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Abstract - This work presents a system for automatic 
detection of grounding systems topologies which are 
already mounted into the soil. Such system can be of 
valuable help while inspecting already deployed grounding 
systems, to check whether they are arranged properly or 
not. The architecture of the proposed system is composed 
by four main subsystems: an excitation, a data acquisition, 
a feature extraction and a machine learning based model 
subsystems. To evaluate the proposed system, three 
topologies are considered to be detected in the 
experimental part. These topologies are two, three and four 
horizontal rods/electrodes with 2,5 meters length and 
separated in intervals of 3 meters buried into the soil. The 
results demonstrate that the proposed system (excitation, 
data acquisition, feature extraction and machine learning 
based model subsystems) can distinguish with an 
acceptable rate of accuracy among these three topologies. 

 
1 - INTRODUCTION 
 
It is far know that grounding systems play a vital role in 
electrical supply systems [1]. The correct design of the 
grounding systems are of vital importance for safety and 
protection of personnel, equipment and facilities, as well 
to the correct operation of the electricity supply network, 
to ensure good power quality, etc. The grounding 
systems topologies (GST) can be composed by one or 
more horizontal or vertical rods, buried or driven into the 
soil.  
 
After selecting the correct structure of the earth system, 
its installation should be properly implemented. However, 
in some cases, this does not happen, mainly because of 
errors during the execution of the project, such as 
installing an incorrect number of rods (usually less than 
specified) and/or by forgetting to properly connecting the 
rods. This problem can be minimized by manually 
inspecting the grounding system after its installation. 
However, there is the possibility that the grounding 
system have already been covered or cemented, thereby 
precluding a visual inspection of the installed system. 
Under this kind of situation, it would be beneficial to have 
a method to check whether the configuration of 
grounding system is arranged properly or not. However, 
no method in literature exists for such an approach.  
 
In this work, for the first time, a method based on 
machine learning for determining the topology of 
grounding systems is proposed. The proposed system 
performs the determination of the grounding topology 
based on an intelligent analysis of the impulse response 
of grounding systems. The use of impulse response is 

motivated by the fact that at power frequency the soil 
behaves as a pure resistor, and at high frequency (when 
excited by an impulse voltage) it has resistive (R), 
inductive (L) and capacitive (C) characteristics. Moreover, 
it is already known that different topologies have different 
transient responses when excited by an impulse voltage. 
The geometry and the number of electrodes are the most 
remarkable variables that influence these different 
responses.  
 
Traditionally, at low frequencies a grounding system 
composed by a single rod (Fig. 1a) can be described as a 
single resistor (Fig. 1b) and at a high frequency by a 
lumped R-L-C circuit (Fig. 1c).  

 
Figure 1 – a) Physical representation of a ground rod; b) 
equivalent circuit of ground rod at low frequency; c) a 
representation of equivalent circuit of ground rod at high 
frequency. 

 
For example, in the reference work of Rudenberg [2], the 
parameters R, L and C are given by: 
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From (1), (2) and (3), it is possible to note the 
dependence of the parameters R, L and C on the rod 
parameters,   and  . In [3, 4], the authors have used 

different formulas to design the R, L and C parameters, 
but it is still possible to see the dependence on the rod 
parameters. However, [5] reported that the formulas 
given by [2, 3, 4] are the not an exact representation of 
the response of the ground rod, and that it generally fails 
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to represent the circuit in very high frequencies. In [5] the 
author concluded that the distributed parameters circuit is 
the best way to represent the equivalent circuit of a rod 
when subjected to a high frequency signal. However, the 
intend of this discussion it is not to define the best way to 
describe the high frequency equivalent circuit of 
grounding systems, but instead is to shown that the 
response of grounding systems is dependent not only on 

the soil parameters ( ,   ,  ), but also on the rods 

parameters (  and  ) in a very complex way. Moreover, 

when it comes to more complex arrangements, the 
equivalent electrical circuit becomes more complex and 
difficult to describe. Then, the use of the transient 
response of grounding system seems to be a viable 
alternative to discriminate among different topologies, 

since it carries information about the rods parameters (  

and  ). 
  
The architecture of the proposed system is composed by 
four main subsystems: an excitation, a data acquisition, a 
feature extraction and a machine learning based model 
subsystems. The excitation system injects a signal that 
simulates a lightning stroke. After the signal response is 
acquired, a feature vector is extracted from the transient 
response in order to perform the classification stage. The 
features are characteristics of the signal in the frequency 
domain (trough fast Fourier transform (FFT) 
decomposition), it was generated a total of a total of 250 
features. As said before, the system proposed here uses 
a machine learning based model to classify the different 
topologies. The model selected to perform the 
classification stage was the support vector machine 
model (SVM) [6], the state of art in classification systems. 
As it is a multiclass classification problem, the SVM 
model was combined using the strategy called min-wins 
rule [7]. This approach has shown to make the proposed 
system “free of classification error”. However, under the 
drawback that some topologies are undetermined (i.e. it 
is not possible to identify them). Then, in such cases it is 
necessary to appeal to the other ways to determine if the 
grounding topology is arranged properly or not. 
 
When applying the proposed architecture in real 
scenarios, it is necessary to acquire the transient 
response of one rod (with the same characteristics of the 
other rods) on the soil under study and then use this 
information when evaluating the topology to be 
determined. This is necessary to reduce the influence of 
the soil on the extracted FFT features. From now on, this 
one rod will be called as the reference rod. 
 
In the experimental part, the proposed approach was 
evaluated by considering three topologies: two, three and 
four horizontal rods/electrodes with 2,5 meters length and 
separated in intervals of 3 meters buried into the soil.  
The data was acquired at different days and different 
locations. The results demonstrate that is possible to 
achieve an acceptable rate of accuracy while 
discriminating the different topologies. 
 
This paper is organized as follows. Section 2 presents 
the architecture of the proposed system.  Section 2.1 and 
2.2 present the excitation and data acquisition system. 
Section 2.3 described the features extracted from the 
impulse signal response. Section 2.4 describes the 
machine learning model used, the SVM model, used to 
classify the different topologies. Section 3 presents the 

experimental results. Finally, section 4 gives the 
conclusion remarks. 
 
2 – AUTOMATIC CLASSIFICATION OF GROUDING 
TOPOLOGIES SYSTEM 
 
The proposed system is depicted in Fig. 2. It can be 
summarized as follows. First the voltage impulse 
generator is applied in the grounding system, then the 
response of voltage and current is acquired by the data 
acquisition system, after that the FFT features are 
extracted from the transient part of these signals. At the 
end, these FFT features (extracted taking into 
consideration the information of reference rod) are 
entered into the SVM model that determines the 
grounding system topology.  
 

 
Figure 2 – Architecture of proposed system. 

 
 
2.1 – VOLTAGE IMPULSE GENERATOR 
 
The objective of the excitation system is to create an 
excitation system that simulates a lighting stroke. The 
lighting stroke waveform is a double exponential that can 
be described by the following formula: 
 

v t     .(e
  .t  e  .t),                        (4) 

 
where    is the peak value, and   and   defines the rise 

time and pulse width, respectively, by the following 
formulas: 
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According to [8], the transient of surge voltage, due the 
lightening strokes, have a rise time of approximately 0,5 to 
10s and its peak value decay to 50% after 30 to 200s. 
The circuit responsible to generating the excitation signal 
is shown in Fig. 3. The system of Fig. 3 can be described 
by two main steps. In the first step, the gate S1 is closed 
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and S2 is kept open, the gates S1 and S2 are MOSFETS. 
Then, the parallel transformers TR1 and TR2 boost the 
voltage from 220Vrms to 640Vrms, approximately. Then, the 
voltage is rectified, by the bridge rectifier composed by the 
diodes DR1, DR2, DR3, DR4 and capacitor C, so that the 
series capacitors C1, C2 and C3 are charged, the role of 
resistor R1 is to limit the current to the capacitors. In the 
second step, the gate S1 is opened and gate S2 is closed, 
then the series capacitors C1, C2 and C3 (charged before 
in the first step), will generate an impulse voltage over the 
grounding system through the gate S2 that is closed.   

 

Figure 3 – Architecture of excitation system. 

 
The behavior of the excitation system in Fig. 3, has a 
quite similar behavior of a double exponential. The 
voltage applied to the grounding system is in the order of 
1kV.  
 
2.2 – DATA ACQUISITION 
 
The voltage and current are acquired by the data 
acquisition system. The voltage and current probes are 
distant of 12,5m and the current 20m, respectively from 
the grounding system. They are acquired at a sample 
rate of 2M/s. 
 
After the excitation system injects the impulse signal in 
the grounding system, the voltage and current responses 
are collected by the data acquisition system. The system 
used for data acquisition is the system U2531A from 
Agilent, which has a maximum sample rate of 2M/s. This 
sample rate is sufficient enough to capture data samples 
in the order of micro seconds (us). The voltage sensor, 
from LEM, has frequency response up to 500 kHz (+-
2dB). 
 
2.3 – FEATURE EXTRACTION 
 
After the voltage and current signals are acquired by the 
data acquisition, its features are extracted as follows. 
First, the transient response is isolated (the first 250 
samples are considered as the transient signal) it 

corresponds to 125s after the excitation signal has been 

applied. Then, the FFT, a popular signal processing 
approach, is used to transform the data of voltage and 
current from time to frequency domain. The first 125 
components of FFT signal were considered as features 
of classification model. Then, 125 FFT features are 
extracted from the transient of voltage and 125 FFT 
features are extracted from the transient of current, 
generating a total of 250 features. The FFT features of 
voltage and current are then subtracted by the FFT 
features of voltage and current of the reference rod.  
 
2.4 –SVM CLASSIFICATION MODEL 
 
The SVM model is the state of art in machine learning for 
classification. It works by identifying the best separating 
hyperplane (the plane with maximum margins) between 

the two classes of the training samples within the feature 
space [6]. It works as follows. 
 

Assume a set of training data                    , 
where       and           representing two classes. 
The optimal separation plane between hyperplanes is 
determined by maximizing the distance between the 
hyperplane and the nearest point of each class. The 
hyperplane is determined by minimizing the following 
function: 
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where  ,   and    are the weight vector, bias and slack 

variable, respectively. In Eq. (8),       is a nonlinear 

function that maps the input data onto a high dimensional 
feature space, where the data is linearly separable. 
Locating the optimal hyperplane is a quadratic 
programming problem that is solved by the construction 
of a Lagrange multiplier and by considering the 
boundaries conditions. Considering both constraints, the 
dual quadratic optimization problem is obtained: 
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where  (     )         
 (  ) is the kernel function and 

   are the Lagrange multipliers. By solving (9), subjected 

to (10) and (11), where the decision function is: 
 

         ∑                )                  (12) 

 
Where    denotes the support vectors for which the 

corresponding Lagrange multipliers are positive. In this 
work, a Gaussian RBF kerned is used as the kernel 
function: 

 (     )     ‖     ‖
 
                   (13) 

 
When using the SVM algorithm and the RBF kernel 
function, only the parameters C and   should be set. In 

this work the parameters were selected by considering 
the classification error in a leave one out cross validation 
scheme.  
 
The SVM was primary designed to deal with binary 
classification problems. Its implementation in multiclass 
problems can be done by using the method proposed in 
[7], called as min-wins rule. This rule together with the 
SVM model work as follows. For example, assume that 
the problem has three classes, defined as c1, c2, c3. Then 
a pairwise SVM model (M12) is constructed to 
discriminate c1, c2 another pairwise SVM model (M13) to 
discriminate c1, c3 and another pairwise SVM model (M23) 
to discriminate c2, c3. Then, for a test sample   , all 

pairwise outputs are combined to form a 3-class decision. 
Then, the class which the sample    belongs is the class 

that wins the most pairwise comparisons. If there is draw 
in the pairwise comparisons, then the class can be 
identified. 
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3 – EXPERIMENTAL RESULTS 
 
The results presented come from real data acquired in 
different days and distinct places/terrains. A total of nine 
assays were conducted. Figs. 4 and 5 show the transient 
response of voltage and current of one the terrains with 
one, two, three and four horizontal rods, as the grounding 
system. 
 

 
 

Figure 4 – Voltage response of grounding system composed of 
one, two, three and four parallel rods.  

 

 
Figure 4 – Current response of grounding system composed of 
one, two, three and four parallel rods. 

 
Three distinct topologies were considered to evaluate the 
capability of the proposed system. The first topology is 
composed by two rods, the third topology is composed by 
three rods, and the last topology is composed by four 
rods. All the rods have 2,5 meters length and are 
separated in intervals of 3 meters. Each configuration is 
considered as a class, where the label used for two, 
three and four rods are AP-01, AP-04 and AP-07, 
respectively. 
  
The data acquired in all assays were conducted by using 
the methodology described in Section 2.1 and 2.2. The 
features were extracted by using the procedure 
described in Section 2.3. and the multiclass SVM was 
built using the max-wins rule described in Section 2.4. 
 

The classification accuracy of the proposed system was 
achieved by training the SVM model using the features 
extracted from data acquired in eight assays and testing 
in the assay not used in the training phase. It was 
repeated in such way that all the assays were used for 
test.  
 
The summary of results is shown in Table 1. The 
organization of the Table was done as follows. The top of 
Table indicate the number of assay used for test, which 
ranges from 1 to 9. The column of assay #1 indicates that 
experiment #1 was used for test, while the other 
experiments were used for training the SVM model, and 
so on. The first left column indicate the topology tested 
(i.e. the feature of such topology was entered in the 
classification model). The content of Table 1 indicates the 
outcome of the SVM model when using as input the 
features coming from the topology indicated in the left 
column. The label NP means “not possible” to determine. 
 
As can be notice it was possible to determine the 
topology AP-01 in 55% of the cases tested, i.e. it was not 
possible to determine the topology in 4 terrains. For the 
topologies AP-04 and AP-07 it was possible to determine 
the topology in 44% of the presented cases (4 of 9). It is 
also possible to note that there is not any misclassified 
topology. This is due the fact of the strategy for 
combining the SVM binaries classifiers to perform 
multiclass classification, called mix-wins rule [7].  
 

 Assay number 

 1 2 3 4 5 6 7 8 9 

AP-
01 

AP-
01 

NP NP 
AP-
01 

AP-
01 

AP-
01 

NP 
AP-
01 

NP 

AP-
04 

AP-
04 

NP NP NP 
AP-
04 

NP 
AP-
04 

NP 
AP-
04 

AP-
07 

NP NP 
AP-
07 

NP 
AP-
07 

AP-
07 

NP 
AP-
07 

NP 

Table 1 – Results of classification system. 
 
It was not possible to determine the topology in 51% of 
the cases (14 of 27). From the machine learning 
perspective, this is due the fact that only few numbers of 
samples were used for training the SVM classifier and 
also because the presence of a large number of input 
features 250 in total. By increasing the number of training 
samples, probably the number of NP results will 
decrease. This is an interesting challenge from machine 
learning perspective, work with few samples and a large 
number of input variables. Future works will address this 
issue. 
 
 
4 - CONCLUSIONS 
 
In this work a method for automatic classification of 
grounding systems topologies was presented. It is 
composed by four main subsystems: an excitation, 
acquisition, features extraction and classification 
subsystems. The proposed system was evaluated in real 
scenarios and has shown to provide satisfactory results 
in terms of classification rate.  
 
This approach demonstrates that it is possible to 
determine the topologies under the soil in 49% of the 
tested cases, even with a small number of samples (only 
9) for training. This is an attractive result since in most of 
the real cases the grounding system is not inspected due 



after it is covered. By using this method, one can reduce 
the uncertainty about what is under the soil. 
 
The major drawback of the proposed approach is the 
necessity of the reference rod. Future works will address 
this issue, by implementing a method that eliminates the 
reference rod. 
 
Beyond the results of classification, this work has 
proposed an innovative work with original objectives. This 
innovative approach opens several gates and challenges 
for the grounding and earthing systems and also the 
machine learning community, since this can be seen as a 
multiclass problem with few numbers of samples and 
many input variables. 
  
Future works will improve the steps of feature extraction 
and classification model, by considering different 
methods.  
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