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A common step in most of water treatment plants is the chemical coagulation. The
chemical coagulation is the process of destabilizing the colloidal particles suspended in
raw water by the addition of coagulants. Generally, the determination of the quantity
of coagulant to be added to water is made manually by jar tests. However, the manual
control has slow response to changes of raw water and it requires intensive laboratory
analysis. To reduce the manual effort and to improve the response to change in raw water
quality, this work proposes the determination of the coagulant dosage using dynamic
neural network modeling using the available sensors as input of the model. The case
of study is a large scale water treatment plant in Ceará, Brazil, where the kinds of
coagulants added to water are the aluminum sulphate (AS) and poly aluminum chloride
(PAC). Several dynamic neural network models with different combinations of the input
variables have been evaluated. The best solution found is composed by a non-linear
autoregressive with exogenous input (NARX) model having three input variables, the pH
in raw and coagulated water, and the turbidity in the coagulated water, with coefficient
of determination of R2 = 0.95 and R2 = 0.91 for the AS and PAC dosage prediction,
respectively.

Keywords: Coagulant dosage; drinking water; dynamic neural networks; NARX model;
jar test.

1. Introduction

Drinking water with quality for human consumption is a requirement claimed by

society, as well a strategic necessity for the maintenance of public health. The water

and sanitation companies (WSC) should provide drinking water within the stan-

dards of potability and according to the regulatory constraints. This has driven the

∗Corresponding author at: Department of Electrical Engineering, Federal University of Ceará. Tel.:
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WSC to, more and more, perform the automation of their water treatment plants

(WTP).

However, some automation services in WTPs need high financial investments,

impeding the automation of some operations in the WTPs. A particular example is

the automation of the coagulation-flocculation stage. The Coagulation-Flocculation

stage is one of the main processes in a WTP, they are designed to help in the

removal of colloidal particles by the addition of coagulants in the raw water. These

coagulants are designed to neutralize the electrical charges of the colloidal particles

present in the water. The most common coagulants applied in the water are the

aluminum sulphate (AS) and poly aluminum chloride (PAC). After Coagulation,

the water is gently mixed in the Flocculation, facilitating the agglomeration of the

fine particles, so generating the flocks which can be easily removed from water. A

correct dosage of coagulants is an important goal by two main reasons: 1) to make

the coagulation phase more efficient, and 2) to lower the costs associated with inputs

dosages. Excessive coagulant dosage leads to increased treatment costs and public

health concerns 19, while underdosing leads to a failure to meet the water quality

targets and hence providing a less efficient operation of the water treatment plant
27. The main difficulty is to determine the optimum coagulant dosage related to the

influent of raw water. Actually, both manual and automatic methods are available

to determine optimum coagulant dosage rate.

Automatic coagulant control is ensured mainly by streaming current detectors

(SCD) 9,5,25. A SCD is an instrument for measuring the charge that exists on small,

suspended particles in liquid. The SCD is the most common instrument used to

measure coagulated particle stability for the feedback control of coagulant dosage
33. However, such equipment has a high cost of investment and operation, making

its utilization impracticable in some WTPs.

The coagulant dosage can also be manualy determined by the jar testing 27,5.

The jar test is a test intended to simulate the Coagulation-Flocculation process in

a laboratory size scale. Jar testing involves taking a number raw water samples and

applying different quantities of coagulant to each sample. After a short period of

time each sample is assessed for water quality and the dosage that produces the

optimal result is used as a set point. Operators change the dose and make a new jar

test if the quality of raw water changes. However, jar tests are relatively expensive

and take a long time to conduct 22, and as a result of the long time necessary to

obtain the jar results, they cannot cope with the rapid change of raw water quality
16,17.

A common factor among the WTPs is the presence of sensors designed for the

supervision of the water treatment. Furthermore, such sensors can be used beyond

process monitoring purposes, as for example, as input of a regression model to

predict/determine the optimal coagulant dosage to be added to the water, as an

alternative to jar tests. Such idea of predicting the optimal coagulant dosage based

on the the parameters of water is not new and it has been evaluated by several

other authors 12,16,22,31,15 (in all of these works PAC was the coagulant to be pre-
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dicted). In 12 a multilayer perceptron (MLP) neural network model was used to

predict the coagulant dosage in a WTP at the city of Saint Foy, Canada and the

raw water quality parameters (pH, turbidity, temperature, and conductivity) col-

lected from the process sensors were used as input to the MLP model. In 16 several

pre-processing techniques, such as outlier removal and down-sampling of data were

tested to improve the MLP performance in predicting the coagulant dosage in a

WTP at the city of Chungju, South Korea. The inputs used to compose the MLP

model in 16 were four raw water quality parameters (collected from the process

sensors), the temperature, pH, turbidity, and alkalinity. 22 used a MLP model to

predict the coagulant dosage in a laboratory scale (the samples used to build the

model were collected from different locations at the state of Victoria and South

of Australia), and the inputs used to compose the model were the raw water and

treated water quality parameters. The raw water parameters were the pH, turbidity,

color, ultraviolet absorbance at a wavelength of 254 [nm] (UVA-254), and the con-

centration of dissolved organic carbon (DOC). The treated water parameters were

the turbidity, the color, and the UVA-254. In 31 an MLP and adaptive neuro-fuzzy

inference system (ANFIS) models were evaluated in predicting the coagulant dosage

at laboratory scale (water samples were collected from a WTP at Taipei County,

Taiwan and laboratory experiments were performed to determine the water quality

parameters), the MLP model has shown to provide the best performance results

having the turbidity of treated water, and the amount of coagulant dosage on the

previous day as inputs to the MLP model. In 15 an ANFIS model was learned to

predict the coagulant dosage in a WTP at Boudouaou, Algeria, and six raw water

parameters collected from process sensors were considered as input of the model:

the turbidity, conductivity, temperature, dissolved oxygen (DO), UVA-254, and pH.

The objective of this work is to establish a regression model which uses a small

number of input variables to correctly predict the dosages of PAC and AS in a

real WTP in the State of Ceará, Brazil. The motivation behind the use a few

number of input variables is to make the implementation of such regression model

reproducible in a WTP equipped with a small number of sensors. Moreover, having

a lower number of input variables is a positive factor for decreasing implementation

costs. In this work, the turbidity and pH in raw and coagulated water and several

dynamic neural network models (DNN) were evaluated in different settings (i.e.

with different parameters and different combinations of input variables) in order to

determine the best regression model to predict the PAC and AS at the WTP of

Ceará. To select the regression model which produced the best trade-off between

the complexity (number of input variables and parameters) and prediction results,

the performance measurement was going to be based on the Cp statistics 30, 23.

The historical data used for modeling comprises 3 years of operational data, and it

contains information about the coagulant dosage values (determined by jar tests)

and parameters values from raw and coagulated water at every 2 [h], with a total of

13043 data samples. The models were trained using the first 2 years (8723 samples)
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of data, and the data of the remaining 1 year (4320 samples) was used as test set.

This 1 year test data set includes rainy and dray seasons. The results have shown

that having three input variables, the pH in raw and coagulated water, and the

turbidity in the coagulated water is sufficient to predict the PAC and AS dosages

at the WTP of Ceará.

In summary, the contributions of the this paper are: 1) evaluate several dynamic

models instead of static models in the prediction of coagulant dosage; 2) evaluate all

the models in a 1 year data set, which includes rainy and dray seasons; 3) establish

a regression model which uses three sensors to correctly predict the dosages of PAC

and AS in a real WTP in the State of Ceará, Brazil.

The paper is organized as follows. In Section 2 the water treatment plant configu-

ration is described. An overview about the DNN models used in the modelling phase

is done in Section 3. Section 4 describes the methodology used to set the parameters

of DNN models and the methodology used to evaluate the different configurations of

the DNN models. Section 5 is dedicated to the experimental results. Finally, Section

6 gives concluding remarks

2. Water Treatment Plant

The WTP at Ceará takes the following steps to treat the water: Pre-treatment, Co-

agulation, Flocculation, Sedimentation, Filtration and Disinfection. A short sum-

mary about the process is given as follows. Raw water is pre-treated prior to the

main processes within the WTP. The Pre-treatment done in the plant are the algae

control, and treatment to remove metals such as manganese and iron, where the

latter is done through the addition of chlorine. The Coagulation and Flocculation

stages are designed to help the removal of dissolved and suspended particles. During

Coagulation, the chemical coagulants PAC and AS are added to raw water aiming

to neutralize the electrical charges of the fine particles present in the water. After

Coagulation, the water is gentle mixed during the Flocculation stage, facilitating

the agglomeration of fine particles, so generating flocks which can then be eas-

ily removed in the subsequent stages. The Sedimentation stage prepares the water

for effective filtration, by allowing the flocks to settle by gravity. After sedimenta-

tion, only small unsettled particles remain in the water, and they are removed in

the Filtration stage. In Filtration, the suspended particles from water, and micro-

organisms in general, are removed by passing the water through a filter. As the

water passes through the filter, flock and impurities get stuck in it and the clean

water goes through. The clean water from the Filtration stage is then treated with

chloride in the Disinfection stage.

The plant has the capacity of 36.000 [m3/d] and its raw water comes from a

reservoir whose water quality is subject to seasonal change. The coagulant dosage

control existing at the WTP in Ceará is carried out by jar tests at every 2 [h] and

it is responsible for defining the dosage values of the PAC and AS coagulants. The

plant also stores the values of pH and turbidity in raw and coagulated water, and
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these variables are used for modeling the PAC and AS dosage values.

3. DNN Models

In this work the following notation will be used: considering a collection of variables

x1, . . . , xn, such a collection can be collectively represented or organized either as

set of variables X = {x1, . . . , xn}, or equivalently as a vector of variables x =

[x1, . . . , xn]
T .

The following four dynamic regression models are discussed in this section: the

focused time lagged feed-forward network (FTLFN) 28, the distributed time lagged

feed-forward network (DTLFN) 14, the Elman recurrent network (ERN) 11, and the

non-linear autoregressive with exogenous inputs (NARX) 20. All these models are

classified as dynamical models. In this work, just models with one hidden layer are

considered. Then, with just one hidden layer, these DNN models share the same

structure of the traditional multilayer perceptron model (MLP) with one hidden

layer and h neurons. The output of the traditional MLP, with one hidden layer is

given by:

y(k) = z(k)TwO + bO, (1)

where

z(k) = g
(
u(k)TWI + bI

)
, (2)

and y(k) ∈ R is the model output, z(k) ∈ Rh is the hidden layer output vector,

u(k) ∈ RD is the k-th sample of input vector of model (1)-(2), WI ∈ RD×h is the

matrix of weights connecting the D inputs to h hidden layer nodes, and bI ∈ Rh is

the vector of hidden layer nodes biases. The output weights that connect the hidden

neurons to the output neuron and the output bias are represented by wO ∈ Rh and

bO ∈ R, respectively. g(·) represents the activation functions of hidden layer nodes.

In this work g(·) is tangent sigmoid, and for an input variable a it is given by:

g(a) =
2

1 + e2a
− 1, (3)

which is bounded between −1 and +1. For a vector a = [a1, . . . , aA]
T ∈ RA the

output of the tangent sigmoid is defined as g(a) = [g(a1), . . . , g(aA)]
T .

The FTLFN, DTLFN, ERN, and NARX models, with one hidden layer, have

the same format of (1), but they differ in the way which the input vector u(k) is

composed. The input variables (not the input of the model u(k) in (2)) are defined

as x(k) ∈ RN . A more detailed discussion about each DNN model is given as follows.

3.1. FTLFN Model

The FTLFN model is part of a general class of dynamic networks, called focused

networks, in which the dynamics appear only at the input layer. In the FTLFN

model, the input vector u(k) in (1), is given by the actual and delayed components
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of input variables x(k), u(k) = [x(k), . . . ,x(k − px)]
T , where px is the maximum

lag of inputs. The use of delayed inputs gives temporal dynamics capability to the

FTLFN model, because the current output depends not only on the current input

x(k), but also on collection of its past values. The FTLFN was first proposed for

dealing with speech recognition 28, but it is widely applied in many other domains,

like the prediction of total suspended solids (TSS) in a water treatment plants 3,8,

and forecasting of stock markets 18.

There are a number of key decisions required to completely specify a FTLFN

model. These include the maximum time lag px, the number of hidden neurons

h, the activation function of hidden layer nodes g(·), and the algorithm used for

learning the model parametersWI , bI ,wO, and bO. The dimension of u(k) increases

proportionally to the maximum lag px and it should be selected carefully. The

dimensionality of model input is equal to: D = N · px + 1. Large values of D can

increase the training time and even lead to poor generalization in the prediction

results 4.

3.2. DTLFN Model

The DTLFN model was originally proposed by 29 and has been applied in network

traffic prediction 1 and time series prediction 7. This model has one hidden layer,

in the form of (1), and has inputs uj(k), where each uj(k) is equal to the output of

a finite impulse response filter (FIR) applied to input variable xj(k). The output

of a filter FIR applied on input variable xj(k), corresponds to a weighted sum of

actual and past values of this variable:

φ(xj(k), px) =

px∑
i=0

cij xj(k − i), (4)

where px is the order of filter FIR, and cij is the coefficient of filter FIR for the

input variable xj and filter line i. The output of the DTLFN model is given by (1),

having as input vector u(k) = [φ(x1(k), px), . . . , φ(xN (k), px)]
T .

The model parameters which should be defined/tuned for the DTLFN model

are the order of filter FIR px, the coefficients of filter FIR cij of each input variable,

the number of hidden neurons h, the activation function of the hidden layer nodes

g(·), and the network parameters WI , bI , wO, and bO. The dimensionality of the

model input is equal to D = N , and it is not dependent of the order px of the FIR

filters. An example of FIR filter is the moving average filter, where the values of cij
for all input variables j = 1, . . . , N in equation (4) are set to cij =

1
px+1 .

3.3. ERN Model

The ERN model, proposed by 11, is a form of recurrent neural network that includes

a set of context units which are responsible for memorizing the past states of hidden

units. In ERN, connections comming from the hidden layers through the context
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units, are are fed back to the input layer. Thus, in the ERN model, the input

layer is constituted by the model input and the feedback from the context units.

Therefore, the ERN operates in a way where the output of the network depends on

an aggregate of previous states of hidden units and the current input 32. The ERN

model is applied in several contexts, such as fault prediction in transmission lines
10, or chaotic time series prediction 6. Comparing with other types of models, the

most important advantage of the ERN model is to generate time-varying patterns
10,32. The input u(k) of the ERN model in (1) is composed by x(k) and a collection

of its past values, and a collection of past values of the hidden layer outputs z(k)

(2), specifically u(k) = [x(k), . . . ,x(k − px), z(k − 1), . . . , z(k − pz)]
T .

The model parameters which should be defined/tuned for the ERN model are

the number of hidden neurons h, the number of past values of input variables px, the

number of past values of the hidden layer output pz, as well the activation function

of hidden layer nodes g(·), and the network parameters WI , bI , wO, and bO. The

size of the input space in the ERN model increases proportionally to px, pz, and h.

The input dimensionality is given by D = N · px + h · pz + 1. Parameters, px, pz,

and h should be carefully selected to avoid a large value of D; large values of D can

increase the training time and even lead to poor generalization in the prediction

results 4.

3.4. NARX Model

The NARX models 20 are the non-linear generalization of the well-known ARX

models, which constitute a standard tool in linear black-box model identification 21.

These models can represent a wide variety of nonlinear dynamic behaviors and are

widely used in various applications, such as time series prediction 24, and forecasting

of pollution levels 26. The NARX model is a form of recurrent neural network in

which connections from the output layers are fed back to the input layer. In this

network, the input layer is constituted by the input variable x(k) and its past values,

and the past values of the output. The NARX model, with one hidden layer, has

the form of (1), where the input vector u(k) is composed by x(k) and a collection

of its past values, as well as a collection of past values of the output y(k), i.e.

u(k) = [x(k), . . . ,x(k − px), y(k − 1), . . . , y(k − py)].

In the NARX model, three parameters should be defined/tuned: the number of

hidden neurons h, the number of past values for input variables px, and the number

of past values of output py, as well the activation function of hidden layer nodes

g(·), and the network parameters WI ,bI ,wO, bO. The input dimensionality D of

the NARX model increases according with the parameters px and py, specifically

D = N · px + py + 1.
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4. Methodology

This section describes the methodology used to set the parameters WI , bI , wO,

bO, and h of the DNN models, and the methodology used to select the best input

variables and the respective architecture of each DNN model, which includes the

parameters px for the FTLFN, the parameter px and the values of cij of the FIR

filter for the DTLFN (in all experiments the moving average filter will be used as

the FIR filter, where cij = 1
px+1 ), the parameters px and pz for the ERN, and px

and py for the NARX model.

4.1. Tunning of DNN models

To set the values of the network parameters WI , bI , wO, bO, each DNN model was

trained by minimizing the mean square error (MSE) of all network output samples:

Emse(y, yd) =
1

M

M∑
k=1

[y(k)− yd(k)]
2
,

where, y(k) and yd(k) are the predicted and desired output of k-th input data sam-

ple. The models were trained using the Levenberg-Marquardt algorithm 13. Another

point is the determination of the number of hidden neurons h, which is essential for

a correct application of any neural network model. As an example, a high number of

neurons in the hidden layer generally promotes good performance during the train-

ing phase, but fails to predict correctly when unseen data is presented to the model,

leading to a poor performance in the test phase, a problem known as over-fitting 4.

On the other hand, if an neural network model is trained with a too small number

of hidden neurons, in some cases, during the training phase it cannot represent well

the system being modeled, a problem which is called under-fitting. Hence, it is nec-

essary to select the number of neurons which can represent well the system during

the training phase and at the same time have a good performance for unseen data.

In 2 it was suggested an approach to calculate the number of hidden neurons h, and

it has shown to provide good results in the experimental part. According to this

approach, h given by:

h =
ϵM − C

D + C + 1
, (5)

where M is the number of training samples, C is the number of network outputs,

and D is the number of inputs of the model. The parameter ϵ is the maximum error

acceptable for the network test. In this work the value ϵ = 0.01 was considered. As

can be noted, the use of this equation does not consider only the structural aspects

of network, but also it takes into consideration the maximum admissible error for

test examples and the number of available samples.

To avoid overffiting, the early stopping strategy was employed as stop criterion.

For this, the training data was divided in 70% for model training and 30% for model

validation. The model parameters were learned using the 70% of training data and
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the performance of the training was evaluated in the validation data. The training

was stopped when the error in the validation data started to increase.

4.2. Variable and Architecture Selection

The parameters of each DNN model, refereed here as κ (for the FTLFN and DTLFN

models κ = px, for the ERN model κ = (px, pz), and for the NARX model κ =

(px, py)) need to be properly selected. The values of κ are linked with the input

dimensionality of the model: a large input space can increase the training time and

even lead to poor generalization in the prediction results 4. Moreover, as one of the

objectives of this work is to select a number of input variables as small as possible,

then the best subset of variables to predict the output will be selected together with

the parameters κ.

To evaluate the performance of a DNN model trained with parameter κ, and

with a subset S ⊆ X of the set of input variables X, the Cp statistics 30,23 will be

used as the performance criterion. The Cp statistics measures the trade-off between

complexity and accuracy. The Cp statistics is defined as:

Cp =
(SSE of the DNN model trained with parameter κ and subset S)

(SSE of the model trained with parameter κ and all available inputs X)
−(D(X,κ)−2D(S,κ)),

(6)

where SSE is the sum of square error, and D(X,κ) and D(X,κ) are the input

dimensionality of the DNN model trained with the set X and a subset S ⊆ X,

respectivelly, and they are defined as:

• FTLFN: D(X,κ) = |X| · px + 1, and D(S,κ) = (|S| · px + 1);

• DTLFN: D(X,κ) = |X|, and D(S,κ) = |S|;
• ERN: D(X,κ) = |X| · px + h · pz + 1, and D(S,κ) = |S| · px + h · pz + 1;

• NARX: D(X,κ) = |X| · px + py + 1, and D(S,κ) = |S| · px + py + 1.

According with the Cp statistics, the best models are the ones where Cp is closest

to D(S,κ) (i.e. those subset models that fall near the line Cp = D(S,κ) in the Cp

versus D(S,κ) plot).

5. Experimental Results

This section provides the experimental results for the PAC and AS dosages predic-

tion at the WTP of Ceará. For this purpose, two individual models were constructed

to predict the PAC and AS dosages. The variables used as candidates for modeling

the PAC and AS dosages were the pH and turbidity in the raw and coagulated

water; Their labels and units used in the remaining of the section are described in

Table 1.

Moreover, to select the best architecture of each DNN model and achieve the best

solution in terms of model performance with least number of input variables, several

DNN models with different combinations of the input variables have been evaluated,
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Table 1. Variables and labels description.

Variables Description

x1 pH in raw water;
x2 pH in coagulated water;
x3 Turbidity in raw water [NTU]
x4 Turbidity in coagulated water [NTU];
y1 coagulant dosage of polyaluminum cloride (PAC) [mg/l];
y2 coagulant dosage of polyaluminum sulfate (AS) [mg/l];

by following the methodology described in Section 4. The best architecture and the

respective input variables for each model was selected based on the results of the

Cp statistics. The subset S considered in the experimental results was all possible

combinations of the input variables X, i.e. {x1}, . . . , {x4}, {x1, x2}, . . . , {x1, x4},
. . . , {x1, x2, x3, x4}. Moreover, for the parameters of the FTLFN, DTLFN, ERN,

and NARXmodels it was considered that px = pz = p and px = py = p, respectively.

The historical data used for modeling comprises 3 years of operational data,

and it contains information about the coagulant dosage values (determined by jar

tests) and parameters values from raw and coagulated water at every 2 [h], with a

total of 13043 data samples. The models were trained using the first 2 years (8723

samples) of data and the remaining 1 year (4320 samples) was used as the test set.

This 1 year test data set includes rainy and dray seasons. The performance on the

1 year test set will be measured using the root mean square error (RMSE) and the

coefficient of determination R2 between predicted and desired output.

5.1. Prediction Results

The selected variables for each DNN model and their respective parameters, based

on the methodology described in Section 4.2, are summarized in Table 2.

Table 2. Mapping and evaluation of the best pair (D(S,κ), Cp) for the PAC (y1) and AS
(y2) prediction.

output/target: y1 output/target: y2

Model p S (D(S,κ), Cp) h p S (D(S,κ), Cp) h

FTLFN 1 (x1, x3, x4) (6, 5.04) 6 3 (x1, x3, x4) (12, 11.51) 4
DTLFN 1 (x1, x3, x4) (6, 5.49) 6 1 (x2, x3, x4) (6, 5.72) 6
ERN 0 (x1, x2, x3) (3, 3.08) 9 0 (x1, x2, x3) (3, 2.87) 9
NARX 1 (x1, x2, x4) (7, 6.10) 5 1 (x1, x2, x4) (7, 6.05) 5

The values of p considered in all experiments ranged from p = 0, . . . , 6. For PAC

prediction and from Table 2, it is possible to note that the selected variables are

different for each DNN model, and only the pH in raw water (x1) is present in

all models. By evaluating each DNN model on the 1 year test data set, with the
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Figure 1. PAC prediction output (1-year dataset) with FTLFN model

parameters described in Table 2, it is possible to see the good performance results

of the NARX model, which reached a coefficient of determination of R2 = 0.91, and

a RMSE of 0.27. The results of the other DNN models, indicated in Table 3,

Table 3. Results of all models for PAC (y1)
and AS (y2) prediction on the test set

y1 y2

Model RMSE R2 RMSE R2

FTLFN 1.18 0.51 2.16 0.72
DTLFN 1.26 0.36 1.84 0.48
ERN 0.95 0.50 1.26 0.60
NARX 0.27 0.91 0.19 0.95

reinforce that the NARX model provides the best results. From the results, it is

possible to see that, to predict the PAC dosage only three sensors are necessary, the

pH in the raw and coagulated water and the turbidity in the coagulated water. The

input u(k), to predict the PAC dosage, for the NARX model is then composed by:

u(k) = [x1(k), x2(k), x4(k), x1(k − 1), x2(k − 1), x4(k − 1), y1(k − 1)]T . Figures 1-8,

shows the output prediction of the PAC dosage in the 1-year test data set, showing

that the NARX model having three input variables, the pH in raw water, pH in

coagulated water and the turbidity in coagulated water is a good predictor for the

PAC dosage values. The other models (FTLFN, DTLFN and ERN) have acceptable

values in some months; However the quality of their results is not comparable with

the much better results of the NARX model.
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Figure 2. PAC prediction output (1-year dataset) with DTLFN model
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Figure 3. PAC prediction output (1-year dataset) with ERN model

In the case of AS prediction, each DNN model uses a different set of variables to

build the model. However, excepted for the DTLFN model, all DNN models use the

same variables used for the PAC prediction. According to Table 2, the NARX model

exhibited the best prediction performance results in the 1-year test data set, with

a large value of coefficient of determination of R2 = 0.95, most notably considering

that the test data set has 8192 samples. Figures 5-8, shows the prediction output

of all DNN models, as can be noticed the NARX model has the best result.
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Figure 4. PAC prediction output (1-year dataset)with NARX model
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Figure 5. AS prediction output (1-year dataset) with FTLFN model

5.2. Discussion

From results, described in Section 5.1, the NARX model reached the best prediction

performance for predicting the PAC and AS dosages. In the case of study presented

here, it is possible to conclude that three sensors are necessary to provide the PAC

and AS prediction. These sensors are the pH in raw and coagulated water and

the turbidity in the coagulated water. Using only these sensors, the performance

of automatic PAC and AS dosage are satisfactory, as can be seen by the value

coefficient of determination (R2 = 0.91 and R2 = 0.95, for PAC and AS prediction,
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Figure 6. AS prediction output (1-year dataset) with DTLFN model
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Figure 7. AS prediction output (1-year dataset) with ERN model

respectivelly) and the pictures of prediction in the test-set, that comprises 1-year

of real operation.

Regarding the automatic coagulant determination in literature, the PAC pre-

diction is the most studied case, see 12,16,22,31,15. The comparison of this work with

existing literature is done in Table 4. In Table 4, the input variables, the number

of samples used for modeling, the data sample time, the model used for modeling,

and the R2 are shown.

As can be seen from Table 4, the work done in Wu et. al.,200831, uses only
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Figure 8. AS prediction output (1-year dataset)with NARX model

one sensor, the turbidity in raw water and the coagulant cosage of previous day, to

predict the PAC dosage and it reached a R2 = 0.894. However, the work presented

here achieved a R2 = 0.91, with the addition of two sensors, the pH in raw and

coagulated water, which in present in most of WTP plants. Other relevant work

is done in Maier et. al. 200422, which reached a R2 = 0.94, for PAC prediction.

However, in Maier et. al. 200422, there are a need to use a larger number of sensors

when compared with the work proposed in this paper. The other works12,16,15 have

inferior prediction performance or cannot be compared due the lack of data to do

it.

Table 4. Summary about the input variables, number of samples (#Samples) and data sampling for PAC prediction described in
literature. The terms RW, CW and TW, are the acronym for raw water, coagulated and treated water, respectivelly and ANN and
ANFIS are the acronym for artificial neural network and adaptive neuro-fuzzy inference system, respectivelly.

Ref. Inputs #Samples Sampling Model R2

This work pH-RW, pH-CW, Turbidity-CW 21766 2[h] NARX 0.92
Gagnon et. al., 1997 12 Turbidity-RW, pH-RW, Temperature-RW, Conductivity-RW 332.920 5 [min] ANN –

Joo et. al., 200016 Turbidity-RW, pH-RW, Temperature-RW, Alkalinity-RW 731 24 [h] ANN –

Maier et. al. 200422
Turbidity-RW, pH-RW, Color-RW, UVA-254-RW,

202 - ANN 0.94
DOC-RW, Turbidity-TW, Color-TW, UVA-254-TW

Wu et. al.,200831 Turbidity-TW, Coagulant Dosage of previous day 819 24 [h] ANN 0.894

Heddam et. al., 201115
Turbidity-RW, pH-RW,

725 24 [h] ANFIS 0.84
Temperature-RW, UVA-254-RW, DO-RW

From the results of achieved in the last section,
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6. Conclusion

The goal of this work was to establish a regression model which uses a small number

of input variables to correctly predict the dosages of PAC and AS in a real WTP

in the State of Ceará, Brazil. For this purpose, several dynamic neural network

models (DNN) were evaluated in different settings (i.e. with different parameters

and different combinations of input variables) and tested in a 1-year test data set,

which covers summer and drier seasons.

The DNNmodels evaluated were the FTLFN, DTLFN, ERN and NARXmodels.

The best results for the PAC and AS dosages prediction were reached by the NARX

model. The results demonstrated that only three sensors are necessary: the pH in

raw and coagulated water, and the turbidity in the coagulated water. The input

u(k), to predict the PAC and AS dosages with the NARX model are composed by:

u(k) = [x1(k), x2(k), x4(k), x1(k − 1), x2(k − 1), x4(k − 1), y1(k − 1)]T . It has been

shown that the NARX model has a great capability to predict accurately the PAC

and AS dosages values in real time, with coefficients of determination of R2 = 0.91

and R2 = 0.95, respectively.
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