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Abstract

Soft sensors for regression applications (SSR) are inferential models that use on-line available sensors (e.g. temperature,
pressure, flow rate, etc) to predict quality variables which cannot be automatically measured at all, or can only be
measured at high cost, sporadically, or with high delays (e.g. laboratory analysis). SSR are built using historical data
of the process, usually provided from the supervisory control and data acquisition (SCADA) system or obtained from
laboratory annotations/measurements. In the SSR development, there are many issues to deal with. The main issues
are the treatment of missing data, outlier detection, selection of input variables, model training, validation, and SSR.
maintenance. In this work a literature review, on each of these topics will be performed, reviewing the most important
works in these areas. Emphasis will be given to the methods and not the applications.
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1. Introduction

Industrial processes are well equipped with a variety of
sensors, such as temperature, flow rate and pressure sen-
sors, designed for online supervision, monitoring and con-
trol, and to maintain consistent product quality. Some
variables, which may be quality variables for example, can-
not be automatically measured online, due to the lack of
sensors, or due to the high cost of the sensor, thus leading
to the lack of enough information about the system state
in real-time. Usually, laboratory tests of product samples
are conducted to measure off-line the product quality on
a specified interval base. In order to measure the quality
variables in real-time, one can use computational intel-
ligence methodologies to build intelligent /computational
sensors to infer the value or the quality target variables
from other on-line measured process variables. The basis
for building such intelligent sensors is that the values of
target variables, or the product quality, have a functional
relationship with other process variables that can be mea-
sured on-line. Such kind of intelligent sensors is one of
the applications of soft sensors [1; 2], refereed here as soft
sensor for regression applications (SSR). They are impor-
tant tools for many industrial processes, such as pulp and
paper mills, wastewater treatment systems, cement kilns,
refineries, and polymerization processes, just to give a few
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examples. In general terms, soft sensors can be defined
as inferential models that use online available sensor mea-
surements (easy to measure variables) for on-line estima-
tion of quality variables (hard to measure variable) which
cannot be automatically measured at all, or can only be
measured at high cost, sporadically, or with high delays
(e.g. laboratory analysis).

A SSR is a regression model which uses easy-to-measure
variables to predict a hard-to-measure variable. It is sub-
ject of research in many areas. Originally, SSRs were stud-
ied as part of chemometrics, which stands for statistical
methods for extracting information from data sets that
often consist of many measured variables [3]. According
to Wold [3]: “Chemometrics, is heavily dependent on the
use of different kinds of mathematical models (high in-
formation models, ad hoc models, and analogy models).
This task demands knowledge of statistics, numerical anal-
ysis, operation analysis, etc., and in all, applied mathe-
matics.”, i.e. chemometrics is not an isolated/sole research
area. From the chemometrics literature it is possible to see
the use of different approaches including machine learning
and pattern recognition [4], artificial intelligence [5], sys-
tem identification [6], and statistical learning theory [7].
Despite the fact that the objectives and emphasis on all
these areas are different, they are intrinsically connected
by the necessity to learn models from data. This point of
view is further justified in the work done in [8], where the
author revises the problem of system identification.

Then, the state of the art discussed here will not be
limited the chemometrics literature, it will also discuss the
main and recent contributions from the other areas.

SSR. development encompasses the same design cycle of
classical regression systems [9; 6]. However, it has its own



peculiarities. SSR development has the following main
steps [1; 2]: (I) data collection and filtering, (II) selec-
tion of input variables, (III) model choice and training,
(IV) model validation, and (V) model maintenance. In
the first stage the data is collected, and the goals of this
stage include the handling of missing data and outliers.
The goals of the second stage are the selection of most
relevant inputs, and possibly also the respective time lags.
The model choice and training requires the correct selec-
tion and learning of the model. The model validation step
is necessary to judge if the learned model reproduces the
target variables within acceptable quality or performance
levels. The last step is SSR maintenance, where the goal
is to maintain a good SSR response under the presence of
process variations or some data change.

2. Data Collection and Pre-Processing

Industries are usually required to store their data from
the processes. This is the basis for the subsequent use of
such data for system optimization, or other related data
driven methods. Unfortunately, data collection in real in-
dustrial applications comes with well know problems to
deal with, such as problems with sampling time, missing
data, outliers, working conditions, accuracy, and so on.

2.1. Sampling Time

In industrial systems some variables are acquired at dif-
ferent time rates. This is most evident when analyzing
the sample rates of easy-to-measure and hard-to-measure
variables. In the majority of problems the acquisition fre-
quency of easy-to-measure variables is much higher than
the acquisition frequency of hard-to-measure variables. In
such cases there is the necessity to synchronize the vari-
ables. This problem is usually refereed in literature as
multirate character, or multiple-rate phenomenon [10]. In
practice the following two approaches are most commonly
adopted:

1. Down-sample of the easy-to-measure data samples, in
accordance with the slow sampling rate of the hard-
to-measure variables, by excluding the samples of the
easy-to-measure variables that do not have a corre-
sponding hard-to-measure (target) value [11; 12];

2. Instead of excluding the samples that do not have
the respective target, a finite impulse response (FIR)
model is estimated and applied on the samples in or-
der to estimate the hard-to-measure, low sampling
rate, variables. The big concern in this approach is
the selection of weighting values and length of the
FIR filter, in [10] a heuristic approach was adopted,
while in [13] an approach based on the expectation
maximization (EM) was proposed.

Although down-sampling by excluding is straightforward
to implement in practice, it has a critical drawback of in-
formation loss and may lead to inaccurate models, mainly

if the hard-to-measure variable is sampled scarcely and/or
with uncertain delays [13]. A better approach is to model
the data by using the FIR filter. However, the weights and
length of the FIR filter should be designed or estimated
carefully.

2.2. Missing Data

It is quite common to have observations with missing
values for one or more variables. The problem of missing
data occurs when no value is stored for a variable in an
observation. There are two common approaches to deal
with missing data. The first one is the removal of samples
containing missing data, an approach also known as list-
wise deletion. The second approach is to fill-in the missing
values using some imputing method. The first approach
can be used if the number of missing values is small, but
otherwise it should be avoided [7]. In the second case, the
simplest strategy is to impute the missing value with a
mean or median of non missing values for that variable.
Another approach is the hot-deck imputation, where a
missing value is imputed from a randomly selected value
of the input for similar target values [14]. These methods
of mean/median imputation, and hot-deck imputation, are
usually referred as multiple imputation.

Two other methods which are often employed for han-
dling missing data are the maximum likelihood (ML)
method and the EM method. The ML method models
the missing variable/s based on the available data. Essen-
tially, the ML assumes some model for the data distribu-
tion of the missing variable, and then the parameters of the
model are estimated using ML. In [15] the authors assumed
linear relationships, while in [16] several nonlinear models
were used to model the relationship among the non-missing
variables and the variable with missing values. In both
cases, the authors reported significant improvement when
compared to multiple imputation methods (hot-deck, and
mean/median imputations). The EM approach to handle
missing data is reported in [17], it works similarly to the
ML procedure, although it is an iterative procedure. First
it estimates the missing data using the observed data and
the first estimates of the model parameters. In the second
step, the estimated missing data are used together with
observed data to estimate the parameters. This iterative
process repeats until there are no significant changes in pa-
rameters estimates. In [18] it is made an extensive review
on methods for missing data imputation.

2.8. Outliers

Outliers are observation values that deviate significantly
from the typical, meaningful range of values. Observations
take inconsistent values when compared to the majority of
recorded data, and this can greatly affect the performance
of the SSR design [2]. Outliers can be caused, for ex-
ample, by sensor malfunction, communication errors, or
sensor degradation. To alleviate the effects of outliers it
is necessary first to detect them, and then to treat them.



However, when applying outlier detection methods, usu-
ally the results have to be validated manually by the model
developer and/or process expert. The goal of the manual
inspection is to detect any possible outlier maskings (i.e.
false negative detections - not detected outliers) and out-
lier swamping (i.e. false positive detections - correct values
labeled as outliers).

Typical outlier detection methods are based on statis-
tical techniques. The most simple approach is the 3o-
rule [19], which is based on an univariate distribution of
variables. The 3o-rule works as follows: assuming that a
variable is drawn from a Gaussian distribution with mean
1 and standard deviation o, the samples of that variable
which are outside the bounds [p — 30, 4 + 30] are consid-
ered outliers. A robust version of 3o-rule is the Hampfel
identifier [20], which considers the absolute mean and ab-
solute mean deviation. The Hampfel identifier is suitable
in the cases where the data is severely affected by out-
liers, and it has shown to be practically effective in real
applications [21; 19]. The above approaches are consid-
ered as univariate outlier detection methods, since they
are applied on each variable separately. However, in many
cases outliers cannot be detected by considering the vari-
ables individually. Then, multivariate techniques should
be adopted. Outlier detection based on multivariate tech-
niques takes into consideration the interaction among vari-
ables, and it can deliver most accurate results, as demon-
strated by [1; 22]. It often works by using distance mea-
sures to indicate those samples which are far from the
center of data distribution. A common distance measure
adopted is the Mahalanobis distance, where the samples
considered outliers are the ones with a large value of Ma-
halanobis distance [23]. Other multivariate approach com-
monly used in the SSRs context is based on data pro-
jection/dimensionality reduction techniques, such as prin-
cipal component analysis (PCA) or partial least squares
(PLS), together with the Jolliffe parameters [24; 25]. It
works by decomposing the original data using PCA or
PLS, and then using the decomposed data to compute the
Jolliffe parameters [24]. The Jolliffe parameters help to
identify the samples that do not conform with the corre-
lation structure of data and the ones that inflate the data
variance. In [25; 1] outlier detection based on PCA, PLS,
and Jolliffe parameters was studied and has been shown
to be a powerful alternative for outlier detection in SSRs
applications.

In [26] several outlier detection methods were compared
(six in total), and the authors concluded that the efficacy
of the proposed methods depends strongly on the problem
domain. In particular, the efficacy depends on whether
the data is multivariate normal, on the dimension of data
set, on the type of outliers, and on the amount of out-
liers in the data set. The authors recommend a battery of
multivariate outlier detection tests to detect outliers. In
the SSR context, [22] compared several outlier detection
methods in the modeling of a sulfur recovery unit. The use
of outlier detection improved considerably the SSR accu-

racy in the case-study, and PCA-based outlier detection
achieved the best results.

The book of [27] provides several discussions regarding
pre-processing techniques and their application in the SSR
context. Real-world examples as well comparison of tech-
niques are also presented. In [2; 28] general overviews on
pre-processing techniques are also presented.

3. Variable Selection

In SSR applications there is frequently a large amount of
candidates for input variables coming from the supervision
structure of the process. The number of candidates can
range to thousands [29; 30]. The use of black-box models
already suggests that the SSR designer has few knowledge
about the system to be modeled, and consequently about
the variables which affect the target variable. However,
this not true in all the cases, since in most of SSRs appli-
cations the selection of a set of most relevant variables is
made by system experts. Nonetheless, for physically large
and highly integrated processes, enumeration and selec-
tion of candidate variables based on process insight may
not be feasible [25]. Moreover, most of the works in the
literature indicate that frequently only few variables are
necessary to compose the SSR model. A reduced number
of variables has several advantages, such as the reduction
of model development time, possibility of aggregation of
the information about the physical interpretation of the
process, or the improvement of the model performance.
Moreover, a reduction of the number of variables implies
a lower number of required real sensors, decreasing costs,
and increasing or enabling feasibility of applications.

The following are possible approaches concerning vari-
able selection that may be adopted during SSR design [31]:

Use of all inputs: This approach leads to extremely
high dimensional approximation problems. The prob-
lems associated with learning of a model with many
input variables suffer from large computational de-
mand, large probability of occurring overfitting, and
poor performance of the regression model. Overfit-
ting means that the model is very accurate on train-
ing data, but it has poor accuracy on previously un-
seen test data. A large number of input variables
and a limited number of samples causes a curse of di-
mensionality phenomena [32], which refers to some,
normally problematic, phenomenon that occurs in
high-dimensional spaces but does not occur in low-
dimensional spaces. In the case of a variable selection
setting, one curse of dimensionality problem that oc-
curs is that the number of samples required to repre-
sent an input space increases exponentially with the
number of variables. Another problem that occurs is
the increase of computational costs in algorithms deal-
ing with high-dimensional spaces. Variable selection
is one way to prevent overfitting, increase the model



performance, and also to avoid the curse of dimen-
sionality phenomena;

Unsupervised variable selection: The typical ap-
proach for unsupervised variable selection is based on
principal component analysis (PCA) [24]. Tt works
by projecting the input space into a latent space,
where the first latent variable (also called principal
component) has the largest possible variance (i.e. it
accounts for as much of the variability in the data as
possible), and each succeeding component in turn has
the highest variance possible under the constraint
that it is orthogonal to (i.e. uncorrelated with)
the preceding components. Then, few components
obtained by PCA are used to learn the model.
The selection of the number of latent variables is
crucial to attain satisfactory results. In a recent
paper [33] discusses the ways to select the number
of components to retain in a PCA. Applications of
PCA as a basis for unsupervising variable selection
are vast in SSRs literature [34; 35; 36];

Supervised variable selection: In this approach the
selection of input variables is directly guided by the
goal of attaining the highest possible model accuracy;
the relation between the model accuracy and a sub-
set of inputs can be accessed independently or depen-
dently of the model. Any procedure for input variable
selection must be based on two main components [37].
First, a criterion to measure the quality of a subset
must be defined, to judge whether one subset is better
than another (this is usually refereed as cost/fitness
function). Second, a search procedure must be de-
fined to search through candidate subsets of variables.
The selection criteria can be classified into three dif-
ferent classes: filter methods, wrapper methods, and
embedded methods [38; 39]. Filter methods use statis-
tical measures (e.g. correlation coefficient (CC), mu-
tual information (MI)) to quantify the quality of a
subset, and are independent of the model used. On
the other hand, wrapper criteria use the performance
of the model as the criterion, using for example the
mean square error (MSE), the Akaike information cri-
terion (AIC), or the Cp statistics (all these methods
will be later explained in Section 4). In the third
class, the embedded methods use a specific caracter-
istic about the model itself or the process of model
learning to define the criterion (e.g. pruning methods,
regularization). For all the three classes of methods,
to achieve the optimal solution, the search procedure
can consist of an exhaustive search of all possible sub-
sets of variables. However, exhaustive search is highly
computationally /time expensive, even for a moderate
number of input variables. Then, in practical appli-
cations, simplified search methods such as sequential
search, or stochastic search are usually employed in
order to limit the computational complexity of the

search procedure. Appendix A gives an overview on
search procedures.

3.1. Filter Variable Selection

The use CC is the most popular method employed for
input variable selection in SSRs. In such CC variable selec-
tion method, the linear strength between each input and
the target is computed using the Pearson correlation co-
efficient, and the variables are ranked according to their
strength [1; 40; 41]. For nonlinear regression settings, the
Pearson correlation is usually replaced by the univariate
mutual information (MI) [42], and similarly to CC-based
methods the variables are ranked according with their im-
portance (see ranking search in Appendix A). The vari-
able ranking algorithms based on the correlation coefficient
and/or univariate MI can be used as the principal selec-
tion mechanism or as an auxiliary selection mechanism
[39]. As a principal selection mechanism, the selected in-
puts are used in the learning of the regression model. As
an auxiliary mechanism, the variable ranking is used as a
kind of screening step, removing only irrelevant variables,
and then the remaining variables are passed to another
variable selection algorithm to finally select the variables.

The multivariate MI approach for variable selection is
a extension of the univariate MI approach, and it mea-
sures the dependency of a set of input variables on the
target. In [43] it was demonstrated that the multivariate
MI is an adequate criterion for variable selection in regres-
sion settings. However, the estimation of multidimensional
probability density functions (pdfs) in the multivariate MI
approach is not an easy task: sparcity of data, and high
computational demand are some problems associated with
this task.

In SSRs/regression applications, the nonparametric k-
nearest neighbors algorithm (KNN) [44] and the histogram
based estimators are the most commonly employed meth-
ods for pdf estimation in the multivariate MI approach
[45; 46]. The KNN approach tends to be used because of
the good results reported in the literature [47; 48], and the
histogram method is used because of its easy implementa-
tion and good results when working with a small number
of variables [49].

However, when dealing with a large number of input
variables, the use of multivariate MI as a quality criterion
for evaluating subsets of variables is not adequate. The
problems associated with pdf estimation are highly aggra-
vated with the increase in problem dimensionality. In [50],
instead of estimating the multivariate MI, the authors ap-
proximate it by using the univariate MI. In the work of
[51], inspired in the work of [50], the authors developed an
algorithm called as the “minimum redundancy maximum
relevance” (mRMR) principle for variable selection based
on univariate MI. It is a well accepted method for variable
selection (with more than 3313! citations since 2005). Fur-
thermore, in [52] it was demonstrated that the algorithms

L According to Google Scholar



of [50; 51] are equivalent to maximization of the multivari-
ate MI between inputs and the target. Another variant of
[50; 51] was proposed in [53] and is called normalized mu-
tual information feature selection (NMIFS). The NMIFS
criterion changes the form of how the mRMR criterion is
defined, to reduce its bias and improve the quality of the
selection of variables.

Several applications of MI in SSRs and related areas
have been developed. In [49] a combination of genetic
algorithms (GAs) and the mRMR principle was used to
select the dynamics (i.e. time lags) of input variables of a
MLP model. In [54; 29], the discrete mutual information
was used to select the variables and corresponding time-
lags in different SSRs and regression problems. In [29], it
has been demonstrated that the KNN estimator of mul-
tivariate MI, together with the sequential forward search
(SFS) procedure (see Appendix A), has a superior per-
formance when compared with the CC variable selection
method in two SSRs problems. In [29], the selected vari-
ables were employed in a support vector regression (SVR)
model to predict the targets. In [55; 56], the KNN esti-
mator of multivariate MI, together with the SFS proce-
dure was successfully employed as a variable selection tool
in several real-world case-studies, and the model utilized
was the MLP model. Another recent filter method for in-
put variable selection was based on the nearest correlation
spectral clustering [57]. The PLS model was learned with
the selected inputs and then used for estimating the ethane
concentration in an ethylene fractionator.

3.2. Wrapper Variable Selection

Another approach for selecting input variables is by as-
sessing the performance of the learning model (wrapper
approach). Usually this approach achieves more accurate
prediction results when compared with filter methods, be-
cause it takes into account the approximation model. How-
ever, in the wrapper approach it is necessary to learn a
regression model every time a subset of variables is going
to be evaluated, which is therefore computationally expen-
sive. Applications of wrapper methods in SSRs/regression
applications are given below.

In [58], to overcome the problem associated with a lim-
ited number of samples and a large number of inputs, a
bootstrapping resampling on data was applied. Then, a se-
quential forward float search (SFFS) (an improved version
of SF'S; see sequential search in Appendix A for an explana-
tion on the SFFS procedure) together with a linear model
(LM) with its parameters estimated by the least squares
(LS) estimator, was used to select the relevant variables.
The error of the LS model was used as the cost function.
The selected variables were used in a PLS method to pre-
dict the vinyl chloride in a polimerization process. The
reason for the use of LS instead of PLS, in selecting the
variables, lies in the fact that LM has low computational
cost when compared to PLS model.

A genetic algorithm (GA) (see stochastic search in Ap-
pendix A) together with the PLS model was applied in

[59] to select the input variables. Another method based
on GA and PLS to select the variables and the dynamics
of the system (i.e. the time lags) was proposed in [60]. In
both these two works, the error of the PLS model was used
as cost function.

In [61] a vision-based model was developed for the pre-
diction of ore quality at the mine level. Due to the large
number of available variables, a GA combined with a MLP
network was applied to select the most relevant variables.
The MLP error was used as the cost function.

To select the variables and the dynamics of the system,
a SVR model together with a variant of GA encoding [62]
was used in [63]. The SVR error was used as the cost
function. In [64] the variables and the parameters of a SVR
model were determined using a hybrid genetic simulated
annealing search. To select the models with a complexity
as small as possible, the fitness function was based on the
AIC.

In [65] the input variables were selected based on their
individual prediction performance, based on the error of
a Takagi Sugeno (TS)-fuzzy model. The authors com-
pared selection performed by the expert with the auto-
matic selection of the inputs, and it was concluded that
both approaches are competitive, but in the presented case
of study, better results were achieved with the automatic
method.

In [66] variable selection based on MLP model and se-
quential backward search (SBS) (see sequential search in
Appendix A) was studied. Discussion about the stop-
ping criterion, accuracy, and computational time was per-
formed. The authors concluded that the MLP together
with SBS provides good results, but the main problem
regarding this approach is its demanding computational
time.

3.3. Embedded Variable Selection

Embedded algorithms form a class of variable selection
algorithms where the selection of variables is embedded
within the model or the model learning. They share simi-
lar characteristics with the wrapper algorithms, so it may
be difficult or confusing to distinguish between embed-
ded and wrapper approaches in some cases [67]. How-
ever, the main difference between them is that an embed-
ded method which is based on a specific model cannot be
used/employed in combination/integration with another
model.

Regularization methods are a class of embedded vari-
able selection approaches. Such methods work by adding
a penalty term to the model parameters in the model er-
ror function. This penalization shrinks the freedom of the
model parameters during learning. For linear models they
are used as an alternative to the LS solution, and in cases
of poorly conditioned or ill-conditioned problems. From
the statistical theory, the most well know regularization
methods are the least absolute shrinkage and selection op-
erator (LASSO) [7], ridge regression (RR) [68], and elastic



net (EN) [69]. Another regularization method, widely em-
ployed in the chemometrics theory, is the PLS. In [70] the
authors give the statistical point of view on the PLS, and
concluded that PLS plays a role similar to the RR.

The regularization approach can also be expanded to
application in neural networks (NN), by adding a penalty
function in the error function. A penalization method
which penalizes both useless input variables and hidden
nodes was proposed by [71]. It was shown that the
method outperforms the traditional regularization meth-
ods for weight decay penalization [37] and input decay [72].

In predictions settings based on NN models, variable se-
lection can be based on sensitivity analysis approaches,
also referred as pruning methods [73; 74]. In sensitiv-
ity analysis, the importance of an input is measured by
computing the variation of the output when the input is
perturbed. Usually, all inputs are used to train the net-
work, and then irrelevant inputs are removed sequentially
if they are considered irrelevant from the sensitivity metric
point of view. After the removal of irrelevant variables, the
model is retrained and the sensitivity analysis can be per-
formed again. This procedure continues until the results
get satisfactory. This is the same procedure as the SBS
search (see Appendix A). Garson [75] proposed a metric
of importance based on the weights of the NN input layer.
Several other proposed methods evaluate the relevance of
a certain variable by computing the partial derivatives of
the output with respect to that variable [76; 77]. In [78]
the importance is measured by varying the values of one
variable while keeping all the others untouched, and the
input variable whose changes mostly affect the output is
the one that has the most relative influence. In [79] a NN
is trained with all variables, and then useless variables are
sequentially removed according to an exclusion criterion
based on the sensitivity metric proposed in [75]. However,
in contrast with [75], when a variable is removed the exist-
ing NN model is adjusted with a lower computational cost
when compared to performing again a complete retraining
of the network.

A majority of the embedded methods proposed for sup-
port vector machine (SVM) models are targeted for clas-
sification tasks, but some methods can be easily extended
from classification to regression [80]. Despite their appli-
cability, their use on SSR applications has not been tested
yet, but they are worth mentioning here. Input selection
based on SVM models proceeds in the same way as in MLP
input selection based on sensitivity analysis, i.e. the selec-
tion process is usually performed as follows: train a SVM
with all variables, select and remove the least relevant vari-
ables according to the sensitivity metric, re-train the SVM
model and proceed in the same manner until satisfactory
results are obtained. In [81] the input weights of the SVM
model were used as the sensitivity metric. The approach
was applied in a cancer classification problem where the
number of inputs is larger than 7000 and only few samples
were available. A different approach to define the sensi-
tivity metric was adopted by [82], where the sensitivity

metric was based on the upper bound of the leave one out
cross validation (LOOCYV) error of the SVM model.

The embedded variable selection method based on the
SVR model which is proposed in [80] is primarily de-
voted to regression. It exploits the characteristic that the
SVR output can be interpreted as the conditional den-
sity function of the target, given the input variables, un-
der the assumption that the output error is characterized
by a Laplace or a Gaussian probability distribution (such
interpretation that the output error is characterized by
the Laplace or the Gaussian probability distributions is
demonstrated in [83]). Thus, the proposed sensitivity met-
ric measures the difference over the input variable space
of the conditional density functions of the SVR prediction
with and without the feature.

3.4. Hybrid Approaches

Several SSRs applications combine several methods to
promote the selection of input variables.

In [84; 1] a combination of three variable selection meth-
ods was used to select the variables. The methods used
were the correlation coefficient/scatter plots, partial cor-
relation, and the Mallows Cp statistics [85]. The scatter
plots and correlation coefficient were used as pre-filtering,
to form a preliminary subset. Then, the Cp statistics and
the partial correlation were used to aid in the selection of
the best subset.

In [25], PCA pre-processing was applied on the variables
as an unsupervised variable selection. It provided better
results when compared with the variable selection method-
ology used in [84; 1] (discussed in the previous paragraph).
In [86], it is demonstrated that collinearity increases the
variance of the MLP model, and then it is proposed to use
the PLS as a pre-processing step for a MLP model, since
PLS eliminates the collinearity in the input space. The
PLS together with a MLP model provided good results
when compared to a single MLP.

In [40] the input variables of a fuzzy model are pre-
selected from the variables of the dynamical process by
means of correlation coefficients, Kohonen maps and Lip-
schitz quotients.

In [87] a hybrid approach based on wrapper and em-
bedded methods was proposed. It approximates the re-
sponse/results of variable selection based on the MLP pre-
diction error and the SBS search procedure, defined here as
SBS-MLP, but with much less computational effort. The
proposed method presents similar or better approxima-
tion performance when compared to two filter methods
based on MI criterion proposed in [51] and [53], the em-
bedded method proposed in [79], and the wrapper method
based on SBS-MLP [88; 66]. Moreover, it has been shown
that the proposed method has similar prediction perfor-
mance when compared to the traditional SBS-MLP algo-
rithm, and has the advantage of having lower computation
cost. The proposed method presents similar or better ap-
proximation performance when compared to the other four
methods.



4. Model Choice and Training

There are two distinct model approaches applied for
SSRs development. The first is based on white-box mod-
els, obtained through a physical knowledge of the process,
and the second class is based on black-box or data-driven
models, based exclusively in constructing a model from
empirical data of the process. Modeling by the white-box
approach requires strong knowledge about the process and
demands a long time of modeling work to build the mod-
els [89]. It usually focuses on the description of the ideal
steady-states, not being able to describe the real process
conditions [2]. For complex systems, the white-box mod-
eling approach may be virtually infeasible. Black-box or
data-driven models are based on empirical observations
of the process (the methods themselves are empirical pre-
dictive methods). Black-box modeling is able to describe
real conditions of the process, and it requires few knowl-
edge about the system to be modeled. Nevertheless, it
requires intensive work on process data. Some difficulties
with these types of approaches are related to the difficulty
of choosing the correct model type and structure, the func-
tions to be used, and the quantity of function terms nec-
essary for the development.

In black-box modeling, the first aspect to decide about
is which kind of model is going to be used. There are al-
ways two choices: a linear model or a non-linear model.
According to many authors, a linear model should always
be considered before a nonlinear model. If the linear model
does not provide satisfactory results, one possible expla-
nation, besides many other possibilities, is that the system
possesses a non-linear behavior, then a non-linear model
should be the best choice [31]. Good overviews of black-
box structures for regression ranging from linear models
(e.g. PLS, LASSO, RR), to nonlinear models (e.g. NN,
SVR, Fuzzy Systems (FS)) are reported in the classical
books [6; 5; 31; 7; 4].

The most popular data-driven models used in SSRs ap-
plications are the linear models with LS or PLS estimation
methods [90; 91], PCA [24] in combination with a predic-
tion model, NNs (mainly the MLP structure), SVRs, FS,
and Neuro-Fuzzy Systems (NFS) [92; 93; 94]. The PLS
solution is the preferred and mostly applied solution in
combination with linear models when comparing to LS,
since it can handle data-collinearity, which is a common
characteristic in industrial applications.

Soft sensors are not always composed of a single regres-
sion model. A combination of a collection of models is of-
ten employed. This is denominated an ensemble approach,
which forms an ensemble of models. Ensemble methods
play an important role in SSRs applications, mainly when
the number of samples for modeling is small [95]. The en-
semble of NN models was detailed and discussed in [96],
where the authors proposed a method for building an en-
semble of NN models based on GA. A related approach
was used in [97] where a framework to optimize the struc-
ture of an ensemble of MLP models was presented. Sev-

eral MLP models with different structures were trained
using the bootstrap resampling. Then, GA and simulated
annealing (SA) were used to perform the optimization of
the model architecture. In [98], an evolutionary ensemble
learning using NN and based on negative correlation learn-
ing was presented. However, [98] has some shortcomings
such as not considering the possibility of linear combina-
tion among models, and using pre-defined models’ archi-
tectures.

Fuzzy models are knowledge-based models. In some
complex applications it is difficult to tune such models.
Some approaches try to overcome this difficulty by opti-
mizing the fuzzy model using evolutionary algorithms. In
[40] the TS-fuzzy model is tuned using a GA-based ap-
proach. In [93] the work of [40] was expanded to learn the
TS-fuzzy TS structure together with the selection of input
variables and delays.

In almost all soft sensor applications, a single model is
tuned using all available training samples, without distin-
guishing the operating modes of the process. However,
the existence of multiple operating modes in a process is
an inherent characteristic of most industrial applications.
Sometimes, multiple operating modes result from exter-
nal disturbances, as for example a change in feedstock or
product grade or even changes such as the diurnal load
variation of a power plant or the summer-winter operation
of a refinery [99; 100]. In these situations, consistently
training a model for each operating mode or for each set of
correlated operating modes of the process has been shown
to be reasonably consistent and to be beneficial for the
prediction accuracy [101; 102]. During online operation,
when a new sample is made available, the model which
is the most adequate for the new sample is identified and
then used to make the prediction. The identification of
which model will be used is a key issue in the development,
[102; 103; 104], which can be done using expert knowledge
[102] or using automatic tools, such as finite mixture of
Gaussian models (FMGM) [101].

In this context, in [102], the authors work on modeling
the operating modes in a polymerization batch process
case study. The correlated operating modes have been
grouped, and then a separate PLS model was tuned for
each set of correlated operating modes. During online
operation, the incoming sample is assigned to the corre-
sponding mode and its model is used for the prediction.
However, in [102], the expert knowledge of the operators
was used to determine the operating modes and in some
cases or problems such information might not be available.

Another approach, based on the FMGM, was proposed
in [101]. In this work, the FMGM is used to automat-
ically identify the different operating modes of the pro-
cess. Then, multiple localized Gaussian process regression
models in the nonlinear kernel space were built to char-
acterize the different dynamic relationships between pro-
cess variables (inputs to the prediction setting) and qual-
ity variables (outputs of the prediction setting) within the
identified operating modes. During online operation, the



incoming sample is assigned automatically to the corre-
sponding submodel, using the FMGM. The major draw-
back of [101] is that the determination of the operating
modes and model tuning is done separately, i.e. the set of
operating modes is determined independently of the model
used. However, as verified in the case study of [102], a
model can be set for more than one operating mode, with
the advantage of reducing the number of necessary models
and increasing the number of samples available for tuning
each model. Another drawback of [101] is that the num-
ber of samples used for tuning each model is constrained
by the number of samples of each operating mode, which
is defined by the FMGM. The approach of [101] leads to
“hard“ partition boundaries, and consequently just a part
of the total of samples is used for tuning the prediction
model of each operating mode. Such an approach can lead
to poor modeling on the corresponding operating mode,
depending on the chosen model and the available samples

In [105] a method for dealing with online prediction of
the quality variables in processes with multiple operating
modes is proposed and derived. The method is called mix-
ture of partial least squares (PLS) experts (Mix-PLS). The
Mix-PLS was be derived based on the mixture of experts
(ME) framework [106] and the PLS algorithm. The ME
models input-output observations by assuming that they
have been produced by a set of different random sources
(the random sources can be thought of as operating modes)
and the parameters of each expert, and of each gating func-
tion, were determined using the PLS algorithm. It was
demonstrated that the solution of the parameters using
the PLS algorithm overcomes the problem of collinearity
of input data and also makes the Mix-PLS less prone to
overfitting with respect to the number of mixture models.
The Mix-PLS was compared with the SVR, MLP, Linear
and PLS models, with superior performance in all the pre-
sented cases of study.

5. Model Validation

The objective of the model validation step is to evalu-
ate the capability/ability of the trained model to perform
generalization to new samples. Generalization accuracy
can also be used as an estimator for model ranking in a
variable selection approach (e.g. in wrapper variable se-
lection) [9]. For a large data set, usually the model is
learned using only a part of the data set and then the
model performance is measured on the remaining data,
usually called validation data set, using some performance
metric, usually the MSE (e.g. lower values of MSE indicate
better models) or the normalized root mean square error
(NRMSE). The NRMSE is a normalized version of MSE,
often expressed in percentage, which gives a more intu-
itive analysis on the performance of the model. For small
data sets, a cross-validation technique is usually employed
to evaluate the performance of the model. The common
cross validation techniques are the K-fold cross validation

and the leave-one-out cross validation (LOOCYV). In K-
fold cross validation, the training data set is randomly split
into K folds, and then the model learning is performed
using the samples from (K — 1) folds, and the resulting
model is evaluated on the remaining fold, using some per-
formance metric. This process is repeated for all K folds,
and the performance of the model is the average of the
performance metric on the K folds. The LOOCYV is usu-
ally employed when the number of samples is very small,
and it is equivalent to the K-fold cross validation when
the number of folds K is equal to the number of samples.
Other approaches measure the quality of a model in terms
of its accuracy-complexity trade-off (ACT), using criteria
such as the AIC [107], the Bayesian Information Criterion
(BIC) [108], or the Cp statistics [85].

For dynamic linear systems, the autocorrelation func-
tion of the residuals and the cross-correlation functions
between the residuals and the input over a set of unseen
data [109] are usually employed to evaluate the capabil-
ity of the trained linear dynamic model. For non-linear
dynamic systems, the work of [110] has provided several
metrics to evaluate non-linear dynamic models based on
NN.

6. Soft Sensor Maintenance

During SSR design the historical data of the process is
used to learn the SSR model. However, the historical data
contains limited information, corresponding to a limited
period of time, and possibly also focusing on a limited set
of operation areas of the state space. When dealing with
new events, not described in the historical data, the SSR,
tends to decrease its performance. In this context, and
to overcome such performance deterioration, the objective
of SSR maintenance is to maintain a good SSR response
even in the presence of process variations, or some data
change. Generally, this is done by updating the SSR model
online/recursively, in batch or sample wise mode, using
the incoming samples of the process (in this context the
SSRs are called “adaptive SSRs” [111]). From the machine
learning perspective, the area of adaptive SSRs is related
to the problem of concept drift. Concept drift means that
the statistical properties of the target variable changes over
the time, the term concept means the object/target to be
predicted [112].

There are three types approaches commonly employed
in dealing with concept drift: (1) sample selection, (2)
sample weighting, and (3) ensemble learning (or learning
with multiple concept descriptors) [113]. Moreover, as al-
ready discussed before, the mostly used models in SSR
applications are based on multivariate statistical meth-
ods (LS, PLS, PCA) or artificial intelligence techniques
(NNs (mainly the MLP structure), SVRs, FS, and NFS).
In adaptive SSRs such models can also be employed, but
there is the concern regarding the learning/adaptation of
parameters. The model(s) can be applied as a single



model, in the sample weighting or sample selection ap-
proaches, or several models can be applied together in the
ensemble approach.

6.1. Sample Selection

In sample selection, the idea is to select relevant sam-
ples related to the current concept. The next step is to
use such samples to update or retrain the existing model.
Normally, this selection is done using window-based ap-
proaches, where the samples which are inside of a win-
dow are used to retrain/update the model, while samples
outside of the window are discarded. The issues of se-
lecting the size of the window and deciding when to re-
train/update the model are crucial for a successful imple-
mentation. If the selection of the window size is poorly
handled, there is a danger that the SSR adapts to noise
(if the window size is too short) or, in the case of a too
long window, it can lead to limited adaptation capability
[114]. Some adaptive methods based on ANN models in
the sample selection strategy were proposed in the liter-
ature. In [115; 116], a moving window was adopted to
retrain the ANN model. When a new batch of samples is
available the old data is dropped out of the window and
the neural model is retrained adapting to the concept of
the new data. In [116] the most relevant features were se-
lected offline using the first part of the training data by
using a forward search procedure in combination with a
MLP network.

Adaptive learning methods for NFS and SVR have been
proposed in the literature, and they are usually based on
sample selection or ensemble learning. NFS are widely ap-
plied for prediction [2; 93], but their parameters are usu-
ally learned offline. Online tuning of NFS can be done by
Evolving Fuzzy Systems (EFS) [117]. A step-wise online
learning algorithm for SVR training was proposed by [118],
where the update can be done by removing or adding new
support vectors, an application in the soft sensor context is
given in [119]. In [120] it is proposed the Adaptive Kernel
Learning (AKL) framework for prediction and monitoring
tasks. In this case, the SVR optimization problem was
solved by the least squares approach [121]. In [122], an
adaptive kernel learning method was used. The examples
were selected, and the exclusion of redundant examples
was performed to reduce the complexity of training. It
was shown to be superior to RPLS in the presented case
of study.

6.2. Sample Weighting

In the sample weighting strategy, the samples are
weighted according to their age (the importance of the
samples decreases over time). The learning/adaptation
of parameters is usually done using adaptive learning by
means of exponentially recursive learning. The adaptive
learning has relation to the recursive or online learning
where each sample is presented once and only once to
learn/adapt the parameters, but in adaptive learning there

is the ability to forget old examples by exponentially as-
signing low weights to old samples, usually by setting a
forgetting factor 0 < A < 1, such that the model could
capture the information of the recent data [113; 111]. Us-
ing such sample weighting approaches, there is no need to
use memory to store the samples.

In the sample weighting approach, the following learning
strategies have been used in the literature for the LS, PLS,
and artificial neural networks (ANN) models. For the LS
solution, there is the recursive LS (RLS) method, which
is a well known example of recursive learning, where the
coefficients of a linear model that minimize the linear least
squares cost function are recursively computed. The PLS
is implemented with its recursive/adaptive form, the recur-
sive PLS (RPLS) [123]. It is the most popular method in
adaptive SSRs [124; 125; 126; 127; 128; 129; 59; 11; 130].
For the other state of the art methods, there are some
adaptive learning strategies in the literature. For single
layer feedforward ANN, a fast learning algorithm with of-
fline and online solutions, called online sequential extreme
learning machine (OS-ELM) was proposed in [131]. All
these methods are able to forget old samples by setting a
forgetting factor. In [132] the problem related with expo-
nential weighting of samples in adaptive soft sensors was
studied. It was assumed that when learning the adaptive
models with small values of forgetting factor, the model
suffers from problems similar to the ones associated with
learning of static models with small number of samples.
Then, based on this, a mixture of low dimensional models
was proposed and derived, based on the mixture of uni-
variate linear regression models. Mixtures of other types
of models, possibly nonlinear, but linear in the parameters
were also considered. The proposed method was evaluated
in two time-varying real-world data sets, and compared in
different settings with the state of the art methods in adap-
tive soft sensors. The proposed method demonstrated to
provide the best results in almost all cases, mainly when
using small values of forgetting factor.

6.3. Ensemble Learning

In the ensemble learning strategies, the goal is to con-
struct a model for each concept in the data distribution.
When a new input arrives, the final prediction value is a
combination of the results of all the models built previ-
ously for all the concepts, such as a weighted average of
such results. Moreover, in the ensemble method, there are
two possible areas that may be subject to adaptation: at
the level of the model combination, or at the level of the
models. The ensemble method is less attractive because of
its computational demand, necessary to process and store
several models and/or samples.

Ensemble learning methods find different concepts in
the historical data and learn a model for each of these
concepts. In [11] a PLS model was constructed for each
different concept found (an approach based on the PLS
model error was used to determine the different concepts).



The final prediction is a combination of the set of the avail-
able models, where the combination takes into account a
probability of each model being responsible for the data
to be predicted. The adaptation is performed at the level
of model combination and at the level of recursive adapta-
tion of the models. The authors termed this method the
incremental local learning soft sensing algorithm (ILLSA).
[133] developed a SSR method using an ensemble learning
strategy where a clustering method, based on the fuzzy C-
means clustering (FCM) algorithm, was used to find dif-
ferent concepts, and then a SVR model was learned to
predict in each concept. During online operation, when
a new sample arrives, the FCM algorithm sets the corre-
sponding adequate SVR model to be used to predict the
output.

7. Conclusions

The soft sensor technology has important potential for
industrial applications and academic research. From the
industry perspective, the soft sensor has an enormous po-
tential to be used as a commercial tool to improve perfor-
mance, efficiency, automation degree, and output quality
in industrial systems. From the academy/research per-
spective, the soft sensors can be stated as a multidisci-
plinary topic of research, that encompasses several areas
of study, such as machine learning, pattern recognition,
artificial intelligence, system identification, and statistical
learning theory. Moreover, it has several topics to be re-
searched, where the most emergent topics, are the problem
of variable selection (including dynamic selection) and soft
sensor maintenance. Another topic of research, is regard-
ing the learning of soft sensor models in multiple operating
scenarios/modes.
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Appendix A. Search Procedures

In a variable selection algorithm, a search procedure is
used to guide the search for the best subset of variables.
For D input variables, there are a total of 2° — 1 pos-
sible subsets, where only some of the subsets attain the
optimal solution. Typically, the optimal solution may be
attained for only one of the subsets. By searching over
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all possible subsets (this is called as exhaustive search), it
is possible to lead to the optimal solution. However, for
exhaustive search there is the problem of the large com-
putational demand. For example if there are only 20 vari-
ables, i.e. D = 20, there are 1048575 solutions that need
to be evaluated, if the criterion to evaluate one subset
takes approximately ~ 1(sec) (being optimistic), then it
would be necessary ~ 12 days to select the best subset.
The branch and bound (B&B) algorithm leads to the op-
timal solution with less complexity than the exhaustive
search, under the constrain that the evaluation function
must be monotic [134]. However, the algorithm still has
an exponential worst case complexity, which may render
the approach infeasible when a large number of candidate
variables is available [39].

The large computational costs associated with the ex-
haustive search and B&B algorithms, caused by the neces-
sity to evaluate so many subsets, can be reduced by using
search strategies that prioritize the computational time
rather than the quality of the solution, while still provid-
ing good results. Such strategies are based on rankers,
sequential and stochastic searches. These techniques are
briefly reviewed below.

Appendix B. Ranking Search

The ranking search proceeds as follows. First, the im-
portance of each input variable, with respect to the target
(measured by any criterion, e.g. CC, MI), is computed.
Then, the variables are ranked according to their indi-
vidual merit, with respect to the target variable, in ac-
cordance with the chosen criterion. Then, only a subset
of the top variables (from the ranked set), are selected,
and the remaining variables are excluded. In this search
approach only D evaluations are required; a very fast ap-
proach. This method gains on the speed of selection, but
loses on the quality of the selected variables. This happens
because, the variables are selected without taking into con-
sideration the interaction among them.

Appendix C. Sequential Search

The sequential search works by removing or adding vari-
ables sequentially, following a certain order. The most
common sequential search procedures are the sequential
forward selection (SFS) and the sequential backward selec-
tion (SBS). The SBS procedure, proposed by [88], starts
with all variables, and at each step the variable that con-
tributes least to predict the target, according with the sub-
set evaluation criterion, is removed. The SBS procedure
stops when a pre-specified number of variables are removed
or until the results get satisfactory. The SFS, introduced
by [135], starts with an empty subset, and at each step
the variable that mostly contributes to predict the target,
according with the subset evaluation criterion, is added to
the set of selected variables. These methods are largely
used in variable selection procedures.



Both SFS and SBS have the same complexity in the
worst case scenario (it is necessary to evaluate w
subsets), but in a practical perspective the SFS executes
faster than SBS. This happens because the SFS algorithm
evaluates smaller subsets than the SBS at the beginning
of the search.

The major problem related to the SFS and SBS ap-
proaches is that, for example, when a variable is removed
in SBS; it cannot be selected again. This results in the
so called nesting effect, i.e. bad decisions made at the be-
ginning of the search cannot be corrected later. To avoid
or alleviate the nesting effect in the sequential selection
Stearns [136] proposed the Plus-I-Minus-r search method.
Each iteration of the Plus-I-Minus-r is divided into two
substeps. In the first step, the SFS runs to select | new
variables, and in the second step the SBS runs to exclude
r variables from those that have already been selected.
Pudil [137] proposed modifications on the SFS and SBS
to allow them to reselect removed variables, then avoid-
ing the nesting effect, they are called as sequential forward
floating selection (SFFS) and sequential backward floating
selection (SBFS), and their idea is similar to the Plus-I-
Minus-r algorithm.

Appendix D. Stochastic Search

Stochastic methods are optimization methods which in-
clude some randomness in the search procedure. This
can be thought as a good strategy when dealing with a
large number of input variables [138], since it corresponds
to search randomly over the input space, but following a
certain heuristic. The class of stochastic algorithms in-
cludes, but is not restricted to, Genetic Algorithms (GA),
Ant Colony Optimization (ACO), and Simulated Anneal-
ing (SA).

The GA is inspired by the biological evolution, more
specifically by the Darwinian principles of natural evolu-
tion, where the best individuals have a high probability of
survival; It was first introduced in [139]. In the GA, solu-
tions are encoded into chromosomes (individuals) and the
fittest ones are more susceptible, have higher probability,
to be selected for reproduction, producing offspring with
characteristics of both parents. For some of the offsprings
an operation called mutation (inspired by the natural evo-
lution) is applied, to include diversity in the solution.

The ACO is an optimization methodology based on ant
behaviors to establish the shortest route paths from their
colony to food sources and back [140]. In nature, ants
randomly walk for finding food, then they return to their
colony while laying down pheromone trails. Other ants,
when finding such path, tend to follow the trail and when
they find food, they also walk back to the colony laying
down pheromone, thus reinforcing the trail.

SA is a meta-heuristic proposed in [141] for global op-
timization problems. SA is inspired in the behavior of a
warm particle in a potential field. Generally, a particle
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tends to move down, to the lower potential energy, but
since it has kinect energy (caused by the non-zero tem-
perature), it moves around with some randomness, and
occasionally it jumps to higher potentials. The particle
is annealed when the time passes in this process, i.e. if
temperature decreases gradually, so that the probability
to move upwards decreases with time. In SA, the solution
is represented by the particle and the potential energy rep-
resents the cost function.
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