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Abstract

The paper proposes a new method for variable selection for prediction settings and soft sensors applications. The new variable
selection method is based on the multi-layer perceptron (MLP) neural network model, where the network is trained a single time,
maintaining low computational cost. The proposed method was successfully applied, and compared with four state-of-the-art
methods in one artificial dataset and three real-world datasets, two publicly available datasets (Box Jenkins gas furnace, and gas
mileage), and a dataset of a problem where the objective is to estimate the flouride concentration in the effluent of a real urban
water treatment plant (WTP). The proposed method presents similar or better approximation performance when compared to the
other four methods. In the experiments, among all the five methods, the proposed method selects the lowest number of variables
and variables-delays pairs to achieve the best solution. In soft sensors applications having a lower number of variables is a positive
factor for decreasing implementation costs, or even making the soft sensor feasible at all.
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1. Introduction

Data-driven soft sensors are inferential models that use easy-
to-measure variables (from online available process sensors),
for online estimation of hard-to-measure variables, i.e. vari-
ables which cannot be automatically measured at all, or can
only be measured at high cost, sporadically, or with high delays
(e.g. laboratory analysis) [1, 2, 3, 4, 5]. These models are based
on measurements which are recorded and provided as historical
data. Example of data driven models are support vector regres-
sion, multilayer perceptron models and least squares regression.

Nevertheless, when building a data driven soft sensor model
to predict a hard-to-measure variable, it is not necessarily true
that all the available easy-to-measure variables are relevant or
useful. Then, it would be important to learn the data driven
model using only relevant variables1. Normally, the selection
of relevant variables is done by manual selection, by system
experts [6, 1, 7]. However, for physically large and highly in-
tegrated processes, the selection of the most relevant variables
based on process insight may not be feasible [6]. In these cases
it is necessary to appeal to automatic methods [6, 1, 8, 9]. More-
over, the selection of variables permits the use of a lower num-
ber of input variables, and real sensors, thus decreasing costs,

∗Corresponding author at: Institute of Systems and Robotics (ISR-UC),
University of Coimbra, Pólo II, PT-3030-290 Coimbra, Portugal. Tel.: +351
910942012.

Email addresses: fasouza@isr.uc.pt,

alexandre.andry@gmail.com (Francisco A. A. Souza), rui@isr.uc.pt
(Rui Araújo), tmatias@isr.uc.pt (Tiago Matias), jermendes@isr.uc.pt
(Jérôme Mendes)

1The term relevant variables employed here refers to a subset from whole
set, where the prediction error of the model trained with this subset is less than
or equal to the prediction error of the model trained with the whole set.

and increasing or enabling feasibility of applications. Further-
more, variable selection can decrease the complexity of the soft
sensor prediction model, leaving it less prone to overfitting [1].

This paper proposes a method for variable selection applica-
tions by using a multi-layer perceptron (MLP) neural network
model with two-layers (MLP-TL) as the basis (Figure 1). The
method proposed in this paper is inspired in the method pro-
posed in [10]. Differently from the method in [10], the method
proposed in this paper holds on the assumption that the differ-
ence between the mean square error (MSE) of two models, one
trained with all variables and the other trained with a set of rel-
evant variables is small. Under this assumption, it is possible
to justify the approximation of the output of a MLP-TL model,
when a variable is removed, by using the automatic ajustment
of weights used in [10]. Another point is that, in this work, an
exclusion criterion different from the one used in [10] is pro-
posed and used. This new exclusion criterion, which is detailed
in Section 5, has shown to provide good results in the experi-
mental part when compared with other four methods.

The proposed method was successfully applied, and com-
pared with four other state-of-the-art methods, one artificial
dataset and three real-world datasets, two publicly available
datasets (Box Jenkins gas furnace, and gas mileage), and a
dataset of a problem where the objective is to estimate the fluo-
ride concentration in the effluent of a real urban water treatment
plant (WTP).

In summary, the contributions of the this paper are: (i) A new
variable selection method based on an MLP network model,
with low computational costs; and (ii) application of the pro-
posed methodologies in real industrial applications, demon-
strating superior performance of the proposed methods when
compared to other state-of-the-art methods.
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Figure 1: Topology of MLP-TL neural network; O is the output node,
WI = W = [wi j] is the n × h matrix of the weights connecting the
inputs to the h hidden layer nodes, and wO = [wO1, . . . ,wOh]T is the
output weights vector. The hidden layer biases bI and the output bias
bO are omitted to simplify the diagram.

The paper is organized as follows. Related work on variable
selection is discussed in Section 3. The MLP model learning
is briefly discussed in Section 4. The new MLP-based variable
selection algorithm is proposed in Section 5. Section 6 presents
experimental results. Finally, Section 7 gives concluding re-
marks

2. Notation

In this work the following notation will be used: consider-
ing a collection of variables x1, . . . , xn, such a collection can
be collectively represented or organized either as set of vari-
ables X = {x1, . . . , xn}, or equivalently as a vector of variables
x = [x1, . . . , xn]T .

3. Related work

The problem of selecting relevant variables can be stated as
the problem/objective of finding the optimal or suboptimal sub-
set of the whole set of possible input variables, so that the vari-
ables in this subset can be used as inputs in a prediction setting
to correctly predict the output using an adequate model [11, 12].
To find these optimal or suboptimal variables, a variable se-
lection algorithm is built through two main components: the
measure used to quantify the quality of a subset (e.g. the mean
square error between the predicted output and the target output,
the mutual information between input set and the target), and
the variable search procedure to be used in the input space to
select the best subset.

A variable search procedure can be defined as the tool to
guide the selection of an optimal or suboptimal subset of vari-
ables from the whole set. To avoid the high computational
cost associated with optimal search strategies, such as exhaus-
tive search, some suboptimal search procedures have been pro-
posed and largely used in variable selection approaches [12].
The most popular are based on greedy methods (e.g. sequential
backward search (SBS) and sequential forward search (SFS)).
The SBS procedure, proposed by [13], starts with all variables,
and at each step one variable that contributes least to the cri-
terion function is removed. SBS stops when a pre-specified
number of variables are removed or when the results get sat-
isfactory. The SFS, introduced by [14], starts with an empty
subset, and at each step the variable that mostly contributes to
increase the criterion function is added to the set of chosen vari-
ables. Random search and evolutionary search methods, have
been also employed in variable selection tasks [15].

In [16] it was proposed the “minimum redundancy maximum
relevance” (mRMR) criterion which attempts to capture vari-
ables which have the maximum relevance to the output yd and,
at the same time, to reduce the redundancy between selected
variables. This is performed in terms of the mutual informa-
tion, and the method is independent of the prediction model to
be used. According to the mRMR approach, the next feature
xm chosen for inclusion in the set S of selected variables is the
following:

xm = arg max
x

j
∈{X\S m−1}

[

I(x j, yd) −
1

m − 1

∑

xi∈S m−1

I(x j, xi)

︸                    ︷︷                    ︸

R

]

, (1)

where X is the set of input variables/features, S m−1 is the set
that contains the m − 1 features previously selected, I(xi, x j) is
the mutual information between input variables xi and x j, and
yd is the output target variable. The first selected feature is the
one that has more information about the output y. A recent
study using mutual information to select the best variables was
presented in [17] and is called normalized mutual information
feature selection (NMIFS). The NMIFS criterion changes the
form of how the mRMR criterion is defined. It uses the follow-
ing normalized version as the redundancy measure:

R =





1
m − 1

∑

xi∈S m−1

I(x j, xi)

min
{

H(xi),H(x j)
}




, (2)

where H(xi) is the entropy value for feature xi. The NMIFS
redundancy value (2) can be replaced for R in the right side of
(1). The mRMR and NMIFS methods are the state-of-the-art
and most commonly used filter methods for variable selection.

MLP models using the sum of squared prediction error (SSE)
as the cost function [18, 19] are widely used for variable selec-
tion. In these methods, variable selection is generally based
on SBS elimination [19], and it will be refereed as SBS-MLP.
The original SBS-MLP variable selection procedure starts with
a MLP trained with all variables. Then, useless or less relevant
variables are removed in a sequential backward selection pro-
cedure based on the prediction error when using and not using
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a specific feature (when a variable is removed the network is
re-trained): it is removed the variable that maintains on small-
est SSE on the model after its removal. This method needs to
retrain the network (n(n + 1)/2) times in the worst case, where
n is the input dimensionality.

To overcome the problem of requiring to retrain the net-
work (n(n + 1)/2) times in the SBS-MLP case, some methods
were proposed in the literature to select the variable to be re-
moved without retraining the network for each variable that is
removed. Generally, these methods are based on the recursive
feature elimination (RFE) approach, which can be thought as a
variant of the SBS procedure, where the model is trained and
the variables are ranked according to a certain metric of impor-
tance. Thus, a certain number of variables is either selected or
discarded according to a pre-selected rule. The model is re-
trained and variables are once again ranked; this process con-
tinues until some criterion is reached.

Possible metrics to be used are based on sensitivity analy-
sis [20, 21]: the zero-order, first-order methods. Zero-order
methods use cost functions based on the MLP input connection
weights. In first-order methods the cost function is computed
as ∂yd/∂xi, and it is interpreted as the perturbation of output
variable yd as a function of the input variables xi. However, in
these cases, when a variable is removed, the network should still
be re-trained: this involves training the network (n − 1) times,
in the worst case. In [10] a MLP network is trained a single
time, and the SBS procedure is used to search the best subset of
variables. However, instead of retraining the network for each
variable that is removed, an adjustment factor is used avoiding
the retraining of the network several times. The quality of each
variable is based on a zero-order cost function.

4. MLP network learning

This section reviews the multilayer perceptron (MLP) neu-
ral network learning. A MLP neural network model with
two-layers, Figure 1, and a sufficient number of neurons h

and proper weights can uniformly approximate any continuous
function to any accuracy [22]. It is a parametrized model which
has the following form:

f (x; θ) = l
(

g
(

xT WI + bI

)

wO + bO

)

, (3)

where f (x; θ) is the MLP network output, θ is the set of weight
and bias parameters, x is the input vector, WI = W = [wi j] is
the n × h matrix of the weights connecting the n inputs to the h

hidden layer nodes, bI = b = [b1, . . . , bh] is the vector of biases
of the hidden layer nodes. The output weights that connect the
hidden neurons with the output neuron and the output bias are
represented by wO = [wO1, . . . ,wOh]T and bO, respectively. g(·)
and l(·), represent the activation functions of the nodes of the
hidden layer, and output layer, respectively. In this work g(·) is
tangent sigmoid, and l(·) is a linear function.

Given a set of training data F =

{(x(k), yd(k)) ; k = 1, . . . ,m}, the set of weight parameters

θ is chosen so as to minimize the empirical risk,

Remp

[

f (x; θ), yd

]

=
1
m

m∑

k=1

J
[

f (x(k); θ), yd(k)
]

, (4)

where J(·) is a loss function. Using the approximation error

ε = yd − f (x; θ), (5)

and defining the loss function as

J
[

f (x; θ), yd

]

= ε2 =
[

f (x; θ) − yd

]2
, (6)

then the empirical risk Remp

[

f (x; θ), yd

]

becomes the well know
mean square error (MSE),

Emse(y, yd) =
1
m

m∑

k=1

[

y(k) − yd(k)
]2
, (7)

which is used in this work, and where for simplicity the pre-
dicted output is defined as y(k) = f (x(k); θ). The MLP is
trained to minimize the MSE using the Levenberg-Marquardt
algorithm [23].

5. Proposed variable selection algorithm

In this section, the proposed method is derived. As discussed
before, the method is inspired in the method proposed in [10],
called here as Iteratively Adjusted Neural Network (IANN). Es-
sentially, the IANN method makes use of a trained neural net-
work model, with all inputs, and sequentially removes the use-
less variables according to a proposed exclusion criterion in a
SBS procedure. The exclusion criterion, described in Section
5.3, ranks the input variables according to their influence to the
prediction of the output. However, when a variable is removed
the IANN performs an adjustment of the existing model instead
of retraining again all the network.

The method proposed in this paper is based on the IANN
idea, but differs mainly on the exclusion criterion. This new
exclusion criterion is based on the empirical risk, and at each
iteration the variable selected to be removed is the one which
contributes least to predict the target output. The proposed cri-
terion is detailed below in this section, and it has shown to pro-
vide good results in the experimental part when compared with
other four methods. Another, smaller, difference is that, based
on the assumption that the difference between the mean square
error (MSE) of two models, one trained with all variables and
the other trained with a set of relevant variables is small, it is
possible to justify the approximation of the output of a MLP-
TL model, when a variable is removed, by using the automatic
adjustment of weights used in the IANN method [10].

5.1. Motivation

The variable selection proposed here, holds on the following
assumption:
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Assumption 1. Let the difference between the MSE of two

MLP-TL models, both with h hidden neurons, and one trained

with all variables and the other trained with a subset of vari-

ables, be equal to some value ǫ:

Eall
mse − Erel

mse = ǫ, (8)

where Eall
mse and Erel

mse are the mean square error of the model

trained with all variables, and with the subset of variables, re-

spectively. Then, assume that |ǫ| is small if and only if (iff) the

subset of variables is a sufficient subset of relevant variables.

A subset of relevant variables is sufficient iff it contains all the

necessary input variables which are required to correctly pre-

dict the target variable.

From the above assumption, the error of an MLP-TL model
trained with all variables provides similar results when com-
pared with the error of an MLP-TL model trained with a subset
of sufficient relevant variables.

The main characteristic of the proposed method is the auto-
matic adjustment of the network when a variable is removed,
in contrast to retraining the network. The goal is to reduce the
computation costs. The following subsection describes the pro-
posed MLP network adjustment method.

5.2. MLP network adjusment

Assume a MLP-TL model trained with a dataset F by
minimizing the mean square error (7) to obtain an approx-
imator of the form (3). When a variable xr is removed
from the set X, it generates a new/derived dataset F−r ={(

xT
−r(k), yd(k)

)

; k = 1, . . . ,m
}

, where xT
−r is the input vector

without variable r and X−r = X \ {xr}. Retraining a MLP-TL
network using the F−r dataset with h hidden neurons, the fol-
lowing model is generated:

y−r = l
(

g
(

xT
−rWI,−r + bI,−r

)

wO,−r + bO,−r

)

, (9)

where WI,−r, bI,−r, wO,−r and bO,−r are the new matrix of in-
put weights, input bias, output matrix weights and output bias,
respectivelly, and with h hidden layer nodes.

Using Assumption 1, the error Emse(yd, y)− Emse(yd, y−r) = ǫ
is small if variable r is irrelevant. On the other hand, if vari-
able r is relevant the error ǫ will be large. Then, the following
approximation holds:

Emse(yd, y) = Emse(yd, y−r) + ǫ (10)

1
m

m∑

k=1

[

y(k) − yd(k)
]2
=

1
m

m∑

k=1

[

y−r(k) − yd(k)
]2
+ ǫ (11)

m∑

k=1

[

y(k) − yd(k)
]2
=

m∑

k=1

[

(y−r(k) + ǫ̂(k)) − yd(k)
]2
, (12)

m∑

k=1

y(k) =
m∑

k=1

(y−r(k) + ǫ̂(k)), (13)

where the values ǫ̂(k) in (13) are the contributions of the indi-
viduals errors of each sample, so that y−r(k) + ǫ̂(k) = y(k), and

so that (11) is valid. For a sample k and replacing (9) in (13):

l
(

g
(

x(k)T WI + bI

)

wO + bO

)

= l
(

g
(

xT
−rWI,−r + bI,−r

)

wO,−r + bO,−r

)

+ ǫ̂(k) (14)

which means that for a sample k, the output of one model
is equal to the output of the other plus a error ǫ̂(k). Setting
the output weights of the right side of equation (14), equal to
wO,−r = wO and bO = bO,−r and inserting the error ǫ̂(k) into the
first layer of MLP-TL model, Eq. (14) becomes:

l
(

g
(

x(k)T WI + bI

)

wO + bO

)

= l
(

g
(

xT
−rWI,−r + bI,−r + ∆(k)

)

wO + bO

)

. (15)

where ∆(k) is the h×1 vector representation of ǫ̂(k) into the first
layer of the MLP-TL model, so that equation (14) is valid.

Then, through Eq. (15) it is possible to update the weights
without retraining the network. After a variable xr and the as-
sociated weights wr j ( j = 1, . . . , h) are removed, the remaining
weights wi j are adjusted using factors δ

i j
obtained from the fol-

lowing h × m equations:
∑

x
i
∈X

[xi(k)wi j] =
∑

x
i
∈X−r

[

xi(k)(wi j + δi j)
]

,

j = 1, . . . , h, k = 1, . . . ,m,

(16)

where for all i such that x
i
∈ X−r, and j = 1, . . . , h, δ

i j
is the

adjustment to weight w
i j

that connects input x
i
to hidden neuron

j. As can be noticed in (16), the δ
i j

are the adjustment factors
for the remaining weights, so that the input to each node in the
hidden layer remains constant. Simple algebraic manipulations
of (16) yield:

∑

xi∈X−r

δi jxi(k) = wr jxr(k),

j = 1, . . . , h, k = 1, . . . ,m.
(17)

A way to solve (17) for the unknowns δi j (for all i such that
x

i
∈ X−r, j = 1, . . . , h) is to use the conjugate gradient precondi-

tion normal equation (CGPCNE) method [24], which provides
a good and fast least-squares solution.

Thus, y−r (9) can be approximated as follows without retrain-
ing the network, but instead by adjusting the input weights:

y∗−r = l
(

g
(

xT
−kW∗

I,−r + bI

)

wO + bO

)

, (18)

where y∗−r is the new output prediction, and W∗
I,−r is the ma-

trix of input weights updated according to the δi j obtained from
(17).

The computation complexity per iteration of the MLP-TL
training by the backpropagation algorithm is proportional to the
total number of network weights |W | and the number of samples
m, so that the overall complexity is equal to O(em|W |), where
e is the number of training iterations. On the other hand, the
computation complexity of each iteration of the CGPCNE to
determine the δi j’s values is proportional to the number of input
weights and the number of available samples. Generally, the
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number of iterations needed to solve Eq. (17) is very small, in a
way that the overall computation complexity associated with
the CGPCNE algorithm is O(m|WI |), where |WI | is the total
number of input weights. Clearly, adjusting the network with
the δi j is much cheaper than to retrain the MLP several times.

5.3. IANN ranking criterion

In the IANN algorithm the variable xr selected to be removed
in each iteration is the one that contributes least to the output
prediction, and it is assumed that important input variables have
large weights. Thus, the variable selected to be removed xr at
each iteration in the one that minimizes the following criterion:

xr = arg min
x

i
∈X

h∑

j=1

m∑

k=1

[

xi(k)wi j

]2
. (19)

This variable can be interpreted as the input having the smallest
total amount of feedforward propagated information, or it can
also be seen as the variable xr with the smallest energy with
respect to the trained network. However, this method has the
disadvantage of failing to remove redundant variables, which is
very common in soft sensor applications, leading to poor per-
formance when the variables in the input set are redundant.

5.4. Proposed ranking criterion

The importance of a variable xr can be measured by consider-
ing whether the removal of xr reduces or increases the empirical

risk (7). A reduction indicates that the absence of xr is irrele-
vant to the model and an increase suggests that it is relevant to
the model. In this way, the exclusion evaluation function of xr

is defined as the following difference:

E−r = Emse(y−r, yd) − Emse(y, yd), (20)

where yd is the desired output. The above equation computes
the difference of the empirical risk in the presence and absence
of xr, so the higher the value of E−r, the more important is the
r-th variable. Moreover, a negative value of E−r indicates that
xr is irrelevant to the model.

In the proposed method, Emse(y∗−r, yd) is used instead of
Emse(y−r, yd) in (20). This means that instead of retraining the
network to obtain y−r (9), the input weights are adjusted using
the method described in Subsection 5.2, generating model y∗−r

(18). Thus, the exclusion evaluation function (20) is redefined
as:

E∗−r = Emse(y∗−r, yd) − Emse(y, yd), (21)

The proposed variable selection method is detailed in Algo-
rithm 1, where the loop starts with a trained MLP-TL network
M(F ). At each iteration of the loop, the importance measure
of every variable x j is calculated. This is done by temporarily
removing x j from the dataset F , readjusting the network using
(16) and subsequently measuring the importance of x j using
(21). In each iteration of the proposed method algorithm, the
least important variable xr is selected and removed from the
MLP-TL network. Then, the MLP-TL is readjusted according
to the removal of xr (retaining the most favorable network). At
the output of the algorithm, the set S contains the input vari-
ables ranked (ordered in a selection rank) according to the ex-
clusion evaluation function (21).

Algorithm 1 Steps of the proposed variable selection scheme
1: Input: Dataset: F = {(x(k), yd(k)) ; k = 1, . . . ,m}; Set of

variables: X; Ordered set of variables: S := ∅;
2: Output: Ordered set S , containing the features ranked

according to their importance;
3: Set M(F )← “A MLP-TL trained with dataset F ”;
4: for k = n down to 1 do

5: For each x j ∈ X, compute E∗
− j

, Eq. (21), and let xr =

arg minx j∈X

(

E∗
− j

)

.
6: X ← X \ {xr}, “Remove variable xr that has the lowest

value of E∗−r”.
7: Set S ← S ∪ {xr}, “Update the set S , adding xr in the

k-th position”.
8: Set M(F ) ← “MLP-TL network updated by removing

the xr input and adjusting the remaining weights accord-
ing to (16), and w

(new)
i j
= w

(old)
i j
+ δi j”.

9: end for

Dataset |U | Train/Test Architecture # Epochs
Friedman 10 250/250 K − 8 − 1 500
Box-Jenkins 2 145/145 K − 4 − 1 80
Gas-Mileage 6 196/196 K − 3 − 1 100
WTP 11 176/176 K − 10 − 1 200

Table 1: Data Sets Description. |U |, is the number of variables in the
original input vector. Train/Test indicates the number of exemplars in
the corresponding dataset. Architecture indicates the number of input,
hidden, and output nodes used in the MLP-TL, where K = n, . . . , 1,
according to Algorithm 1.

6. Experimental results

This section presents experimental results in one artificial
dataset, and in three real-world datasets, two publicly avail-
able datasets (Box Jenkins gas furnace, and gas mileage), and a
dataset of a problem where the objective is to estimate the fluo-
ride concentration in the effluent of a real urban water treatment
plant (WTP). For comparison purposes, the following variable
selection algorithms were implemented: mRMR [16], NMIFS
[17], IANN [10], and the original SBS-MLP [13, 19].

6.1. Experimental settings

For all algorithms and datasets, half of the available data was
used for training and the other half was used for test. All con-
sidered MLP networks have one hidden layer with a tangent hy-
perbolic activation function and a linear activation function in
the output layer, and are trained with the Levenberg-Marquardt
backpropagation algorithm [23] in batch mode. The weights
were initialized using the Nguyen-Widrow method [25].

The optimal number of hidden neurons h used in all meth-
ods was determined by training the MLP-TL model with all
variables in a 10-fold cross-validation [26] scheme using the
training data set, and the selected number of hidden neurons
was the one that produced the highest average cross-validation
accuracy among these ten realizations. Table 1 describes the
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x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Prop. ✓ ✓ ✓ ✓ ✓ ✕ ✕ ✕ ✕ ✕

IANN ✓ ✓ ✓ ✓ ✓ ✓ ✕ ✕ ✓ ✓

SBS-MLP ✓ ✓ ✓ ✓ ✓ ✕ ✕ ✕ ✕ ✕

NMIFS ✓ ✓ ✓ ✓ ✓ ✕ ✕ ✕ ✕ ✕

mRMR ✓ ✓ ✓ ✓ ✓ ✕ ✕ ✕ ✕ ✕

Table 2: Set of the selected of input variables by all methods in the
Friedman dataset. The selected variables are marked with a tick.

Prop. IANN SBS-MLP NMIFS mRMR
MSE 0.007 0.008 0.007 0.007 0.007
CC 0.972 0.967 0.972 0.972 0.972
Time [s] 10.87 1.37 49.54 0.01 0.01
|S | 5 8 5 5 5

Table 3: Performance results on the test dataset of the five methods
on the Friedman dataset: MSE, CC, computation time (Time), and
number of selected variables, |S |.

datasets, and parameters used in the experiments.
The computation of the respective exclusion criterion in the

MLP-TL model for use in the SBS-MLP algorithm and in
the proposed algorithm, was performed by using a 10-fold
cross-validation scheme using the training data set. The val-
ues considered to decide the exclusion were the average cross-
validation of the respective criteria, among these ten realiza-
tions.

The approximation performance of the soft sensors is eval-
uated using the mean square error (MSE) and the correlation
coefficient (CC) between predicted and desired output, in the
test data and the execution time in all methods was considered
as the time necessary to rank all the variables with their respec-
tive criteria.

6.2. Experiment I - Friedman dataset

The Friedman artificial dataset [27] consist of 10 input vari-
ables x = [x1, x2, . . . , x10]T generated independently of each
other and uniformly distributed over [0, 1]. The target variable
yd is a function of the first five variables:

yd = 10 sin(πx1x2)+20(x3−0.5)2+10x4+5x5+N(0, 1), (22)

where N(0, 1) is Gaussian noise with zero mean and unit vari-
ance. Thus, variables x1, x2, x3, x4, x5 are relevant, while the
rest are irrelevant. As the optimal subset of variables is known
a priori, this dataset is an excellent way to validate the proposed
variable selection method. Therefore, in this dataset the focus
is the capability of all methods in the selection the relevant vari-
ables, removing the irrelevant variables.

The results of application of all methods are presented in Ta-
bles 2, 3, and in Figure 2. All the methods except the IANN
method have the capability of correctly selecting the set of rel-
evant input variables. In IANN method, the irrelevant variables
x6, x9 and x10 were selected in addition to the five relevant vari-
ables. As in the proposed method, in SBS-MLP, in NMIFS, and
in mRMR the set of selected input variables was the same, the
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Figure 2: Error rates on the Friedman test dataset as a function of the
number of top ranked variables used in the prediction model.

fitting performance in test data was similar. As expected, the
selection of irrelevant variables by IANN led in a loss of fitting
performance in test data. Concerning the computational time
needed to select the set of input variables, the slowest method
was the SBS-MLP, followed by the proposed method and by
IANN. The fastest methods were the NMIFS and the mRMR
methods.

6.3. Experiment II - Box-Jenkins process dataset

The Box-Jenkins gas furnace process data2 was recorded
from a combustion process of a methane-air mixture, and con-
sists of 296 data points [y(k), u(k)]. The input u(k) is the
gas flow rate into the furnace and the output y(k) is the car-
bon dioxide (CO2) concentration in the outlet gas. The sam-
pling interval h is 9 [s]. To predict y(k), the following set
of possible variables and delays is considered and examined
X = {y(k− 1), y(k− 2), y(k− 3), y(k− 4), u(k− 1), u(k− 2), u(k−
3), u(k−4), u(k−5), u(k−6)}. The number of neurons used was
h = 4 for all methods.

The five variable selection algorithms were applied to select
the best variables and respective time-lags. The variables were
ranked according to their influence on the output, and the per-
formance results are displayed in Fig. 3 in terms of MSE, where
the x-axis represents the number of top-ranked input variables.

Analyzing the MSE and the correlation performance crite-
ria in Table 4, it can be noted that the results are quite similar
on the test dataset for the proposed method and the SBS-MLP.
Moreover, the proposed method and the SBS-MLP method se-
lect the lowest number of variables (only five). Figure 3 shows
that the proposed method attains the best performance value
when the set of the top-ranked input variables has five vari-
ables. The other tested algorithms, IANN, NMIFS and mRMR,
to reach the best values in the performance criteria, have se-
lected seven or eight variables. It can be concluded in this
case study that the proposed method has the same performance

2Provided by IEEE Neural Networks Council Standards Com-
mittee Working Group on Data Modeling Benchmarks. Available:
http://www.stat.wisc.edu/˜reinsel/bjr-data/gas-furnace .
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Figure 3: Error rates on the Box Jenkins test dataset as a function of
the number of top ranked variables used in the prediction model.

Prop. IANN SBS-MLP NMIFS mRMR
MSE 0.0015 0.0015 0.0017 0.0016 0.0016
CC 0.988 0.988 0.987 0.988 0.988
Time [s] 19.7 2.3 4264.3 0.086 0.0709
|S | 3 7 3 7 8

Table 4: Performance results on the test dataset of the five methods
on the Box Jenkins dataset: MSE, CC, computation time (Time), and
number of selected variables, |S |.

of the traditional SBS-MLP method, with a 216 times lower
computational cost, and both methods achieve the best trade
off between the lowest number of selected input features while
maintaining good results in terms of MSE and correlation val-
ues. The best variables selected by the proposed method and by
SBS-MLP were {y(t − 1), x(t − 3), y(t − 2), x(t − 6), x(t − 2)} and
{y(t−1), x(t−3), y(t−2), y(t−3), x(t−2)}, respectively. As can be
noticed, among the two sets of five selected variables there are
four variable in common. This divergence can be explained be-
cause the SBS-MLP parameters are adjusted using the gradient
descent algorithm, while the proposed method uses the model
adjustement given by (9)-(15). Anyway, despite this difference
on the selected variables, both results have equal prediction per-
formance, while the proposed method executes the selection of
variables faster than the SBS-MLP.

6.4. Experiment III - automobile Gas mileage dataset

The automobile gas mileage dataset corresponds to a prob-
lem of predicting the number of miles per gallon (MPG). It
is a six input, single output regression problem. The gaso-
line consumption needs to be predicted based on the follow-
ing input variables u1, u2, u3, u4, u5, u6, respectively: number of
cylinders, displacement, horsepower, weight, acceleration and
model year. The original data is available in the UCI (Univer-
sity of California at Irvine) Machine Learning Repository3. The
set of considered input variables is X = {u1, u2, u3, u4, u5, u6}.

3Available: http://archive.ics.uci.edu/ml/datasets/Auto+MPG .
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Figure 4: Error rates on the gas mileage test dataset as a function of
the number of top ranked variables used in the prediction model.

Prop. IANN SBS-MLP NMIFS mRMR
MSE 0.105 0.113 0.104 0.114 0.117
CC 0.95 0.94 0.95 0.94 0.94
Time (s) 7.1 1.2 905 0.025 0.029
|S | 4 6 4 6 6

Table 5: Performance results on the test dataset of the five methods
on the gas mileage dataset: MSE, CC, computation time (Time), and
number of selected variables, |S |.

Despite the already small number of input variables that ex-
ist in this dataset, the prediction accuracy is highly correlated
with the best variables selected, as can be seen in Fig. 4. This
graphic shows that the generalization capacity, measured by the
MSE, is directly related to the selected subsets. As a function of
the number of best selected variables, the convergences of the
proposed method and SBS-MLP methods in terms of MSE are
similar, and are the fastest convergences when compared with
the other methods. However, the computation time of the SBS-
MLP algorithm is more than 100 times greater when compared
with the proposed method. Moreover, according to Table 5, and
similarly to Experiment I (Section 6.3), the prediction perfor-
mance results (MSE, and CC) are quite similar for all methods.
For the SBS-MLP and proposed methods the selected subsets
are {u4, u6, u2, u5}. Thus, it can be concluded that the variables
{u4, u6, u2, u5} have enough representativeness for the prediction
setting.

6.5. Experiment IV - water treatment plant

In the fourth experiment, the objective is to estimate the flu-
oride concentration in the effluent of a real-world urban wa-
ter treatment plant (WTP). In this plant, the following steps
are taken to treat the water: Pre-treatment, Coagulation, Floc-
culation, Sedimentation, Filtration and Disinfection. A short
summary about the process is given as follows. Raw water is
pre-treated prior to the main processes within the WTP. The
Pre-treatment done in the plant are the algae control, and treat-
ment to remove metals such as manganese and iron, where the
later is done through the addition of chlorine. The Coagula-
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Variable Description
u1 Chlorine in the raw water;
u2 Chlorine in the effluent;
u3 Turbidity in the raw water;
u4 Turbidity in the coagulated water;
u5 Turbidity in the effluent;
u6 pH in the raw water;
u7 pH in the coagulated water;
u8 Ph in the effluent;
u9 Color in the raw water;
u10 Color in the coagulated water;
u11 Color in the effluent;
yd Fluoride in the effluent.

Table 6: Variables of the water treatment plant dataset.

tion and Flocculation stages are designed to help the removal
of dissolved and suspended particles, causing water clarifica-
tion (i.e. removal of turbidity). During Coagulation, chemical
coagulants are added to raw water aiming to neutralize the elec-
trical charges of the fine particles present in the water. After
Coagulation, the water is gentle mixed during the Flocculation
stage, facilitating the agglomeration of fine particles, so gener-
ating flocs which can then be easily removed in the subsequent
stages. The Sedimentation stage prepares the water for effective
filtration, by allowing the flocs to settle by gravity. After sed-
imentation, only small unsettled particles remain in the water,
and are then removed in the Filtration stage. In Filtration, the
suspended particles from water, and micro-organisms in gen-
eral, are removed by passing the water through a filter, such as
sand. As the water passes through the filter, floc and impuri-
ties get stuck in it and the clean water goes through. The clean
water from the Filtration stage is then treated with chloride in
the Desinfection stage. After the last stage, the amount of flu-
oride in the water is determined. The value of concentration
of fluoride in the effluent water is necessary to proceed with
its correction (which is done by adding more fluoride into the
water; this procedure is know as fluoridation).

The fluoride is a normal constituent of natural water samples
and its concentration in the input of WTP, on raw water, is con-
stant. However, during the water treatment process, the con-
centration of fluoride in the water decreases, which is caused
by the cleaning process. The value of fluoride in the effluent
is measured in laboratory once every day, and the objective of
the methodology here proposed is to provide the fluoride con-
centration value at each 2 hours using a soft-sensor. The major
concern about this problem is to know what are the best input
variables and respective delays for the soft sensor. The dataset
of plant variables that is available for learning consists of 11
input variables, U = {u1, . . . , u11}, one target output variable
to be estimated, yd, and 352 exemplars/samples. The variables
correspond to physical values, such as pH, turbidity, color of
the water and others. Table 6 presents further details about the
variables.

The WTP is a long duration process, where the incoming
water (called raw water) goes to the influent point, and it takes
about 24 [h] to reach the effluent point which is the point mea-

Prop. IANN SBS-MLP NMIFS mRMR
MSE 0.0515 0.0612 0.0516 0.0574 0.0568
CC 0.8657 0.8406 0.8708 0.8539 0.8572
Time [s] 2213.3 57.4 42049.1 12.68 10.57
|S | 6 28 5 14 18

Table 7: Performance results of the five methods the WTP test dataset:
MSE, CC, computation time (Time), and number of selected variables,
|S |.
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Figure 5: Error rates on the WTP test dataset, as a function of the
number of top ranked variables used in the prediction model.

surement of the fluoride. The sampling interval for the variables
measured by sensors is 2 [h].

Thus, for the variables which are measured at the point of
raw water influent (u1, u3, u4, u6, u7, u9, and u10 - Table 6),
the possible time-lags must be considered within a range of
18-26 [h]. Let nx( j) be the set of possible time-lags, mea-
sured in time samples, for variable u j ( j = 1, . . . , 11). Then,
nx( j) = {9, 10, 11, 12, 13}, for j = 1, 3, 4, 6, 7, 9, 10. For those
variables measured at the effluent point (u2, u5, u8, and u11),
the possible time-lags are considered to be in a range of 0-8 [h].
Thus, nx( j) = {0, 1, 2, 3, 4}, for j = 2, 5, 8, 11. Then, the size of
the input set becomes equal to |X| = 55.

The five variable selection algorithms were applied and the
results are presented in Table 7. The proposed method and
the SBS-MLP algorithm have both similar results in terms of
prediction performance as measured by the CC and MSE on
the test data set, but the proposed method has a much lower
computatinal time. The worst variable selection algorithm, in
terms of CC and MSE, was the IANN, followed by the NMIFS
and mRMR. Figure 5 shows that both the proposed method and
SBS-MLP converge fast (in terms of the number o top-ranked
variables) to the best solution, while the other methods require
more variables to converge to a solution of similar prediction
performance.

Moreover, with respect to the number of selected variables
and also in the plot of error rates versus the number of top-
ranked variables (Figure 5), it is possible to note the slight dif-
ference between the results of the SBS-MLP and the proposed
method, which contrasts with the results of the previous experi-
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Figure 6: Fluoride prediction for the WTP test dataset. The sampling
interval is 2 [h].

ments. However, this divergence is plausible because of the dif-
ferent number of input variables in the experiments. The Box-
Jenkins and gas mileage data sets have 10 and 6 input variables,
respectively, and the the WTP data set has 55 input variables.
When working with a large number of input variables, as in the
case of the WTP problem, the variable selected to be removed
at each iteration can differ between the proposed method and
the SBS-MLP. This happens because in the SBS-MLP all pa-
rameters of the MLP-TL are readjusted following the gradient
descent learning algorithm, while the proposed method follows
another approach, which is the model adjustement by (9)-(15)
and it is not possible to assure that the both adjustments of the
network (by the gradient descent learning algorithm and by (9)-
(15)) will produce the same parameters.

The set of selected variables in the proposed algorithm, is
composed by 6 variables: S = {u5(k − 3), u3(k − 9), u7(k −
12), u9(k − 12), u1(k − 12), u9(k − 10)}. From Table 6, it is pos-
sible to see that the first two variables selected by the proposed
algorithm, were the turbidity in the effluent and the turbidity in
the coagulated water. These two variables are related with the
quality of cleaning water during the treatment process (by mea-
suring the difference between the turbidity in the effluent and in
the coagulated water, it is possible to observe how effective was
the cleaning process) and some portion of fluoride is retained
during this process. The third and the fourth selected variables
were the pH in the coagulated water and the Color in the raw
water. Both variables, as well as the turbidity in the coagulated
water (the first selected variable), are related to the Coagulation
stage. In the Coagulation stage, the amount of coagulant added
to the water is directly linked to the reduction of the concen-
tration of fluoride in the water. This happens because during
the Coagullation stage, a portion of fluoride sticks in the floc
due to charge neutralization, and is then removed during the
subsequent stages. An interesting fact is that the fifth selected
variable is the amount of Cloride added to the raw water which
seems to contribute to the fluoride reduction during the cleaning
process. The prediction is shown in Figure 6.

7. Conclusion

In this paper a new variable selection algorithm was proposed
and compared with four state-of-the-art methods. In a series of
four experiments, the proposed variable selection method has
been shown to be feasible and effective. It has been shown that
the proposed method has similar prediction performance when
compared to the traditional SBS-MLP based on MLP error al-
gorithm, and has the advantage of having lower computation
cost. The proposed method presents similar or better approxi-
mation performance when compared to the other four methods.
In the experiments, among all the five methods, the proposed
method selects the lowest number of variables to achieve the
best solution. In soft sensors applications, having a lower num-
ber of input variables is a positive factor for decreasing imple-
mentation costs (e.g. lower numbers of hardware sensors and/or
laboratory analysis), or even making the soft sensor feasible at
all.

The proposed methodology is dependent on the information
content on the dataset. Thus, when applying it, it is necessary
to assure that the data set is as representative as possible. An-
other drawback is that it is not possible to assure the causal
relationship among the selected variables. A way to overcome
this limitation is to apply the model with the selected set of vari-
ables and to validate it through the performance analysis phase.
The reliability of the method is increased when the number and
representativeness of the available samples increase. Future di-
rections of this work are to research on the implementation of
the method in a online manner, further increasing the applica-
bility.
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