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Abstract

The paper presents an adaptive fuzzy predictive control
based on discrete-time Takagi-Sugeno (T-S) fuzzy model.
The proposed controller is based on Generalized predic-
tive control (GPC) algorithm, and a discrete-time T-S
fuzzy model is employed to approximate the unknown non-
linear process. To provide a better accuracy in identifica-
tion of unknown parameters of the model, it is proposed an
on-line adaptive law which ensures that the tracking error
remains bounded. The stability of closed-loop control sys-
tem is proved/studied via the Lyapunov stability theory. To
validate the theoretical developments and to demonstrate
the performance of the proposed control is simulated as
nonlinear system a laboratory-scale liquid-level process.
The simulation results show that the proposed method has
a good performance and disturbance rejection capacity in
industrial process.

Keywords: Generalized predictive control, Fuzzy Con-
trol, Adaptive Control, T-S fuzzy, Lyapunov Stability.

1 Introduction

Generalized predictive control (GPC) [3] has become
one of the most popular and powerful control methods in
industry. It is a model-based control method where a plant
model is used to obtain a predictor model. The GPC has
been applied in various plants, and has shown good per-
formance results [5], [15]. However the most plants where
GPC has been applied were linear because the quadratic
optimization problem involved in GPC is easily solved for
the linear prediction case. Previous research has presented
GPC for nonlinear plants [12], [21]. The first approach
was the linearisation of the model plants [12], [21]. How-
ever, this approach may not predict exactly because the
operating point may change and the predictor does not re-
main valid. The disadvantage of GPC, as common factor
of all Model Based Predictive Control (MBPC) is its as-
sumption of an accurate model.

This assumption may present problems, because many

complex plants are difficult to be modelled mathemati-
cally based in physical laws, or have large uncertainties
and strong nonlinearities. An alternative to modelling
nonlinear plants are fuzzy logic systems. Fuzzy systems
may be used to approximate unknown nonlinear functions
of the plant. This is theoretically supported by the fact
that fuzzy logic systems are universal approximators [17],
[7]. Takagi-Sugeno (T-S) [14] fuzzy models have gained
much popularity because of their rule consequent struc-
ture. The main difference between T-S fuzzy models and
other fuzzy models is that the consequent of a T-S fuzzy
model is a real-valued function. In off-line training algo-
rithms the discrete-time T-S fuzzy model can be obtained
from input-output data collected from a plant. However,
this collected dataset can be limited and the obtained T-S
fuzzy models may not provide adequate accuracy. This
motivates the introduction of adaptive control methodolo-
gies to solve the problem.

Adaptive systems are generally used to control struc-
tures whose parameters are unknown and/or time-varying.
Adaptive fuzzy controllers can be classified into two cat-
egories [16]: direct and indirect adaptive controllers. In
direct adaptive fuzzy control, the parameters of the con-
troller initially constructed from human control knowl-
edge, and the iteratively adjusted to reduce the output error
between the plant and a reference model. Indirect adap-
tive fuzzy control, are initially constructed from human
knowledge about the unknown plant, and then iteratively
adjusted to reduce the output error between the plant and a
reference model. This paper focuses on indirect adaptive
control, where a T-S fuzzy model is adapted on-line.

In [18] a control strategy for plants with multiple time-
delay of state variables and manipulated variables is pro-
posed and simulated in a truck-trailer system. In [13] an
adaptive predictive control method based on T-S fuzzy
models is proposed for discrete-time nonlinear systems,
where the consequent parameters of T-S fuzzy model are
identified by a weighted recursive least squares method.
In [9] a Locomotive Brake Control Method based on T-
S Fuzzy Modeling Predictive Control is proposed. A
fuzzy clustering method is used to determine initial pa-



rameters, and a back-propagation algorithm used for pa-
rameters adaptation by off-line learning. In [19] a robust
fuzzy model predictive control method using uncertain T-
S fuzzy systems is proposed for discrete-time nonlinear
plants subject to actuator saturation. However, the above
methods need some knowledge about the system to be
controlled. Such knowledge can be difficult to extract in
complex industrial processes. In [2] and [4] are used neu-
ral networks as empirical models in model predictive con-
trol. However, the use of neural network is computation-
ally demanding due to the on-line optimization required
to compute the control signals.

In this paper, a new adaptive fuzzy model-based pre-
dictive controller is proposed for a class of nonlinear
discrete-time processes. The proposed controller is based
on GPC algorithm and uses an T-S fuzzy model adapted
on-line, and is able to ensure that the tracking error re-
mains bounded. The stability of closed-loop control sys-
tem is proved/studied via the Lyapunov stability theory.

A diagram of the proposed adaptive fuzzy generalized
predictive control (AFGPC) approach is represented in
Fig. 1. As can be seen, the control scheme consists of the
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Figure 1: A generic schematic diagram of the proposed
control AFGPC.

plant, the controller, and the adaptive T-S fuzzy model.
The proposed controller, is composed by a model-based
predictive control whose model parameters are adjusted
on-line by an adaptation law based in Lyapunov The-
ory. In the presently proposed method, human knowledge
about the plant model is not necessary.

The paper is organized as follows. Section 2 presents
a nonlinear systems modelling method using T-S fuzzy
models. Section 3 presents a brief overview of GPC. The
proposed control method is described in Section 4. In Sec-
tion 5, the results of simulation are presented and anal-
ysed. Finally, Section 6 makes concluding remarks.

2 Nonlinear Systems Modelling Using T-S
Fuzzy Models

Takagi-Sugeno (T-S) fuzzy models with the simplified
linear rule consequent are universal approximators capa-
ble of approximating any continuous nonlinear system

[20]. A large class of nonlinear processes can be repre-
sented by the following NARMAX model [8]:

y(k) = f [y(k − 1), y(k − 2), . . . , y(k − ny),
u(k − d − 1), . . . , u(k − d − nu)] + ζ(k). (1)

where u(·) : IN → IR and y(·) : IN → IR are the process
input and output, f(·) : IRny+nu+d+1 → IR represents
a nonlinear mapping which is assumed to be unknown,
nu ∈ IN and ny ∈ IN are the orders of input and out-
put respectively, d ∈ IN is the time-delay of the system,
and ζ(k) ∈ IR is a sequence of zero-mean Gaussian white
noise. Since f(·) in the discrete-time nonlinear SISO plant
(1) is unknown, then f(·) will be approximated by a T-S
fuzzy system. To design the T-S fuzzy model, the global
operation of the nonlinear system (1) can be accurately ap-
proximated into several local affine models. Thus, system
(1) can be described by a T-S fuzzy model defined by the
following fuzzy rules:

Ri : IF x1(k) is Ai
1, and . . . and xn(k) is Aj

n

THEN yi(k) = ai(z−1)y(k − 1) +
bi(z−1)u(k − d − 1) + ζ(k),

i = 1, . . . , N, (2)

where Ri (i = 1, 2, . . . , N ) represents the i-th fuzzy rule,
N is the number of rules,

ai(z−1) = a1i + a2iz
−1 + . . . + anyiz

−(ny−1),

bi(z−1) = b0i + b1iz
−1 + . . . + bnuiz

−nu , (3)

and u(k) is the control output. x1(k), . . . , xn(k) are the
input variables of the T-S fuzzy system - they can be any
variables chosen by the designer [e.g. y(k − 1), u(k − 1),
or other]. Aj

i are linguistic terms characterized by fuzzy
membership functions µAj

i
(xi) which describe the local

operating regions of the plant. In the sequel, deterministic
models will be considered [ζ(k) = 0]. Thus, y(k) can be
rewritten as

y(k) =
N∑

i=1

ω̄i(x(k))θiT

xe(k)T , (4)

= ΘT Ψ(k),

where, for i = 1, . . . , n,

x(k) = [x1(k), x2(k), . . . , xn(k)]T , (5)

ω̄i[x(k)] =

∏n
j=1 Ai

j(xj)∑N
i=1

∏n
j=1 Ai

j(xj)
,

θi =
[
a1i, . . . , anyi, b1i, . . . , b1nu

]T
, (6)

Θ =
[
θ1T

, θ2T

, . . . , θNT
]T

, (7)

xe(k) = [y(k − 1), . . . , y(k − ny),

u(k − d − 1), . . . , u(k − d − nu)]T ,

ΨT (k) =
[(

ω̄1[x(k)]
)

xT
e (k), . . . ,(

ω̄N [x(k)]
)

xT
e (k)

]T
.



Assumption 1. [11] There exists a (optimal) model
parameter vector Θ∗ in T-S fuzzy model that makes (4)
become a perfect representation of the real plant (1).

Taking into account Assumption 1, i.e. assuming there
is no modelling error, and using (4), then the real plant (1)
can be is represented as

y(k) = ΘT
∗ Ψ(k), (8)

where Θ∗ =
[
θ1T

∗ , θ2T

∗ , . . . , θNT

∗

]T

. It is assumed that
the parameters vector Θ∗ in (8) is unknown. Thus, an
approximate model for y(k) is defined as

ŷ(k) =
N∑

i=1

ω̄i(x̂(k))θ̂iT

x̂e(k)T , (9)

= Θ̂T (k)Ψ(k),

where Θ̂ =
[
θ̂1T

, θ̂2T

, . . . , θ̂NT
]T

is vector of ad-

justable parameters which is an estimate of Θ∗ and θ̂i =[
â1i, . . . , ânyi, b̂1i, . . . , b̂1nu

]T

.

3 Predictive Control Law

The adaptive fuzzy generalized predictive control
(AFGPC) developed in this paper is motivated from the
GPC strategy [3]. For completeness this section briefly
overviews the GPC. It is assumed that the plant model is
of the form (4), which can be rewritten as follows [6]:

ā(z−1)y(k) = b̄(z−1)u(k − d − 1) + ζ(k), (10)

where

ā(z−1) = 1 − ā1(z−1) − . . . − āny (z−ny ), (11)

b̄(z−1) = b̄1(z−1) + . . . + b̄nu(z−nu), (12)

āj =
N∑

i=1

ω̄i(x(k))aji(z−j), (13)

b̄j =
N∑

i=1

ω̄i(x(k))bji(z−j). (14)

The GPC the control laws is obtained to minimize the
following cost function

J(k) =
Np∑
p=d

[ŷ(k + p|k) − φpr(k + p)]2

+
d+Nu−1∑

p=d

[
q(z−1)∆u(k + p − d|k)

]2
,

(15)

where ŷ(k + p|k) is an optimum p-step ahead prediction
of the system on instant k, r(k + p) is the future reference
trajectory, φp is the feed forward gain, ∆ = 1 − z−1, and
q(z−1) = q0 + q1z

−1 + . . .+ qNp+nu−1z
−(Np+nu−1) is a

weighting polynomial. Np and Nu are output and control
horizons, respectively. Consider the following Diophan-
tine equation (16):

1 = ∆ep(z−1)ā(z−1) + z−pfp(z−1), (16)

ep(z−1) = 1 + ep,1z
−1 + . . . + ep,p−1z

−(p−1), (17)

fp(z−1) = fp,0 + fp,1z
−1 + . . . + fp,nyz−ny , (18)

where ep(z−1) and fp(z−1) are polynomials obtained by
[3]. Multiplying (10) by ∆zpep(z−1) yields

∆zpep(z−1)ā(z−1)y(k) =

∆zpep(z−1)b̄(z−1)u(k − d − 1) + ∆zpep(z−1)ζ(k).
(19)

Defining

ζ̂(k) = ∆zpep(z−1)ζ(k), (20)
gp(z−1) = ∆ep(z−1)b̄(z−1), (21)
gp(z−1) = gp,0 + gp,1z

−1 + . . . +

gp,p+nu−1z
−(p+nu−1).

and substituting (16), (20)-(21) in (19) yields

y(k + p|k) = fp(z−1)y(k) + (22)

gp(z−1)∆u(k + p − d − 1) + ζ̂(k).

Thus, the best prediction of y(k + p|k) is

ŷ(k + p|k) = fp(z−1)y(k) + (23)
gp(z−1)∆u(k + p − d − 1).

To reduce computation costs Nu = 1 is chosen. Assuming
∆u(k+1) = . . . = ∆u(k+Np) = 0 and using (24), then
(15) can be rewritten as

Jeq(k) = [Fy(k) + G∆u(k) + L − ΦR]T [Fy(k)

+ G∆u(k) + L − ΦR] +
[
q(z−1)∆u(k)

]2
, (24)

where

F =
[
fd(z−1), . . . , fNp(z−1)

]T
, (25)

G =
[
gd,0, gd+1,0, . . . , gNp,0

]
, (26)

L =

[
d+nu−1∑

ρ=1

gd,ρ∆u(k − ρ),

d+nu∑
ρ=1

gd+1,ρ∆u(k − ρ),

. . . ,

Np+nu−1∑
ρ=1

gNp,ρ∆u(k − ρ)

T

, (27)

Φ = diag
{
φd, φd+1, . . . , φNp

}
, (28)

R = [r(k + d), . . . , r(k + Np)]
T

. (29)



To minimize Jeq(k) the following equation is solved

∂Jeq(k)
∂[∆u(k)]

= 0. (30)

By minimizing Jeq(k) using (30), the following optimum
control increment is obtained (see [10]):

∆u(k) =
GT (ΦR − Fy(k))

GT G + λ
, λ = q2

0 > 0. (31)

4 Adaptive Predictive Fuzzy Control

This section explains how to formulate the T-S fuzzy
model (Sections 2) that will be used in the predictive con-
trol law (Section 3) such that their model parameters can
be adapted in novel Adaptive Predictive Fuzzy Control
framework. Taking into account a nonlinear discrete-time
dynamic system model and the predictive control law, the
closed-loop dynamic error equation will be determined.
The next step will be to choose an adaptive law to mini-
mize the tracking error e and the parameters error Θ̃ by
the minimization of a candidate Lyapunov function.

To design the adaptive predictive fuzzy control archi-
tecture consider a class of nonlinear discrete-time dy-
namic systems modelled by:

xn(k + 1) = f [x(k)] + g[x(k)]u(k), (32)
y(k + 1) = xn(k + 1),

where x(k)=̂[x1(k), x2(k), . . . , xn(k)] is the state vector,
u is the control input, y is the output of the system, and
f [x(k)] and g[x(k)] are unknown functions.

Assumption 2. [11] |g(x(k))| > ε, where ε is a small
real positive number, which implies that the relative de-
gree of the T-S fuzzy model and, consequently, the relative
degree of the plant are both equal to one.

Without loss of generality, it is assumed that g[x(k)] >
0. To simplify the process of computer calculation it is
considered that g[x(k)] = g > 0 is constant.

Assumption 3. [11] The reference trajectory r(k) sat-
isfies

‖r(k)‖ ≤ U, (33)

where U is a known bound.
For the moment, assume that functions f [x(k)] and

g[x(k)] = g are known. Let k = [kn, . . . , k1]
T be chosen

such that the zeros of polynomial kz = zn + k1z
n−1 +

. . . + kn are inside in the unit circle centered at the origin
of the z plane, and chose the control law

u∗(k) =
1
g

{
−f [x(k)] + r(k) + kT e(k)

}
, (34)

where r(k) is the reference model output signal, and

e(k) = [e(k − n − 1), . . . , e(k − 1), e(k)]T , (35)
e(k) = r(k) − y(k). (36)

Substituting (36) into (32) and after some manipulation
with (34), the following closed-loop dynamic equation is
obtained:

e(k + 1) = −kT e(k) + g[u∗(k) − u(k)]. (37)

Let

Λ =


0 1 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−kn −kn−1 . . . . . . −k1

 ,bg =


0
...
0
g

 ,

(38)
then (37) can be rewritten into vector form as

e(k + 1) = Λe(k) + bg[u∗(k) − u(k)]. (39)

Assuming that f [x(k)] is unknown, rewritting (31) as

u(k) = K [ΦR − Fy(k)] + u(k − 1), (40)

K = GT /
(

GT G + λ
)

,

and substituting y(k) by its T-S fuzzy approximation ŷ(k)
(9), then the control law is designed as

u(k) = u
[
xe(k), Θ̂

]
, (41)

= K [ΦR − Fŷ(k)] + u(k − 1),

= K
[
ΦR − FΘ̂T (k)Ψ(k)

]
+ u(k − 1).

Define the optimal parameter vector

Θ∗ = argminΘ̂∈ΩΘ

[
sup

xe∈Ωxe

∥∥∥u(xe, Θ̂) − u∗

∥∥∥]
, (42)

where ΩΘ and Ωxe are the sets of admissible values of
Θ̂ and xe respectively. Thus, from (42), with a minimum
approximation error

u∗(k) ≈ u∗(k) = u [xe(k),Θ∗] . (43)

where u∗(k) is defined as the optimal command. By sub-
stituting u∗(k) (43) for u∗(k), (39) is rewritten as

e(k + 1) = Λe(k) + bg [u∗(k) − u(k)] ,

= Λe(k) + bgKFΘ̃T (k)Ψ(k), (44)

where Θ̃(k) = Θ̂(k) − Θ∗.
Assumption 4. [11] There exist α > 0 and a positive-

definite symmetric matrix P such that for matrix Λ (38),
ΛT PΛ − P ≤ −αI < 0. (45)

Consider the candidate Lyapunov function for system
(44),

V (k) =
1
2

eT (k)Pe(k) +
1
2γ

Θ̃T (k − 1)Θ̃(k − 1), (46)



where γ is a positive constant and P is a positive-definite
symmetric n × n matrix.

In order to minimize the tracking error e and the pa-
rameter error Θ̃ equation (46) will be minimized. To
decrease V (k) it is necessary ensure that ∆V (k) < 0.
∆V (k) will be analysed and calculated in (47)-(52). Tak-
ing the first time difference of (46) and with some ma-
nipulations (48) is deduced. Using (44) and defining
ρ = bgKFΘ̃T (k)Ψ(k), (49) can be obtained. By As-
sumption 4, (50) can be written. Since P is symmetric,
then ρT PΛe(k) = [Λe(k)]T Pρ and with some manipula-
tions (51) is derived. Then, with some manipulations (52)
is obtained.

∆V (k) = V (k + 1) − V (k), (47)

=
1
2

eT (k + 1)Pe(k + 1) − 1
2

eT (k)Pe(k)

− 1
2γ

[
Θ̃(k) − Θ̃(k − 1)

]T [
Θ̃(k) − Θ̃(k − 1)

]
+

1
γ
Θ̃T (k)Θ̃(k) − 1

γ
Θ̃T (k)Θ̃(k − 1), (48)

=
1
2
eT (k)

(
ΛT PΛ − P

)
e(k) + ρT PΛe(k)

− 1
2γ

[
Θ̃(k) − Θ̃(k − 1)

]T [
Θ̃(k) − Θ̃(k − 1)

]
+

1
γ
Θ̃T (k)

[
Θ̃(k) − Θ̃(k − 1)

]
+

1
2
ρT Pρ, (49)

≤ −1
2
αeT (k)e(k) + ρT PΛe(k) +

1
2
ρT Pρ

+
1
γ
Θ̃T (k)

[
Θ̃(k) − Θ̃(k − 1)

]
, (50)

= −1
2
αeT (k)e(k) +

1
2
ρT Pρ

+Θ̃T (k) [Λe(k)]T PbgKFΨ(k) (51)

= −1
2
αeT (k)e(k) +

1
2
ρT Pρ

+Θ̃T (k)
{

[Λe(k)]T PbgKFΨ(k)+ (52)

1
γ

[
Θ̃(k) − Θ̃(k − 1)

]}
To minimize V (k), the following parameter adaptation
law is chosen such that the second term in (52) is zero

[Λe(k)]T PbgKFΨ(k) +
1
γ

[
Θ̃(k) − Θ̃(k − 1)

]
= 0,

Θ̂(k) = Θ̂(k − 1) − γ [Λe(k)]T PbgKFΨ(k), (53)

where γ is a gain in adaptive law (53). This adaptive law
permits the adaption of T-S fuzzy model parameters (2)
which, with some manipulation explained in Secs. 2 and
3, will be used in (10). Finally, as explained in Sec. 3 is
obtained the optimum control increment (31).

Using (53), equation (52) can be rewritten as

∆V (k) ≤ −1
2
αeT (k)e(k) +

1
2
ρT Pρ

≤ −a‖e(k)‖2 + λmax(P)‖ρ‖2, (54)

where λmax(P) is the largest singular value of P and

‖ρ‖ = ‖bgKFΘ̃T (k)Ψ(k)‖,
≤ ‖bg‖‖KF‖‖Θ̃T (k)Ψ(k)‖, (55)
≤ ρc. (56)

From (54) and (56), there exists a positive constant ρc such
that ∆V (k) ≤ 0 outside the ball{

e(k) : ‖e(k)‖ < ε =

√
λmax(P)

a
ρc

}
. (57)

Theorem 1. Consider the closed loop system consist-
ing of the plant (8), controller (31) and parameter adap-
tation laws (53). If Assumptions 1-4 hold, then the plant
tracking error vector e(k) is bounded above by ε defined
in (57).

The proof of Theorem 1 is given by the above analysis
and by (57).

5 Simulation Results

This section presents simulation results to validate the
theoretical developments and to demonstrate the perfor-
mance of the proposed adaptive predictive fuzzy control
scheme in nonlinear systems. In the simulation to test
the reference tracking performance, parameters conver-
gence, and disturbance rejection capacity, the reference
input r(k) is changed with time and a load disturbance
υ(k) is applied.

5.1 Control of a Laboratory-Scale Liquid-Level Pro-
cess

In this simulation, the following nonlinear model of a
laboratory-scale liquid-level process is considered [1]:

y(k) = 0.9722y(k − 1) + 0.3578u(k − 1)
−0.1295u(k − 2) − 0.04228y2(k − 2)
−0.3103y(k − 1)u(k − 1)
+0.1663y(k − 2)u(k − 2)
−0.03259y2(k − 1)y(k − 2)
−0.3513y2(k − 1)u(k − 2)
+0.3084y(k − 1)y(k − 2)u(k − 2)
+0.1087y(k − 2)u(k − 1)u(k − 2). (58)

Taking into account (58) the input order, output order, and
time-delay are nu = 2, ny = 2 and d = 1, respectively.
The following controller parameters were chosen by the
user by trial and error: Np = 15, λ = 50, g = 1, k1 = 0.9,
P = 1, γ = 0.4. The reference input was

r(k) =


1, 0 < k ≤ 400,

0.2, 400 < k ≤ 700,

1, 700 < k ≤ 1400,
(59)

and the load disturbance was υ(k) = 0.08 for k ≥ 900,
and υ(k) = 0, otherwise. The input variables (5) of the
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Figure 2: Fuzzy membership functions of input variables
y(k − 1) and y(k − 7).
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Figure 3: Fuzzy membership functions of input variable
u(k − 1).

fuzzy rules were chosen as x(k) = [y(k − 1), y(k −
7), u(k − 1)]T , where to save the computational cost
in each input variable there are 3 membership functions
that were designed taking into account the corresponding
range, y(k−1), y(k−7) ∈ [−3; 3], u(k−1) ∈ [−3; 3], as
illustrated in Figs. 2 and 3. The fuzzy rule-base contains
rules covering all combinations of membership functions
of the 3 input variables, giving a total of 33 = 27 rules.
All controller adjustable parameters [consequent parame-
ters of the rules (2), components of (7)], are initialized to
0.01, to represent the initial absence of knowledge about
the plant (58).

5.2 Analysis of Results
From the results shown in Figs. 4, 5, 6, and 7 it can be

seen that the proposed controller is able to adequately (at-
tain and) control the system output at the desired reference
r(k).

In terms of initial response of the controller, it can be
observed that although there is no initial model knowl-
edge (parameters initialized 0.01), the controller quickly
reaches the desired reference signal.

When the load disturbance υ(k) is applied at k = 900,

00.20.40.60.811.21.4
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Figure 4: Results of the proposed controller in presence
of load disturbances.
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Figure 5: Applied command signal.
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Figure 6: Temporal evolution of the adjustable parameters
a1i and a2i.

there is an overshoot in system response. As can be seen
the controller eliminates this disturbance.

The temporal evolution of the adjustable parameters of
the controller is show Figs. 6 and 7. The model param-
eters are initialized with values near zero, but then they
are adjusted taking in account the desired response. When
the load disturbance is applied, the parameters are again
adjusted taking into account the corresponding changes
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Figure 7: Temporal evolution of the adjustable parameters
b1i and b2i.

in the system. Note that some parameters remain con-
stant during the tests. These parameters belong to rules
that do not have effect for the specific values that the rel-
evant process variables take during the presented exper-
iments. This illustrates that the adaptation mechanisms
worked adequately.

6 Conclusion

This paper has proposed a new adaptive model-based
predictive controller for a class of nonlinear discrete-time
process. The proposed controller is based on GPC the al-
gorithm and uses an adaptive T-S fuzzy model on-line. If
is assumed that initial human knowledge about the plant
is almost inexistent. The simulation results show that the
proposed method is able to adequately control the plant
without human knowledge about the plant model, and has
good tracking performance and disturbance rejection ca-
pacity. This evidence suggests that the proposed controller
could be a good option for industrial process control. As
can be seen in the simulations, the adjustable parameters
are adjusted for control of the unknown plant and taking
into account changes in the system.
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