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Abstract

This paper proposes a method for adaptive identification and control for industrial applications. The learning of a
T-S fuzzy model is performed from input/output data to approximate unknown nonlinear processes by a hierarchical
genetic algorithm (HGA). The HGA approach is composed by five hierarchical levels where the following parameters of
the T-S fuzzy system are learned: input variables and their respective time delays, antecedent fuzzy sets, consequent
parameters, and fuzzy rules. In order to reduce the computational cost and increase the algorithm’s performance an
initialization method is applied on HGA. To deal with nonlinear plants and time-varying processes, the T-S fuzzy model
is adapted online to maintain the quality of the identification/control. The identification methodology is proposed for
two application problems: (1) the design of data-driven soft sensors, and (2) the learning of a model for the Generalized
predictive control (GPC) algorithm. The integration of the proposed adaptive identification method with the GPC
results in an effective adaptive predictive fuzzy control methodology. To validate and demonstrate the performance and
effectiveness of the proposed methodologies, they are applied on identification of a model for the estimation of the flour
concentration in the effluent of a real-world wastewater treatment system; and on control of a simulated continuous
stirred tank reactor (CSTR) and on a real experimental setup composed of two coupled DC motors. The results are
presented, showing that the developed evolving T-S fuzzy model can identify the nonlinear systems satisfactorily and it
can be used successfully as a prediction model of the process for the GPC controller.

Keywords:
Fuzzy identification, Hierarchical genetic algorithm, Predictive fuzzy control, Fuzzy generalized predictive control.

1. Introduction

Identification and model based control of industrial pro-
cesses have been a focus in many engineering approaches
that require accurate process models, such as soft sensors
design or model predictive controller design, respectively.

Data-driven soft sensors (DDSS) are inferential models
that use on-line available sensor measures for on-line es-
timation of variables which cannot be automatically mea-
sured at all, or can only be measured at high cost, spo-
radically, or with large time delays (e.g., laboratory anal-
ysis). These models are based on measurements which
are recorded and provided as historical data. The models
themselves are empirical predictive models. They are valu-
able tools to many industrial applications such as refiner-
ies, pulp and paper mills, wastewater treatment systems
(Fortuna et al., 2006).

Model predictive control (MPC) is a popular control ap-
proach that is based on the use of a model of the process to
predict the future behavior of the system over a prediction
horizon. MPC is widely used in practice due to its high-
quality control performance (Camacho & Bordons, 1998).

A weak point common in both methodologies, soft sen-
sors design and model predictive control, it is their as-
sumption of the knowledge of an accurate model of the
process to be identified/controlled. The majority of phys-
ical systems contain complex nonlinear relations, which
are difficult to model with conventional techniques. This
assumption may present problems because many com-
plex plants are difficult to be mathematically modelled
based on physical laws, or have large uncertainties and
strong nonlinearities. Several types approaches to mod-
elling nonlinear plants can be considered to be used in
DDSSs and MPCs. A suitable option, is the applica-
tion of models based on fuzzy logic systems. This is
theoretically supported by the fact that fuzzy logic sys-
tems are universal approximators (Wang & Mendel, 1992;
Kosko, 1994). Takagi-Sugeno (T-S) fuzzy models (Takagi
& Sugeno, 1985) are suitable to model a large class of non-
linear systems and have gained much popularity because
of their rule consequent structure which is a mathematical
function.

Some biologically inspired algorithms, such as Genetic
Algorithm (GA), Ant Colony Optimization (ACO), Parti-
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cle Swarm Optimization (PSO), have been proved efficient
in optimization problems. GAs are search methods that
are inspired on natural evolution, selection, and survival
of the fittest in the biological world. PSO is inspired in
the social behavior of living organisms such as bird flock-
ing or fish schooling. ACO is a multiagent approach that
simulates the foraging behavior of ants. All algorithms
could be used to design the T-S fuzzy models. However,
because GAs provide a robust search with the ability to
find near optimal solutions in complex and large search
spaces ((Cordón et al., 2001), (Herrera, 2008)), GAs are a
useful soft computing technique to design T-S fuzzy mod-
els. Other advantages in the use of GAs in the design of
T-S fuzzy models are: GAs are simple to implement, they
have the possibility of using different types of solution en-
coding (e.g., for different parts of the model), and they
are adaptive, which means that they have the ability to
learn, accumulating relevant knowledge to solve optimiza-
tion problems (Kasabov, 1996).

In off-line training algorithms the discrete-time T-S
fuzzy model can be obtained from input-output data col-
lected from a plant. However, such collected dataset can be
limited and the obtained T-S fuzzy model may not provide
adequate accuracy in parts or the whole operating areas of
the plant. Moreover, the behavior and model of the plant
may be changing over time. This motivates the introduc-
tion of adaptive methodologies to solve these problems.

In (Han et al., 2012) a self-organizing radial basis func-
tion neural network model predictive control method is
proposed for controlling the dissolved oxygen concentra-
tion in a wastewater treatment process. In (Wu et al.,
2012) a GPC strategy with closed-loop model identifica-
tion for burn-through point control in the sintering process
is proposed. In (Li et al., 2010) a novel fuzzy-modeling ap-
proach is proposed, which it is able to determine the right
number of rules automatically. A fuzzy c-regression model
clustering algorithm is applied to identify the premise
parameters, and afterwards the orthogonal least squares
method is exploited to identify the consequent parame-
ters. In (Cazarez-Castro et al., 2010) a hybrid architec-
ture, which combines Type-1 or Type-2 fuzzy logic system
and genetic algorithms for the optimization of the mem-
bership function parameters is presented. In (Kayade-
len, 2011) the potential of genetic expression programming
and adaptive neuro-fuzzy computing paradigm is studied
to forecast the safety factor for liquefaction of soils. In
(Hung & Lin, 2012) it is developed a novel evolutionary
algorithm named the partial solutions consideration based
self-adaptive evolutionary algorithm (PSC-SEA) to adjust
the parameters of a neuro-fuzzy network.

The methods of (Han et al., 2012; Wu et al., 2012; Li
et al., 2010; Cazarez-Castro et al., 2010; Kayadelen, 2011;
Hung & Lin, 2012) have the limitation of not being able to
perform automatic selection of variables and delays: pre-
selection is performed. The selection of the most adequate
input variables and respective time delays is crucial since
the use of the correct variables with the correct delays

can lead to better prediction accuracy because they can
contain more information about the output than incorrect
variables and/or variables with incorrect delays (Souza
et al., 2010).

An approach using methods for learning T-S fuzzy mod-
els is proposed by (Mendes et al., 2012): a hierarchical
evolutionary approach with five levels to optimize the pa-
rameters of T-S fuzzy systems is introduced. In the first
level, the input variables and respective delays are chosen
with the goal of attaining the highest possible prediction
accuracy of the T-S fuzzy model. The selection of vari-
ables and delays is performed jointly with the learning of
the fuzzy model, which increases the global optimization
performance. The second level encodes the membership
functions. The individual rules are defined at the third
level. The population of the set of rules is defined in the
fourth level, and a population of fuzzy systems is treated
at the fifth level. The least squares method is used to
determine the parameters of the rule consequents. The
present paper proposes an improvement over the previous
work (Mendes et al., 2012).

The main advancements of is this work in comparison
with (Mendes et al., 2012) are (1) the application of an
initialization method on the hierarchical evolutionary ap-
proach, (2) the use of an adaptive approach of the fuzzy
consequent parameters, and (3) the integration of the T-S
fuzzy model learned by the proposed identification method
into an adaptive fuzzy GPC controller. GAs are usually
initialized with random population elements. This sort of
approach increases the tuning/search difficulty of the GA,
since a set of totally random populations can lead to a
very exhausting optimality search, requiring more itera-
tions to attain convergence. Therefore, in order to reduce
the computational cost and increase the algorithm’s per-
formance, an initialization method is applied. This work
uses an initialization method based on a fuzzy c-means
(FCM) clustering algorithm (Celikyilmaz & Trksen, 2009;
Dovžan & Škrjanc, 2011). Another characteristic of the
proposed methodology is that, when dealing with nonlin-
ear plants, time-varying processes, disturbances or varying
operating regions and parameters of the model, the fuzzy
model adapts itself to new process conditions in order to
maintain the quality of the identification/control. Other
small modifications are introduced on levels 2 and 5. On
level 2, only gaussian membership functions are used, and
on level 5 a different t-norm is used.

To validate and demonstrate the performance and ef-
fectiveness of the proposed algorithm, it is applied on
an identification problem, and on two control problems.
First, a nonlinear system identification application prob-
lem is analyzed and quantitatively compared with the work
(Mendes et al., 2012): the estimation of the flour concen-
tration in the effluent of a real-world wastewater treatment
plant. Then, the performance of the proposed adaptive
predictive fuzzy identification and control methodology is
demonstrated on two setups: a simulated CSTR plant,
and a real-world experimental setup composed of two cou-
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pled DC motors. Moreover, the identification performance
is quantitatively compared with two adaptive approaches:
a recursive partial least squares (RPLS) ((Dayal & Mac-
Gregor, 1997)) and a recently proposed incremental local
learning soft sensing algorithm (ILLSA) for adaptive soft
sensors ((Kadlec & Gabrys, 2011)).

The paper is organized as follows. Section 2 presents
nonlinear systems modeling by T-S fuzzy models, and
a method for nonlinear systems modeling using fuzzy c-
means clustering algorithm. The hierarchical genetic fuzzy
system proposed in this paper is described in Section 3.
In Section 4 a brief overview of the fuzzy GPC is pre-
sented. In Section 5, results of the proposed identification
and control methodology are presented and analyzed. Fi-
nally, Section 6 makes concluding remarks.

2. Fuzzy c-Means clustering

This Section presents the modelling of the T-S fuzzy
model and an initialization method to reduce the compu-
tational cost and increase the performance of the GAs.
As an initialization method, the fuzzy c-means clustering
algorithm (Celikyilmaz & Trksen, 2009), (Dovžan & Škr-
janc, 2011) is employed on the T-S fuzzy model learning
methodology.

2.1. Modelling using T-S fuzzy models

Takagi-Sugeno fuzzy models with simplified linear rule
consequents are universal approximators capable of ap-
proximating any continuous nonlinear system (Ying,
1997). For more details about T-S fuzzy models, refer-
ences Ref. (Takagi & Sugeno, 1985; Wang, 1997), are rec-
ommended. With a T-S fuzzy model, the global operation
of the nonlinear system can be accurately approximated
into several local affine models. In general, a nonlinear
system can be described by a T-S fuzzy model defined by
the following fuzzy rules:

Ri : IF x1(k) is Ai1, and . . . and xn(k) is Ain
THEN yi(k) = θi1x1(k) + · · ·+ θinxn(k),

i = 1, 2, . . . , c, (1)

where Ri (i = 1, 2, . . . , c) represents the i-th fuzzy rule,
c is the number of rules, x1(k), . . . , xn(k) are the input
variables of the T-S fuzzy system. Aij (j = 1, 2, . . . , n) are
linguistic terms characterized by fuzzy membership func-
tions µAi

j
(xj) which describe the local operating regions

of the plant. θi1, · · · , θin are model parameters of yi(k).
From (1), y(k) can be rewritten as

y(k) =
c
∑

i=1

ω̄i[x(k)]x(k)θi,

= Ψ(k)Θ, (2)

where for i = 1, . . . , c, and assuming Gaussian membership
functions,

x(k) = [x1(k), . . . , xn(k)] , (3)

µAi
j
(xj) = exp

(

−
(xj − vij)

2

σij

)

, (4)

ω̄i[x(k)] =

∏n
j=1 µAi

j
(xj)

∑c
i=1

∏n
j=1 µAi

j
(xj)

, (5)

θi = [θi1 . . . , θin]
T
, (6)

Θ =
[

θ
T
1 ,θ

T
2 , . . . ,θ

T
c

]T

, (7)

Ψ(k) =
[(

ω̄1[x(k)]
)

x(k), . . . ,

(ω̄c[x(k)])x(k)] . (8)

where vij and σij represent the center and width of the
membership function, respectively, which need to be de-
fined/learned.

2.2. Fuzzy c-means

The objective of the fuzzy c-means (FCM) clustering
algorithm is the partitioning of the dataset X into a pre-
defined number of clusters, c. In the fuzzy clustering meth-
ods, the objects can belong to multiple clusters, with dif-
ferent degrees of membership.

Consider n samples which compose an observation l (one
sample of each input variable), and they are grouped as an
n-dimensional vector xl = [xl1, . . . , xln]

T , where xl ∈ R
n.

A set of L observations is then denoted as

X =











x11 x12 . . . x1n
x21 x22 . . . x2n
...

...
...

...
xL1 xL2 . . . xLn











. (9)

The fuzzy partition of the set X into c clusters, is a family
of fuzzy subsets {Ai | 1 6 i 6 c}. The membership func-
tions of these fuzzy subsets are defined as µi(l) = µAi(xl),
and form the fuzzy partition matrix U = [uil] = [µi(l)] ∈
R
c×L. The i-th row of the matrix U contains the val-

ues of the membership function of the i-th fuzzy subset
Ai for all the observations belonging to the data matrix
X. The partition matrix has to meet the following condi-
tions (Dovžan & Škrjanc, 2011): The membership degrees
are real numbers in the interval µi(l) ∈ [0, 1], 1 6 l 6 L;
The total membership of each sample in all the clusters
must be equal to one

∑c
i=1 µi(l) = 1; And none of the

fuzzy clusters is empty, neither do any contain all the data
0 <

∑L
l=1 µi(l) < L, 1 6 i 6 c .

FCM clustering tries to minimize the following objective
function, which has a pre-defined number of clusters, c,
and includes a fuzziness parameter, η:

J(X,U,V) =
c
∑

i=1

L
∑

l=1

(µi(l))
ηd2il(xl,vi), (10)
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Nomenclature

θi Model parameter vector of the i-th fuzzy rule.

Ci Covariance matrix of the i-th fuzzy rule.

I Identity matrix.

U Fuzzy partition matrix.

V Matrix of cluster centroid vectors.

vi Cluster centroid vectors.

X Data matrix.

x Input variable vector.

xl Input variable vector at observation l.

∆ Difference operator.

η Overlapping factor or the fuzziness parameter.

ŷ(k + p) An p-step ahead prediction of the system.

λ(z−1) Weighting polynomial.

µi Fuzzy partition of fuzzy subsets i.

σij Width of the membership function of the i-th
fuzzy rule and of the input variable j.

θij Model parameter of the i-th fuzzy rule and of
the input variable j.

ϕi Forgetting factor of the fuzzy rule i.

Aij Linguistic term characterized by fuzzy member-
ship functions µAi

j
(xj).

c Number of rules.

dil Euclidean distance (l2-norm).

Jq Fitness function of the Level q.

L Number of observations.

n Number of input variables.

Np Output horizon.

Nu Control horizon.

p p-step ahead prediction.

pm Mutation probability.

r(k + p) Future reference trajectory.

Ri The i-th fuzzy rule.

u(·) Process input.

vij Center of the membership function of the i-th
fuzzy rule and of the input variable j.

xj Input variable j of the T-S fuzzy system.

y(·) Process output.

where V is a matrix of cluster centroid vectors vi =
[vi1, · · · , vin]

T , V = [v1, . . . ,vc]
T ∈ R

c×n , dil is the Eu-
clidean distance (l2-norm) between the observation xl and
the cluster centroid vi, and the overlapping factor or the
fuzziness parameter that influences the fuzziness of the re-
sulting partition is denoted as η. The partition can range
from a hard partition (η = 1) to a completely fuzzy parti-
tion (η → ∞).

In order to find the fuzzy clusters in the dataset X,
equation (10) must be minimized. If the derivative of the
objective function is taken with respect to the cluster cen-
ters V and to the membership values U, then optimum
membership values are calculated as follows (Dovžan &
Škrjanc, 2011):

µi(l) =

(

d2il

c
∑

q=1

(

d2ql
)1/(η−1)

)

−1

, (11)

where
d2il = (xl − vi)

T
(xl − vi) , (12)

and

vi =

∑L
l=1 µ

η
i (l)xl

∑L
l=1 µ

η
i (l)

. (13)

To finalize the identification of the premise parameters,
the σi = [σi1, · · · , σin]

T , i = 1, . . . , c, can be easily calcu-

lated using U = [µi(l)], as follows:

σij =

√

√

√

√

√

√

√

√

2
L
∑

l=1

µi(l)(xlj − vij)2

L
∑

l=1

µi(l)

, j = 1, . . . , n. (14)

2.3. Recursive least squares method with adaptive direc-
tional forgetting

In off-line training algorithms the T-S fuzzy model can
be obtained from input-output data collected from a plant.
However, such collected dataset(s) can be limited, the ob-
tained T-S fuzzy models may not provide adequate accu-
racy, the system can be nonlinear and/or time-varying,
and can have varying operating points and parameters of
the model. Adaptive methodologies should be applied to
solve these problems.

Thus, in the proposed methodology, after the learning
of the antecedent parameters (Section 2.2), the consequent
parameters are given by a recursive least squares (RLS)
method, with the adaptive directional forgetting approach
of (Kulhavý, 1987; Bobál et al., 2005) here adapted for the
T-S fuzzy model.

At each iteration, l, the vector of parameter estimations
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(6), is updated using

θi(l) = θi(l− 1) +
Ci(l − 1)ψTi (l)

1 + ξi
(yi(l)− ψi(l)θi(l − 1)) ,

(15)
where ψi(l) =

(

ω̄i[x(l)]
)

x(l), ξi = ψi(l)Ci(l − 1)ψTi (l),
Ci(l) is the covariance matrix of the fuzzy rule i and
yi(l) =

(

ω̄i[x(l)]
)

y(l).
The covariance matrix is also updated at each iteration,

l, using

Ci(l) = Ci(l − 1)−
Ci(l − 1)ψTi (l)ψi(l)Ci(l − 1)

ε−1
i + ξi

, (16)

where εi = ϕi(l − 1) − 1−ϕi(l−1)
ξi

and ϕi(l − 1) is the for-
getting factor at l − 1 iteration of the fuzzy rule i.

The adaptation performed on the forgetting factor is
obtained using (Kulhavý, 1987; Bobál et al., 2005)

ϕi(l) =
1

1 + (1 + ρ)
{

ln(1 + ξi) +
[

(νi(l)+1)γi
1+ξi+γi

− 1
]

ξi
1+ξi

} ,

(17)
where νi(l) = ϕi(l − 1)(νi(l − 1) + 1),
γi = (yi(l)−ψi(l)θi(l−1))2

τi(l)
, τi(l) = ϕi(l −

1)
[

τi(l − 1) + (yi(l)−ψi(l)θi(l−1))2

1+ξi

]

, and ρ is positive
constant.

The initial values of ϕi(0), τi(0) and νi(0) should be set
between zero and one.

2.4. Initialization algorithm

To construct a T-S fuzzy system of the form (2) the an-
tecedent parameters (vi and σi), and the consequent pa-
rameters (θi) are necessary. The antecedent parameters
are given by the fuzzy c-means algorithm, and the con-
sequent parameters are given by recursive least squares
method with adaptive directional forgetting.

The initialization algorithm is presented in Algorithm 1.

3. Hierarchical genetic fuzzy system

In this section is explained the hierarchical genetic al-
gorithm that will learn all parts of the T-S fuzzy model
to identify nonlinear systems. This approach is consti-
tuted by five hierarchical populations, where each popu-
lation represents different species. The first level is re-
sponsible to select a set of input variables and respective
time delays. The second level is constituted by all the an-
tecedent membership functions of the T-S fuzzy system.
The individual rules are treated at the third level. A set
of the fuzzy rules are handled in the fourth level, and the
population of fuzzy systems is evolved at the fifth level.
The hierarchical architecture is illustrated in Fig. 1. The
detailed description of each level is given below.

Level 1: the population is formed by a set of input vari-
ables and respective delays that is used in the T-S fuzzy

Algorithm 1 Initialization algorithm.

1. Obtain a dataset X (9) and define number of clusters c,
degree of fuzziness η, and the stop conditions ǫ > 0 and
Max. Initialize the partition matrix U, randomly;

2. Find initial cluster centers using (13) with the membership
values of initial partition matrix U;

3. For t = 1, · · · ,Max do:

(a) Using (11), calculate membership values at iteration

t, µ
(t)
i (l), of each input data object xl in cluster i, us-

ing the cluster center vector v
(t−1)
i (l), from iteration

(t− 1);

(b) Calculate cluster center of each cluster i at iteration

t, v
(t)
i (l), by (13), using the membership values (11)

at iteration t, µ
(t)
i (l);

(c) If termination condition is satisfied, e.g., |v
(t)
i (l) −

v
(t−1)
i (l)| 6 ǫ, then save the last iteration of the

matrices U and V and go to Step 4;

4. Compute the parameters σi using (14);

5. Compute the consequent parameters θi, by initializing its
components to small values (e.g., 10−10), and then us-
ing the recursive least squares method with adaptive di-
rectional forgetting (Section 2.3), using recursion (15) for
l = 1, . . . , L;

11 5 12

0 13 6

4 0 2

4th linguistic term

0.3 1.2

Universe X  of 5   
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1
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01 1 1
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{ }
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......
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(j=11)

X2 X3X1

... ...

}

Figure 1: Encoding and hierarchical relations among the individuals
of the different levels of the genetic hierarchy.

model. The chromosome of Level 1 is represented by a bi-
nary encoding, where each allele corresponds to each input
variable and respective delay (see Fig. 1). The length of
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the chromosome is given by the total number of pairs of
system variables and respective delays that are considered
as possible candidates to be used as inputs for the T-S
model. In the example of Fig. 1 the selected pairs corre-
spond to x1 = y(t− 1), x2 = u(t− 1), and x3 = u(t− 2).

Level 2: contains the representation of all antecedent
membership functions. All alleles use real encoding to rep-
resent the parameters of the Gaussian membership func-
tion σi and vi, (14) and (13) respectively. In the example
of Fig. 1 it is represented the parameters of the 4th mem-
bership function of variable x1 on the 13th individual rule.
Thus, the 4th Gaussian membership function of variable
x1 is represented by the width S4 = 0.3 and the center
C4 = 1.2.

Level 3: is formed by a population of individual rules.
The length of the chromosome is determined by the maxi-
mum number of antecedent variables. The chromosome is
represented by integer encoding where each allele is formed
by the index that identifies the corresponding antecedent
membership function (defined at Level 2). Null index val-
ues indicate the absence of membership function for the
corresponding variable (i.e. the absence of the variable)
in the rule. In the example of Fig. 1, Level 3 of the GA
hierarchy is illustrated by describing the 13th individual
rule. As can be seen, in this rule x1 is represented by its
4th membership function, x2 is not used, and x3 is rep-
resented by its 2nd membership function. Thus, Fig. 1
includes the illustration of the 13th individual rule which
is the following:

R13 : IF x1(k) is “4” and x3(k) is “2”

THEN y13(θ13, [x1, x3]). (18)

The linguistic terms “4” and “2” are defined in Level 2 (only
term “4” is illustrated at the Level 2 of Fig. 1).

Level 4: each individual of the population corresponds to
a set of fuzzy rules, where each allele contains the index of
the corresponding individual rule that is being included in
the set. Null values indicate that the corresponding allele
does not contribute to the inclusion of any rule to the set
of fuzzy rules. The chromosome is represented by integer
encoding. The length of the chromosome is determined by
the maximum number of fuzzy rules. In the example of
Fig. 1, Level 4 of the GA hierarchy is illustrated by the
11th set of fuzzy rules that contains the 13th and 6th indi-
vidual rules, where these rules are described/represented
in Level 3 of the hierarchy (but only the 13th rule is illus-
trated at the Level 3 of Fig. 1).

Level 5: each individual represents a fuzzy system. The
chromosome is represented by integer encoding. The first
allele represents a jth set of fuzzy rules specified at Level
4. Allele 2 contains a lth partition set individual at Level
2, and Allele 3 represents the mth set of input variables
and delays at Level 1. In the example of Fig. 1, the ith
fuzzy system at Level 5 uses the 11th set of fuzzy rules at
Level 4, the 5th partition set of Level 2, and the 12th set
of selected input variables and delays.

Algorithm 2 Proposed initialization of the hierarchical
methodology.

1. Compute the antecedent membership functions parame-
ters (σi (14) and vi (13)) by the FCM (Algorithm 1);

2. Initialize populations of all levels:

(a) Level 1: initialize the first individual with ones (i.e.
to use all the input variables defined in dataset used
in Algorithm 1);

(b) Level 2: initialize all individuals with the antecedent
membership functions computed in step 1;

(c) Level 3: initialize the first c individuals with the
antecedent part of the fuzzy rules which is learned
by the FCM Algorithm. The way this is done is by
initializing the first individual with ones, the second
individual with twos, until the cth individual with
c’s;

(d) Level 4: initialize the first individual with indexes of
the first c individuals of Level 3;

(e) Level 5: initialize the first individual of Level 5 with
ones;

(f) The remaining individuals of Levels 1, 3, 4, and 5
are randomly initialized;

The proposed initialization of the hierarchical method-
ology is presented in Algorithm 2.

The main steps to learn/improve the T-S fuzzy model
parameters are presented in Algorithm 3, which also de-
fines the fitness functions used to evaluate each individual
for Levels 1 to 5. Each level of the genetic hierarchy is
evolved separately as an independent genetic algorithm.
However, the fitness functions of Levels 1 to 5 depend on
the populations of all the levels, then evolution of each
level also influences the evolution of all other levels.

As can be seen in Algorithm 3, the following genetic
operators are used:

Selection: the Roulette Wheel selection method is used.
The principle of roulette selection consists in a linear
search of individuals through a roulette wheel, where the
wheel slots are weighted in proportion to the individu-
als fitness values. In each generation, with the selection
operator, two parents from the population are chosen for
crossing.

Crossover: the Single Point crossover technique is used.
The process consists of taking the two parents selected
from the selection operator and producing two offspring
solutions (childs) from them. For the first child, the
crossover process generates a random point of crossover,
Rr, and the child will receive the alleles from 1 to Rr from
the first parent and the rest of the alleles are received from
second parent. The second child is constituted by the re-
maining alleles of the parents.

Mutation: is used to maintain the diversity of the pop-
ulation and to prevent the algorithm from being trapped
in local minima. After crossover, each of the two chromo-
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Algorithm 3 Hierarchical methodology algorithm.

1. Set Generation ← 1;

2. Initialize populations of all levels with Algorithm 2;

3. Compute the consequent parameters of the T-S fuzzy
model for all individuals at Level 5 by initializing the
components of θi to small values (e.g., 10−10), and then
using the recursive least squares method with adaptive di-
rectional forgetting (Section 2.3), using recursion (15) for
l = 1, . . . , L;

4. Compute the fitness of each individual, from Level 5 to
Level 1:

(a) Level 5: the fitness function is J5(i) = 1/MSE(i),
where MSE(i) = 1

L

∑L

l=1 (yk − ŷk)
2 is the mean

square error of the ith fuzzy system, ŷk is the pre-
dicted output pattern and yk is the target output
pattern;

(b) Level 4: the fitness function is J4(j) =
max(J5(b), · · · , J5(d)), where b, · · · , d are the fuzzy
systems at Level 5 that contain rule-base j (set of
fuzzy rules);

(c) Level 3: the fitness function is J3(k) =
max(J4(m), · · · , J4(p)), where m, · · · , p are the rule-
bases at Level 4 that contain individual rule k;

(d) Level 2: the fitness function is J2(l) =
max(J5(x), · · · , J5(z)), where x, · · · , z are the fuzzy
systems at Level 5 that contain partition set l;

(e) Level 1: the fitness function is J1(m) =
max(J5(e), · · · , J5(h)), where e, · · · , h are the fuzzy
systems at Level 5 that contain the selection number
m of inputs and delays;

5. If the stop condition does not hold, do for each level:

(a) Generation ← Generation + 1;

(b) Apply the evolutionary operators to form a new pop-
ulation: selection, crossover and mutation;

(c) Replace the current population with the new evolved
population;

(d) Return to step 3.

somes resulting from the crossover operator is subject to
mutation with probability pm. In binary-encoded chromo-
somes, the Flip Bit mutation technique is used, where the
value of a random allele is inverted. In real and integer en-
coded chromosomes Uniform mutation is used, where the
value of one randomly selected allele of the chromosome is
replaced by a uniform random value selected between the
upper and lower bounds defined for that allele.

Replacement: the Weakest Individuals replacement tech-
nique is the last operator used. It consists in taking two in-
dividuals with the weakest fitness from the old generation,
and replacing them by the two new individuals that result
from the application of the selection-crossover-mutation
sequence of operators, in order to form the new popula-
tion.

Gpc

Controller

Reference

signal

Adjustment of 

Model parameters

yu

Rule 1

Rule c  

T-S Fuzzy model learned by HGA

(o�-line)

On-line

adaptation law

Figure 2: A generic schematic diagram of the AFGPC control archi-
tecture.

For more details about these operators see (Sivanandam
& Deepa, 2007).

4. Adaptive fuzzy predictive control law

After having studied the identification algorithm (Sec-
tions 2 and 3), in this section the control algorithm is
explained. A diagram of the adaptive fuzzy generalized
predictive control (AFGPC) approach is presented in Fig.
2. As can be seen, the control scheme consists of the plant,
the controller, and the adaptive T-S fuzzy model. The con-
troller is composed of a model-based predictive controller
that integrates a T-S fuzzy model learned off-line, accord-
ing to the methodology presented in Section 3 on Algo-
rithm 3. Then, the model parameters (consequent param-
eters) are adjusted on-line by an adaptation law studied
in Section 2.3. The main steps of the control architecture
are presented, at the end of this section, on Algorithm 4.

A large class of nonlinear processes can be represented
by a model of the following type:

y(k) = f [y(k − 1), y(k − 2), . . . , y(k − ny),

u(k − d− 1), . . . , u(k − d− nu)], (19)

where u(·) : N → R and y(·) : N → R are the process
input and output, respectively, nu ∈ N and ny ∈ N are
the orders of the input and output, respectively, and d ∈
N is the time-delay of the system. In the discrete-time
nonlinear SISO plant (19), f(·) : Rny+nu → R represents
a nonlinear mapping which is assumed to be unknown.
f(·) is approximated by a T-S fuzzy system.

For the GPC controller, system (19) can be described
by a T-S fuzzy model defined by the following fuzzy rules:

Ri : IF x1(k) is Ai1, and . . . and xn(k) is Ain
THEN yi(k) = ai(z

−1)y(k − 1)

+bi(z
−1)u(k − d− 1), i = 1, . . . , c, (20)

where c is the number of rules, and n = ny + nu,

ai(z
−1) = a1i + a2iz

−1 + . . .+ anyiz
−(ny−1),

bi(z
−1) = b1i + b2iz

−1 + . . .+ bnuiz
−(nu−1), (21)
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and x(k) = [x1(k), . . . , xn(k)] =
[y(k − 1), . . . , y(k − ny), u(k − d− 1), . . . , u(k − d− nu)]
is the vector of input variables of the T-S fuzzy system.
Thus, from (20) y(k) can be rewritten as

y(k) =

c
∑

i=1

ω̄i[x(k)]
[

ai(z
−1)y(k − 1)+

bi(z
−1)u(k − d− 1)

]

, (22)

=

c
∑

i=1

ω̄i[x(k)]x(k)θi,

= Ψ(k)Θ, (23)

where for i = 1, . . . , c,

ω̄i[x(k)] =

∏n
j=1A

h
ij(xj)

∑c
i=1

∏n
j=1A

h
ij(xj)

, (24)

θi =
[

a1i, . . . , anyi, b1i, . . . , bnui

]T
, (25)

Θ =
[

(θ1)
T , (θ2)

T , . . . , (θc)
T
]T
, (26)

Ψ(k) = [(ω̄1[x(k)])x(k), . . . ,

(ω̄c[x(k)])x(k)] . (27)

4.1. Predictive control law

It is assumed that the plant model is of the form (23),
which can be rewritten as follows:

ā(z−1)y(k) = b̄(z−1)u(k − d− 1), (28)

where

ā(z−1) = 1− ā1z
−1 − . . .− āny

z−ny , (29)

b̄(z−1) = b̄1 + b̄2z
−1 + . . .+ b̄nu

z−(nu−1), (30)

āt =

c
∑

i=1

ω̄i[x(k)]ati, t = 1, . . . , ny, (31)

b̄m =

c
∑

i=1

ω̄i[x(k)]bmi, m = 1, . . . , nu. (32)

The GPC control law is obtained so as to minimize the
following cost function

J(k) =

Np
∑

p=d+1

[ŷ(k + p|k)− r(k + p)]
2
+

d+Nu
∑

p=d+1

[

λ(z−1)∆u(k + p− d− 1|k)
]2
, (33)

where ŷ(k + p|k) is an p-step ahead prediction of the sys-
tem on instant k, r(k + p) is the future reference trajec-
tory, ∆ = 1 − z−1, and λ(z−1) = λ0 + λ1z

−1 + . . . +
λNp+nu−1z

−(Np+nu−1) is a weighting polynomial. Np and
Nu are the output and control horizons, respectively. Con-
sider the following Diophantine equation (34):

1 = ∆ep(z
−1)ā(z−1) + z−pfp(z

−1), (34)

ep(z
−1) = 1 + ep,1z

−1 + . . .+ ep,p−1z
−(p−1), (35)

fp(z
−1) = fp,0 + fp,1z

−1 + . . .+ fp,ny
z−ny , (36)

where ep(z−1) and fp(z
−1) can be obtained by dividing

1 by ∆ā(z−1) until the remainder can be factorized as
z−pfp(z

−1). The quotient of the division is the polynomial
ep(z

−1). A simple and efficient way to obtain polynomials
ep(z

−1) and fp(z
−1) is to use recursion of the Diophan-

tine equation as demonstrated in (Camacho & Bordons,
1998). Polynomials ep+1(z

−1) and fp+1(z
−1) can be ob-

tained from polynomials of ep(z−1) and fp(z
−1), respec-

tively. Polynomials ep+1(z
−1) are given by

ep+1(z
−1) = ep(z

−1) + z−pep+1,p, (37)

where ep+1,p = fp,0. The coefficients of polynomial
fp+1(z

−1) can be obtained recursively as follows:

fp+1,i = fp,i+1 − fp,0 ∆āi+1, i = 0, . . . , ny − 1, (38)

where fp,ny
= 0. Polynomial gp+1(z

−1) is expressed as:

gp+1(z
−1) = ep+1(z

−1)b̄(z−1), (39)

=
[

ep(z
−1) + z−pfp,0

]

b̄(z−1), (40)

= gp(z
−1) + z−pfp,0b̄(z

−1), (41)

where the coefficients of gp+1(z
−1) are given by gp+1,j =

gp,j for j = 0, . . . , p− 1, and

gp+1,p+i = gp,p+i + fp,0b̄i, i = 0, . . . , nu, (42)

where gp,p+nu
= 0. ep(z

−1), fp(z−1), and gp(z
−1) are

recursively computed for p = d + 1, . . . , Np . To initialize
the recursion (34), p = d+ 1, and

ed+1(z
−1) = 1, (43)

fd+1(z
−1) = z(1− ã(z−1)),

= ã1 + ã2z
−1 + . . .+ ãny+1z

−ny , (44)

where

ã(z−1) = ∆ā(z−1) = 1− ã1z
−1 − . . .− ãny+1z

−(ny+1).

Thus,

gd+1(z
−1) = ed+1(z

−1)b̄(z−1) = b̄(z−1). (45)

Multiplying (28) by ∆zpep(z
−1) yields

∆zpep(z
−1)ā(z−1)y(k) =

∆zpep(z
−1)b̄(z−1)u(k − d− 1). (46)

Defining

gp(z
−1) = ep(z

−1)b̄(z−1), (47)

= gp,0 + gp,1z
−1 + . . .+ (48)

gp,p+nu−1z
−(p+nu−1),

and substituting (34) and (47) into (46) yields

y(k+p|k) = fp(z
−1)y(k)+gp(z

−1)∆u(k+p−d−1). (49)

Thus, the best prediction of y(k + p|k) is

ŷ(k+p|k) = fp(z
−1)y(k)+gp(z

−1)∆u(k+p−d−1). (50)
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Equation (50) can be rewritten as

y(k) = Gu(k) + F(z−1)y(k) + L(z−1), (51)

where

y(k) =











ŷ(k + d+ 1)
ŷ(k + d+ 2)

...
ŷ(k +Np)











, (52)

u(k) =











∆u(k)
∆u(k + 1)

...
∆u(k +Nu − 1)











,F =











fd+1(z
−1)

fd+2(z
−1)

...
fNp

(z−1)











, (53)

G =











g1,0 0 . . . 0
g2,1 g2,0 . . . 0
...

...
. . .

...
gNp,Np−1 gNp,Np−2 . . . gNp,Np−Nu











, (54)

L =











[

gd+1(z
−1)− ḡd+1(z

−1)
]

z∆u(k − 1)
[

gd+2(z
−1)− ḡd+2(z

−1)
]

z2∆u(k − 1)
...

[

gNp
(z−1)− ḡNp

(z−1)
]

zNp∆u(k − 1)











,

ḡp(z
−1) = gp,0 + gp,1z

−1 + . . .+ gp,p−d−1z
d+1−p.

Using (51) and considering λ(z−1) to be constant (λ >
0), (33) can be rewritten as

Jeq(k) = [Fy(k) +Gu(k) + L−R]
T
[Fy(k)

+Gu(k) + L−R] + [λu(k)]
2
, (55)

where

R = [r(k + d+ 1), . . . , r(k +Np)]
T
. (56)

To minimize Jeq(k) the following equation is solved

∂Jeq(k)

∂[∆u(k)]
= 0. (57)

By minimizing Jeq(k) using (57), the following optimum
control increment is obtained (Camacho & Bordons, 1998):

u∗(k) =
GT (R− Fy(k)− L)

GTG+ λI
, (58)

where I is the identity matrix.
As the control signal sent to the process is the first row

of u∗(k), the ∆u∗(k) is given by:

∆u∗(k) = K[R− Fy(k)− L], (59)

where K is the first row of matrix (GTG+ λI)−1GT ,

K =
[

1 0 0 · · · 0
]

1×Nu
(GTG+ λI)−1GT . (60)

Algorithm 4 summarizes the design and operation of the
adaptive fuzzy generalized predictive control method.

Algorithm 4 Adaptive fuzzy generalized predictive con-
trol algorithm.

1. Design control parameters: Np, Nu, λ and d. Design
the identification parameters (ρ, ϕi, τi, νi, for all 1 6

i 6 c) with the same values as the ones defined in
Algorithm 3;

2. Use the fuzzy rule base (input variables, respective
membership functions, the fuzzy rules and the final
learned model parameters) learned in Algorithm 3 and
initialize u(0);

3. For/using each newly arriving online sample, do:

(a) Compute ā(z−1) and b̄(z−1) using (29) and (30),
respectively;

(b) Compute control signal ∆u(k) with (59);

(c) Adapt the T-S fuzzy model parameters (aji and
bji of (21)) by performing one iteration of recur-
sion (15).

5. Experiments and results

In this section simulation and real-world results are pre-
sented to demonstrate the feasibility, performance and ef-
fectiveness of the proposed T-S design methodology in
identification and in control. First, a nonlinear system
identification application problem is analyzed and quanti-
tatively compared with the work of (Mendes et al., 2012),
named as HGA: the estimation of the flour concentration
in the effluent of a real-world wastewater treatment sys-
tem, where HGA has been shown to be superior when com-
pared with 8 other methods. Then, the performance of the
identification and control is studied in two experiments: a
simulated CSTR plant and a real-world control of two cou-
pled DC motors. The identification performance is, also,
quantitatively compared with two adaptive approaches: a
RPLS (Dayal & MacGregor, 1997), and a ILLSA for adap-
tive soft sensors (Kadlec & Gabrys, 2011). In both experi-
ments, the mutation probability is pm = 10%, a maximum
of 1500 generations is used, and the population of each
species is fixed: 30 individuals for each of the Levels V,
IV, III, II, and 50 individuals for Level I; and the first half
of the dataset is used for training and the remaining data
is used for evaluation.

5.1. Application to wastewater treatment system

In this section, the performance of the proposed identi-
fication methodology is studied. Specifically, a Soft Sensor
application is studied. The objective of this experiment is
to estimate the flour concentration in the effluent of a real-
world urban wastewater treatment plant (WWTP). The
dataset of plant variables that is available for learning con-
sists of 11 input variables, u1 . . . u11, and one target output
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Table 1: Variables of the wastewater treatment plant dataset.

Variables Description

u1 Amount of chlorine in the influent;
u2 Amount of chlorine in the effluent;
u3 Turbidity in the raw water;
u4 Turbidity in the influent;
u5 Turbidity in the effluent;
u6 Ph in the raw water;
u7 Ph in the influent;
u8 Ph in the effluent;
u9 Color in the raw water;
u10 Color in the influent;
u11 Color in the effluent;
y Flour in the effluent.

Target

Predi
tion

0.05

0.1

0.15

0.2

0.25
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0.35

0.4
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y
(k
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Sample Number, k

Figure 3: Modeling performance of the proposed algorithm for
wastewater treatment system data set.

variable to be estimated, y. The variables correspond to
physical values, such as pH, turbidity, color of the water
and others. The input variables are measured on-line by
plant sensors, and the output variable in the dataset is
measured by laboratory analysis. The sampling interval
is 2 [hours]. The plant variables are described in Table 1.
To construct the dataset, the first three delayed versions
of each variable were chosen as candidates for inputs of
the T-S model. Specifically, the following combinations of
process variables and delays are used as the candidates for
inputs of the T-S model to predict y(t): [u1(t− 1), u1(t−
2), u1(t−3), . . . , u11(t−1), u11(t−2), u11(t−3)]. The num-
ber of clusters and the degree of fuzziness were chosen as
c = 13, and η = 2, respectively.

Fig. 3 shows the predicted and desired (real) values of
the target variable to be estimated, for the WWTP ex-
periment. As can be seen in Fig. 3 the accuracy of the
modeling is good.

Numerical results comparing the performance of the pro-
posed method and the works RPLS (Dayal & MacGregor,
1997), ILLSA (Kadlec & Gabrys, 2011) and (Mendes et al.,
2012) are presented in Table 2. The same parameters are
used in both methods. As can be seen the largest value
of the fitness function (1/MSE) in the test dataset is ob-
tained with the method proposed in this paper. The pro-
posed method selects a larger number of (variable, delay)
pairs, but uses less fuzzy rules.

HGA-FCM

HGA
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1
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Figure 4: Evolution of the best fitness function value on Level V for
all generations in the WWTP experiment.

Fig. 4 presents the evolution of the fitness functions
on Level V for all generations of the proposed methodol-
ogy, named as HGA-FCM (Hierarchical Genetic Algorithm
with Fuzzy c-Means), and by the previous work (Mendes
et al., 2012) (HGA). As can be seen, in the proposed work
there is a good initialization performed by the Fuzzy c-
Means algorithm that outperforms the initialization ob-
tained by the work (Mendes et al., 2012), and afterwards,
the evolution attained by the proposed hierarchical GA in
also good. The proposed HGA-FCM method attains faster
response and better results when compared to the results
obtained by the HGA proposed in (Mendes et al., 2012)
(Table 2).

5.2. Control of a continuous-stirred tank reactor (CSTR)

A Continuous Stirred Tank Reactor (CSTR) is a highly
nonlinear process which is very common in chemical and
petrochemical plants. In the process, a single irreversible,
exothermic reaction is assumed to occur in the reactor.
The CSTR for an exothermic irreversible reaction A→ B
is described by the following dynamic model based on a
component balance for reactant A and on an energy bal-
ance (Morningred et al., 1992):

∂CA(t+ dc)

∂t
=
q(t)

V
(CA0(t)− CA(t+ dc))−

k0CA(t+ dc) exp

(

−
E

RT (t)

)

, (61)

∂T

∂t
=
q(t)

V
(T0(t)− T (t))−

(−∆H)k0CA(t+ dc)

ρCp
exp

(

−
E

RT (t)

)

+
ρcCpc
ρCpV

qc(t)

[

1− exp

(

−hA

qc(t)ρcCpc

)]

(Tc0(t)− T (t)) ,

y(t) = CA(t), u(t) = qc(t). (62)

The objective is to control the measured concentration of
CA(t) by manipulating the coolant flow rate qc(t). The
plant variables and the respective nominal values are de-
scribed in Table 3. The sampling period is assumed to
be T = 0.1 [min], and the time delay is assumed to be
dc = 5T = 0.5 [min].
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Table 2: Comparison results of the test dataset for the wastewater treatment system.

Method Number
of rules

Number
of inputs

Inputs
1/MSE

RPLS (Dayal & MacGregor, 1997) - - all candidate variables 840.9
ILLSA (Kadlec & Gabrys, 2011) - - all candidate variables 1197.6
HGA (Mendes et al., 2012) 20 13 u3(t− 1), u4(t− 2), u4(t− 3), u6(t− 3), 901.2

u7(t− 1), u7(t− 3), u8(t− 1), u8(t− 3),
u9(t− 1), u9(t− 2), u10(t− 2), u10(t− 3), u11(t− 2)

HGA-FCM (proposed method) 10 17 u1(t− 1), u1(t− 3), u2(t− 2), u3(t− 1), 5791.7
u3(t− 2), u5(t− 2), u6(t− 2), u6(t− 3),
u7(t− 1), u7(t− 2), u7(t− 3), u8(t− 1),

u8(t− 2), u8(t− 3), u9(t− 3), u10(t− 1), u11(t− 3)

Table 3: Variables of the continuous stirred tank reactor (CSTR)
(Morningred et al., 1992).

Variables-Description Value

CA - Product concentration 0.1 [mol/l]
T - Reactor temperature 438.54 [K]
qc - Coolant flow rate 103.41 [l/min]
q - Process flow rate 100 [l/min]
CA0 - Feed concentration 1 [mol/l]
To - Feed temperature 350 [K]
Tc0 - Inlet coolant temperature 350 [K]
V - CSTR volume 100 [l]
hA - Heat transfer term 7× 105 [cal/min/K]
k0 - Reaction rate constant 7.2× 1010 [min−1]
E/R - Activation energy term 1× 104 [K]
−∆H - Heat of reaction −2× 105 [cal/mol]
ρ, ρc - Liquid densities 1× 103 [g/l]
Cp, Cpc - Specific heats 1 [cal/g/K]

5.2.1. Identification

As a first step, a dataset representative of the CSTR
operation was constructed. The dataset was obtained by
applying the control signal represented in Fig. 5(a): in
order to represent a possible real dataset in industry, a
sequence of step control signals was applied. The chosen
variables for the dataset were CA(k−2), CA(k−4), CA(k−
6), CA(k−8), CA(k−10), CA(k−12), qc(k−1), qc(k−3),
qc(k − 5), qc(k − 7), qc(k − 9), qc(k − 11), qc(k − 13)),
where k is the sample time. The number of clusters and
the degree of fuzziness were chosen as c = 20, and η = 2,
respectively.

Fig. 5(b) shows the comparison of the predicted val-
ues of the CSTR plant, CA(t), by the proposed methodol-
ogy, HGA-FCM, and by the previous work (Mendes et al.,
2012), HGA. As can be seen in Fig. 5(b) the model-
ing of the target variable, CA(t), is accurate and better
than the one obtained by the HGA method proposed in
(Mendes et al., 2012). Numerical results comparing the
performance of the proposed method and the works RPLS
(Dayal & MacGregor, 1997), ILLSA (Kadlec & Gabrys,
2011), and (Mendes et al., 2012) are presented in Table
4. Variables [CA(k − 2), CA(k − 4), CA(k − 6), CA(k −

u(k)
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Figure 5: CSTR plant: (a) control signal used to compile the process
dataset, and (b) modeling performance of the proposed algorithm
(HGA-FCM) and by the work (Mendes et al., 2012) (HGA).

Table 4: Comparison results of the dataset test for the CSTR plant.

Method 1/MSE

RPLS (Dayal & MacGregor, 1997) 7.0871× 104

ILLSA (Kadlec & Gabrys, 2011) 3.9814× 105

HGA (Mendes et al., 2012) 1.0088× 105

HGA-FCM (proposed method) 4.6195× 105

10), qc(k − 1)] and 20 fuzzy rules were chosen by the pro-
posed methodology.

Fig. 6 presents the evolution of the fitness functions on
Level V for all generations. As can be seen, in the pro-
posed method there is a good initialization performed by
the FCM algorithm that outperforms the initialization ob-
tained by the work (Mendes et al., 2012), and afterwards,
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Figure 6: Evolution of the best fitness function value on Level V for
all generations in the CSTR experiment.

the evolution attained by the proposed hierarchical GA in
also good. The proposed HGA-FCM method attains faster
response and better results when compared to the results
obtained by the HGA proposed in (Mendes et al., 2012).

5.2.2. Adaptive predictive fuzzy control of a simulated
CSTR

The model learned by HGA-FCM in Section 5.2.1 is used
to initialize the prediction model of the adaptive fuzzy
GPC controller.

The following controller parameters were chosen by the
user: Np = 150, Nu = 1, λ = 0.05, d = 5, ρ = 0.999,
ϕi = 1, τi = νi = 1 × 10−9, for all 1 6 i 6 c . The
reference input is

r(t) =































0.12, 0 < t 6 5 [min],
0.07, 5 [min] < t 6 10 [min],
0.1, 10 [min] < t 6 15 [min],
0.08, 15 [min] < t 6 20 [min],
0.11, 20 [min] < t 6 15 [min],

(63)

and the load disturbance is defined as a change of the
process flow rate q, where q = 110 for 13 [min] 6 t 6

17 [min].
From the results presented in Fig. 7(a) and (b), it

can be seen that the proposed controller is able to ad-
equately (attain and) control the system output at the
desired reference r(t). When the load disturbance is ap-
plied at 13 [min] 6 t 6 17 [min], there is an undershoot
at t = 13 [min] and an overshoot at t = 17 [min] in the
system response. As can be seen the controller eliminates
this disturbance. By the results, it is concluded that the
proposed controller methodology can control the process
using only a dataset of the process to initialize the T-S
fuzzy model.

5.3. Real-world control of two coupled DC motors

The experimental system consists of two similar DC mo-
tors coupled by a shaft (Fig. 8), where the first motor acts
as an actuator, while the second motor is used as a gener-
ator and to produce nonlinearities and/or a time-varying
load. The system exhibits noise, parasitic electro-magnetic
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Figure 7: (a) Results of the proposed controller with HGA-FCM in
presence of load disturbances in the CSTR process; and (b) respec-
tive applied command signal.

PLC - 

ControlLogix L55

Motor

Generator

Shaft

Relay

Lamps

Motor 

Drive

Figure 8: The experimental scheme of the DC motors.

effects, friction and other phenomena commonly encoun-
tered in practical applications, that make the control task
more difficult.

The voltage command signal to the DC motor is in the
range of [0, 12] [V]. The proposed control methodology
runs on a PC that communicates by OPC1 to a PLC2

(ControlLogix L55 expanded with an analog I/O module
for signal conditioning). The PLC provides the voltage
command signal to the DC motor through the signal con-
ditioning circuit. The velocity units are [pp/(0.25 seg)]
(pulses per 250 ms). The generator has an electrical load
composed of 2 lamps connected in parallel. When the
lamps are connected in the generator circuit, the electrical
load to the generator is increased (load resistance is de-
creased), and consequently the mechanical load that the

1OLE (Object Linking and Embedding) for Process Control.
2Programmable Logic Controller.
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Figure 9: Motor dataset: (a) control signal used to compile the
dataset on the DC motors process and (b) modeling performance
of the proposed algorithm (HGA-FCM) and by the work (Mendes
et al., 2012) (HGA).

generator applies to the motor also increases. Thus, it is
possible to change the mechanical load to the motor, and
consequently change its model. The main goal is to per-
form a velocity control where the load of the DC motor
can be changed.

5.3.1. Identification

To identify the experimental setup, a dataset was con-
structed. The dataset was obtained by applying to the
motor the control signal represented in Fig. 9(a). The
variables chosen for the dataset were the first four de-
layed versions of the velocity [y(k− 1), y(k− 2), y(k− 3),
y(k − 4)], and the command signal and its first three de-
layed versions [u(k), u(k − 1), u(k − 2), u(k − 3)], where
k is the sample time. The number of clusters and the
degree of fuzziness were chosen as c = 8, and η = 2, re-
spectively. Numerical results comparing the performance
of the proposed method and the works RPLS (Dayal &
MacGregor, 1997), ILLSA (Kadlec & Gabrys, 2011), and
(Mendes et al., 2012) are presented in Table 5. Apply-
ing the proposed methodology, the selected variables were
[y(k − 1), y(k − 2), u(k − 1), u(k − 3)] and a fuzzy system
with 20 rules was generated.

Fig. 9(b) shows the comparison of the velocity values of
the motor obtained by the proposed (HGA-FCM) method-
ology and by the previous work (Mendes et al., 2012)
(HGA), and the real/observed velocity values. It can be
seen that the modeling of the velocity by the proposed
(HGA-FCM) methodology is accurate and better than the

Table 5: Comparison results of the dataset test for the DC motor.

Method 1/MSE

RPLS (Dayal & MacGregor, 1997) 0.02410
ILLSA (Kadlec & Gabrys, 2011) 0.0197
HGA (Mendes et al., 2012) 0.0158
HGA-FCM (proposed method) 0.06095
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Figure 10: Evolution of the best fitness functions value on Level 5
for all generations on the DC motors process: (a) HGA-FCM and
(b) HGA.

one obtained by the HGA method proposed in (Mendes
et al., 2012).

Fig. 10(a) and (b) present the evolution of the fitness
functions on Level V for all generations of HGA-FCM and
HGA, respectively. As can be seen, the proposed work
presents a good initialization performed by the FCM algo-
rithm, and afterwards, the evolution attained by the pro-
posed hierarchical GA in also good. The proposed HGA-
FCM method attains faster response and better results
when compared to the results obtained by the HGA pro-
posed in (Mendes et al., 2012).

5.3.2. Adaptive predictive fuzzy control

The model learned by HGA-FCM in Section 5.3.1 is used
to initialize the prediction model of the adaptive fuzzy
GPC controller.

The following controller parameters were chosen by the
user: Np = 10, Nu = 1, λ = 28, d = 0, ρ = 0.93, ϕi = 1,
τi = 1 × 10−3, νi = 1 × 10−6, for all 1 6 i 6 c. The
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Figure 11: (a) Results of the proposed controller with HGA-FCM
in presence of load disturbances in the DC motors process; and (b)
respective applied command signal.

reference input is

r(k) =











100, 0 < k 6 140,

150, 140 < k 6 340,

130, 340 < k 6 600,

(64)

and the load disturbance is applied at 200 6 k 6 420
(lamps switched on).

From the results presented in Fig. 11(a) and (b), it
can be seen that the proposed controller is able to ad-
equately (attain and) control the system output at the
desired reference r(k). When the load disturbance is ap-
plied at 200 6 k 6 420, there is an undershoot at k = 200
and an overshoot at k = 420 in the system response. As
can be seen the controller eliminates this disturbance. By
the results, it is concluded that the proposed controller
methodology can control the process using only a dataset
of the process to initialize the T-S fuzzy model.

6. Conclusion

A methodology was proposed to identify a T-S fuzzy
model from input/output data to approximate unknown
nonlinear processes. A coevolutionary hierarchical GAs
method has been proposed to identify the structure and
parameters of the model: the input variables and delay
selection, the fuzzy rules, and the location of membership
functions are automatically learned from system data. The
identification methodology was proposed for two applica-
tion problems: (1) the design of data-driven soft sensors,

and (2) the learning of a model for the Generalized pre-
dictive control (GPC) algorithm. A recursive least squares
method with adaptive directional forgetting is used for on-
line adaptation of the T-S fuzzy model. The learned model
was integrated with a fuzzy GPC controller. The integra-
tion of the proposed adaptive identification method with
the GPC results in an effective adaptive predictive fuzzy
control methodology. To validate and demonstrate the
performance and effectiveness of the proposed algorithms,
they were tested on the identification problem estimation
of the flour concentration in the effluent of a real-world
wastewater treatment system; and on the control of a sim-
ulated continuous stirred tank reactor (CSTR), and on a
real-world experimental setup composed of two coupled
DC motors. On identification, the results have shown that
the proposed methodology has a faster response and bet-
ter results when compared with the results obtained by the
HGA proposed in (Mendes et al., 2012). The results have
also shown that the proposed controller methodology can
control the process using only a dataset of the process.
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