subsets attain the

optimal solution. Typi
ally, the optimal solution may be

attained for only one of the subsets. By sear
hing over

all possible subsets (this is 
alled as exhaustive sear
h), it

is possible to lead to the optimal solution. However, for

exhaustive sear
h there is the problem of the large 
om-

putational demand. For example if there are only 20 vari-

ables, i.e. D = 20, there are 1048575 solutions that need

to be evaluated, if the 
riterion to evaluate one subset

takes approximately ∼ 1(se
) (being optimisti
), then it

would be ne
essary ∼ 12 days to sele
t the best subset.

The bran
h and bound (B&B) algorithm leads to the op-

timal solution with less 
omplexity than the exhaustive

sear
h, under the 
onstrain that the evaluation fun
tion

must be monoti
 [134℄. However, the algorithm still has

an exponential worst 
ase 
omplexity, whi
h may render

the approa
h infeasible when a large number of 
andidate

variables is available [39℄.

The large 
omputational 
osts asso
iated with the ex-

haustive sear
h and B&B algorithms, 
aused by the ne
es-

sity to evaluate so many subsets, 
an be redu
ed by using

sear
h strategies that prioritize the 
omputational time

rather than the quality of the solution, while still provid-

ing good results. Su
h strategies are based on rankers,

sequential and sto
hasti
 sear
hes. These te
hniques are

brie�y reviewed below.

Appendix B. Ranking Sear
h

The ranking sear
h pro
eeds as follows. First, the im-

portan
e of ea
h input variable, with respe
t to the target

(measured by any 
riterion, e.g. CC, MI), is 
omputed.

Then, the variables are ranked a

ording to their indi-

vidual merit, with respe
t to the target variable, in a
-


ordan
e with the 
hosen 
riterion. Then, only a subset

of the top variables (from the ranked set), are sele
ted,

and the remaining variables are ex
luded. In this sear
h

approa
h only D evaluations are required; a very fast ap-

proa
h. This method gains on the speed of sele
tion, but

loses on the quality of the sele
ted variables. This happens

be
ause, the variables are sele
ted without taking into 
on-

sideration the intera
tion among them.

Appendix C. Sequential Sear
h

The sequential sear
h works by removing or adding vari-

ables sequentially, following a 
ertain order. The most


ommon sequential sear
h pro
edures are the sequential

forward sele
tion (SFS) and the sequential ba
kward sele
-

tion (SBS). The SBS pro
edure, proposed by [88℄, starts

with all variables, and at ea
h step the variable that 
on-

tributes least to predi
t the target, a

ording with the sub-

set evaluation 
riterion, is removed. The SBS pro
edure

stops when a pre-spe
i�ed number of variables are removed

or until the results get satisfa
tory. The SFS, introdu
ed

by [135℄, starts with an empty subset, and at ea
h step

the variable that mostly 
ontributes to predi
t the target,

a

ording with the subset evaluation 
riterion, is added to

the set of sele
ted variables. These methods are largely

used in variable sele
tion pro
edures.
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Both SFS and SBS have the same 
omplexity in the

worst 
ase s
enario (it is ne
essary to evaluate

D(D+1)
2

subsets), but in a pra
ti
al perspe
tive the SFS exe
utes

faster than SBS. This happens be
ause the SFS algorithm

evaluates smaller subsets than the SBS at the beginning

of the sear
h.

The major problem related to the SFS and SBS ap-

proa
hes is that, for example, when a variable is removed

in SBS, it 
annot be sele
ted again. This results in the

so 
alled nesting e�e
t, i.e. bad de
isions made at the be-

ginning of the sear
h 
annot be 
orre
ted later. To avoid

or alleviate the nesting e�e
t in the sequential sele
tion

Stearns [136℄ proposed the Plus-l-Minus-r sear
h method.

Ea
h iteration of the Plus-l-Minus-r is divided into two

substeps. In the �rst step, the SFS runs to sele
t l new

variables, and in the se
ond step the SBS runs to ex
lude

r variables from those that have already been sele
ted.

Pudil [137℄ proposed modi�
ations on the SFS and SBS

to allow them to resele
t removed variables, then avoid-

ing the nesting e�e
t, they are 
alled as sequential forward

�oating sele
tion (SFFS) and sequential ba
kward �oating

sele
tion (SBFS), and their idea is similar to the Plus-l-

Minus-r algorithm.

Appendix D. Sto
hasti
 Sear
h

Sto
hasti
 methods are optimization methods whi
h in-


lude some randomness in the sear
h pro
edure. This


an be thought as a good strategy when dealing with a

large number of input variables [138℄, sin
e it 
orresponds

to sear
h randomly over the input spa
e, but following a


ertain heuristi
. The 
lass of sto
hasti
 algorithms in-


ludes, but is not restri
ted to, Geneti
 Algorithms (GA),

Ant Colony Optimization (ACO), and Simulated Anneal-

ing (SA).

The GA is inspired by the biologi
al evolution, more

spe
i�
ally by the Darwinian prin
iples of natural evolu-

tion, where the best individuals have a high probability of

survival; It was �rst introdu
ed in [139℄. In the GA, solu-

tions are en
oded into 
hromosomes (individuals) and the

�ttest ones are more sus
eptible, have higher probability,

to be sele
ted for reprodu
tion, produ
ing o�spring with


hara
teristi
s of both parents. For some of the o�springs

an operation 
alled mutation (inspired by the natural evo-

lution) is applied, to in
lude diversity in the solution.

The ACO is an optimization methodology based on ant

behaviors to establish the shortest route paths from their


olony to food sour
es and ba
k [140℄. In nature, ants

randomly walk for �nding food, then they return to their


olony while laying down pheromone trails. Other ants,

when �nding su
h path, tend to follow the trail and when

they �nd food, they also walk ba
k to the 
olony laying

down pheromone, thus reinfor
ing the trail.

SA is a meta-heuristi
 proposed in [141℄ for global op-

timization problems. SA is inspired in the behavior of a

warm parti
le in a potential �eld. Generally, a parti
le

tends to move down, to the lower potential energy, but

sin
e it has kine
t energy (
aused by the non-zero tem-

perature), it moves around with some randomness, and

o

asionally it jumps to higher potentials. The parti
le

is annealed when the time passes in this pro
ess, i.e. if

temperature de
reases gradually, so that the probability

to move upwards de
reases with time. In SA, the solution

is represented by the parti
le and the potential energy rep-

resents the 
ost fun
tion.
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