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Abstract—Automatic recognition of error-related potentials
(ErrPs) requires a long calibration time in order to have enough
error-samples to train the classifier. In this paper we analyze
whether it is possible to reduce the ErrP-calibration time in
a P300-based brain-computer interface (BCI), by calibrating
the BCI with a high rate of errors (wrong detections of user
intent). We analyze if a high error-rate condition still produces
a discriminable ErrP and if its classification model generalizes
well in sessions of different error-rates. Results show that the
classification model built from a high error-rate calibration can
be used successfully on sessions with lower error-rates.

I. INTRODUCTION

Human-machine interaction plays an essential role in many

application domains such as industrial, medical, and entertain-

ment [1]. In all these domains, the interaction systems are

prone to errors, which may be due to low reliability of the

system or due to users’ errors. An electroencephalographic

signal called error-related potential (ErrP) has been identified

in many contexts as a neurophysiological signal associated

to error processing. The ErrP is generated naturally in the

brain when the user perceives that an error has been made by

himself/herself or by the system [2], [3]. It appears within a

time window of 500 ms, and thus its automatic detection could

be used in myriad ways, in real-time, in human-machine inter-

action processes. In the context of brain-computer interfaces

(BCIs), i.e., when BCI is being used as the primary commu-

nication channel, ErrP detection was researched to increase

the reliability and the information transfer rate in P300-based

BCI spellers [4], [5] and in BCIs based on motor-imagery

[6], by eliminating or even correcting errors. ErrPs were also

researched in real-life tasks for monitoring decisions/actions

of systems not controlled by the user [7], [8]. In [7] ErrPs

were used to validate the predictions of a driving assistance

system (selection of a driving direction in intersections) in

a simulated and a real car. In [8], the selections of a robot

were corrected based on ErrPs elicited when a human operator

observed wrong actions of the robot. In [9], ErrPs were used

in a reinforcement-learning loop to change the behavior of an

agent in a simulated environment. Although all these works are

proofs-of-concept, they show the wide range of applications

that could benefit from the automatic recognition of ErrPs. Yet,

this detection is challenging because it has to be obtained from

a single trial and ErrPs have a very low signal-to-noise ratio.

Although many studies detected single-trial ErrPs successfully,

a low recognition accuracy can render this signal useless. For

example, in a P300-based BCI, if the classification accuracy

of the ErrP is lower than that of the P300, it may lead to

a degradation of the performance [10]. In our previous work

[4] we tackled this issue by using a double-ErrP detection ap-

proach, i.e., a primary ErrP is used to detect a wrong selection,

then a correction is proposed, and finally a secondary ErrP

is used to validate the correction. This showed on one hand

the possibility of increasing the performance of the system

mitigating the single trial issue, and on the other hand showed

that ErrPs could be used in a closed loop, increasing the level

of human-machine interaction. The great variability of single-

trial ErrPs poses also difficulties in the generalization of the

classification model across sessions. In [11], authors evaluate

the capability of the ErrP classifier to generalize across two

different recording dates and across different inter-stimulus

intervals (pace at which the stimuli are provided to the par-

ticipants). The results showed that classification performance

decrease in both conditions. Although the average waveform of

the ErrPs is reported to be stable between sessions of different

days, there is still a significant decrease on the classification

rate between sessions, which can reach over 10% [11], [4].

In [4] we made a calibration with an error rate similar to

that expected during online operation, i.e., with an error rate

between 10 and 15%, and then we used this calibration model

in a session of a different day. This calibration was quite long

(about 2 hours) so that a significant number of error-trials

could be gathered to train the classifier. The results of the

validation test, conducted some months after the calibration,

showed a decrease of the classification accuracy that was more

than 10% for some participants, leading to a significant impact

on the online performance of the BCI. Other studies reported

similar calibration approaches using real or sham errors [10]

[12]. Such a long calibration session is suitable if used only

once, but is impractical if used every time the user uses

the system. On the other hand, the number of error-samples

collected during a short calibration may be insufficient to train
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the classifier. One approach is to increase the error-rate during

calibration to gather more error-trials in less time reducing the

calibration time, however it remains uncertain if a calibration

obtained with a high error-rate generalizes well for a situation

of an error-rate substantially lower.

In this paper we analyse whether the ErrPs elicited by a

P300-speller with a high error-rate condition (around 40%) are

still discriminable and classifiable, and whether a classification

model obtained with this condition could generalize to a

scenario in which it is expected an error-rate substantially

lower (around 10-15%). This calibration with high error-rate

would allow a greater amount of error-trials to be gathered in

much less time.

The remainder of this paper is organized as follows: the

materials are presented in Section II, including the P300-based

BCI paradigm with error detection in Subsection II-A, and data

acquisition and detection algorithm in Subsection II-B. The

experimental study and methodology are described in Section

III which includes three Subsections: participants, phases of

experiment and metrics. The experimental results are presented

in Section IV, and conclusions are drawn in Section V.

II. MATERIALS

A. P300-ErrP BCI

Figure 1 shows a generic view of the P300-ErrP BCI

system. The BCI application is a communication speller called

lateral single character (LSC), which was introduced in [13]).

Twenty-eight symbols, including all letters of the alphabet and

the symbols ’space’ and ’del’ flash randomly according to an

oddball paradigm. A target symbol is expected to elicit a P300

event related potential (ERP). Each symbol flashes individually

during 75 ms alternating between left and right sides of the

screen, and with no inter-stimulus interval (ISI). The number

of rounds of each trial (Nrep) was adjusted individually to

each user according to the BCI target error-rate we wanted

to set for calibration or for online operation. The inter-trial

interval (ITI), set to 4 s, accommodated the time for double-

error detection and correction and the time for the user to shift

his/her attention to the next desired symbol. The overall time

for one trial is:

TT = Nrep ×Ns × SOA+ CT + ITI (1)

where Ns = 28 is the number of symbols, SOA = 75ms
is the stimulus onset asynchrony and CT = 1s is the time

associated with the last flash of the trial.

The EEG signals are classified as target or non-target and

the detected symbol is shown to the user. It is expected that an

ErrP is elicited if the system does not recognize the user intent

and a correct ERP is elicited if the system detects it correctly.

If the detected symbol shown to the user elicits an ErrP (1st

ErrP), the system deletes the symbol and replaces it by the

symbol with the second highest P300 classification score. If

this correction elicits a 2nd ErrP, the final classification is

the first detected symbol, otherwise the corrected symbol is

chosen.

B. Data Acquisition and Classification

The electric brain potentials were recorded with a gUSBamp

acquisition system (G.Tec, Inc.). EEG signals were acquired

with electrodes placed at Fz, Cz, C3, C4, CPz, Pz, P3, P4, PO7,

PO8, POz and Oz channels, according to the international

extended 10-20 standard system. An electrode positioned on

the right ear lobe was used as reference and the AFz electrode

was used as ground. The signals were acquired at 256 Hz and

filtered using a band-pass filter between 1 and 10 Hz and a

notch filter at 50 Hz.

P300 and ErrP classifiers share the same classification

framework, which was the same used in [4]. After prepro-

cessing, the EEG signal is segmented into 1 s epochs, EN×T ,

where N is the number of channels and T is the number

of time samples. The features are extracted using a statistical

spatial filter based on a Fisher criterion beamformer (SF-FCB)

[15]. The EEG epochs EN×T are projected into Y = W ′E,

where W is the optimal filter obtained from calibration phase,

and ′ represents the transpose operator. Then, the features are

classified using a Bayes classifier. The target symbol is the one

with the highest classification score and the corrected target is

the symbol with the second highest classification score (see a

simplified representation of the classification pipeline in Fig.

1).

III. EXPERIMENTAL STUDY AND METHODOLOGY

A. Participants

The experiments were carried out by five healthy partici-

pants (3 males, 2 females with age ranging 25-33 years old).

All participants signed an informed consent to participate in

the study. These participants took part also in the study in

[4]. Since there is a direct comparison of the results of that

study with the present study, we kept the same identification

of the participants, namely, S1, S2, S3, S5 and S6. During the

experiments, participants sat in front of a computer screen at

a distance of around 70 cm. They were asked to focus on the

target stimulus and ignore the remaining standard events, while

mentally counting the times that the target flashes, helping to

increase their attention level. Participants were instructed to be

aware of the detected symbol to realize if it was the desired

symbol. They were also informed that an automatic correction

or re-correction could occur.

B. Calibrations and Online Session

The integration of error detection in the P300 speller re-

quires two calibrations (calibration of the P300 classifier and

calibration of the ErrP classifier). Therefore, the experiment

consisted of three phases: P300 calibration, error-detector cal-

ibration and online session with error detection and correction.

1) Calibration of P300-classifier: In this calibration we

gathered the EEG data associated with target and standard

events to train the models of the P300 classifier, which

was used as the primary communication channel. The P300

calibration phase took about 5 minutes collecting 90 target

epochs and 2430 non-target epochs.
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Fig. 1. Schematic representation of the P300-ErrP BCI system. User focuses on the target letter of the P300-LSC speller. The EEG signal is acquired and
pre-processed, and the target event is detected with the P300 detector. The detected letter is shown to the user and the ErrP-detector evaluates whether an error
has occurred. If an ErrP is detected, the letter with the second highest classification score is shown to the user and the ErrP-detector checks for a possible
error again. If the system detects an ErrP, the final classification is the initial detected letter, otherwise the corrected letter is selected (see a demonstrative
video in [14]).

TABLE I
ERRP TRAINING AND VALIDATION DATASETS USED IN THE PRESENT

STUDY (CALIBRATION1 AND TEST1) AND IN OUR PREVIOUS STUDY [4]
(CALIBRATION2 AND TEST2).

Calibration1 Test1 Calibration2 [4] Test2 [4]
Error-rate ∼ 40% ∼ 15% ∼ 20% ∼ 15%
Duration 10 min 1 hour 2 hours 1 hour
Nrep(P300) 2 4.6 4.2 6

2) Calibration of Error-detector: Calibration1 - In this

calibration procedure, participants spelled two 32-letter sen-

tences (64 characters) without correction. It served to gather

a dataset associated with positive and negative feedback re-

sponses. In order to obtain a high rate of wrong detections,

the P300-LSC speller was set-up with a small number of

stimuli rounds, namely Nrep = 2. The calibration took about

10 minutes, which included on average 26.4 wrong samples

with a mean error-rate of 41.3%. The number of errors ranged

between 21 and 40.

Calibration2 - Refers to the dataset of the error-detector

calibration obtained in our previous study [4] that will be

used for comparison (see Table I). The calibration lasted about

two hours with a number of rounds averaging 4.2, yielding an

error-rate of 18.7% (the number of errors ranged between 31

and 75).

3) Online Session: Test1 - This session used the clas-

sification models obtained in the calibration of the P300-

classifier and in Calibration1. Participants were asked to

spell the Portuguese sentence ”ESTOU-A-ESCREVER-COM-

UMA-INTERFACE-BCI” several times during approximately

one hour. At the end of each sentence the participants rested

two minutes. The time that each participant took to write

the sentence depended on the number of event repetitions.

Nrep was settled individually for each user to reach ≈ 90%
accuracy (based on the outcome of the calibration of the P300-

classifier). The BCI system performed the automatic double-

error detection and correction as described previously.

Test2 - Refers to the online session of our previous study

[4], using the exact same conditions of Test1. The classifica-

tion model was built from Calibration2.

C. Metrics

To evaluate the offline and online performance of the P300-

ErrP BCI (Fig. 1), we computed the sensitivity (Sens), speci-

ficity (Spec), accuracy (Acc) and balanced accuracy metrics,

which are defined as Sens = TP
(TP+FN) , Spec = TN

TN+FP ,

Acc = TP+TN
FN+TN+FP+TP and balancedAcc = Sens+Spec

2 ,

where TP, TN, FN and FP refer to the number of true positives,

true negatives, false negatives and false positives, respectively.

The balanced accuracy is used in offline analysis to ensure that

the results are not biased by imbalanced classes.

IV. RESULTS AND DISCUSSION

A. Evoked Potentials Morphology

Fig. 2 compares the grand averages of potentials elicited by

wrong and correct feedback in channels Fz and Cz for 40%

error-rate (Calibration1) and for 15% error-rate (Test1). The

ErrP of Calibration1 has different waveforms of the ErrP of

Test1 (Pearson’s correlation coefficient r = 0.64 for both

channels). The higher error-rate condition produced an ErrP

with lower amplitude. This is consistent with other studies [9],

which also reported a decrease of amplitude for higher error-

rates, but here we also found changes in ErrP morphology,

namely, the second positive peak of the ErrP elicited by the

40% error-rate condition had a lower latency (less than 80 and

90 ms for channels Fz and Cz, respectively). This resulted

in an ErrP waveform very similar to the correct ERP signal

(Pearson’s correlation coefficient r = 0.92 and r = 0.87
for channel Fz and Cz respectively), which makes uncertain

the possibility of a successful classification. This result may

suggest an habituation effect that might reduce the impact of

errors. On the other hand, for the lower error-rate condition

the waveforms are clearly discriminable. There is also a

consistency of the characteristics of the grand average of the

1st ErrP and correct ERP in regard to those exhibited in Test2
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Fig. 2. Grand average of evoked potentials after positive and negative feedback. a) and b) ERPs produced during the calibration of the ErrP detector with
an error-rate of 40% for the channels Fz and Cz respectively. 1st ErrP (c and d) and 2nd ErrP (e and f ) and ERP after correct feedback during the online
session with error-rate of ∼ 15% for the channels Fz and Cz respectively.
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Fig. 3. Grand average of the 1st projection of the FCB spatial filter, using
the EEG data of Calibration1 (dashed line) and Test1 (solid line).

(performed 22 months before). This stability across sessions

was also reported in other studies [9], [11]. Nevertheless, this

waveform similarity did not avoid a significant performance

decay between calibration and test sessions, as reported in

[11], [4]. The 2nd ErrP had a morphology different of the one

obtained in [4]. We hypothesize that this may be related to the

different information we provided to the participants. While

in [4] it was not explained what the double-error correction

algorithm was doing, in the present study the participants were

explained that if the corrected letter elicited a 2nd ErrP, the

first detected letter would be chosen as target letter. Therefore,

letters corrected wrongly, owing to false positives, may have

been less important to participants because they expected the

correct letters would be re-selected.

B. Offline Classification Accuracy

Table II shows for each participant the error-rate, the total

number of errors and the balanced accuracy of the 1st error-

detector obtained in Calibration1. For a direct comparison,
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Fig. 4. Linear regression between offline ErrP classification accuracy and
number of errors (top) and error-rate (bottom), using datasets of error-detector
training collected in the present and previous study [4].

we show the results for the same five subjects who partic-

ipated in [4] (Calibration2). For Calibration1, Nrep was

2 on average, which yielded an average error-rate of 41.3%.

However, participant S6 had a significantly higher error-rate

(around 60%), i.e., more wrong samples than correct samples.
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TABLE II
OFFLINE RESULTS OBTAINED FROM ERRP-CALIBRATION IN Calibration1 (∼ 40% ERROR-RATE) AND IN Calibration2 (∼ 20% ERROR-RATE).

BALANCED ACCURACY WAS OBTAINED FROM 10-FOLD CROSS VALIDATION.

ErrP Calibration1 (error rate of ∼ 40%) ErrP Calibration2 (error rate of ∼ 20%)
Subjects Error-rate

(%)
Number
of errors

Acc-ErrP1
(%)

Error-rate
(%)

Number
of errors

Acc-ErrP1
(%)

Acc-ErrP1 (%) (using
half of error-samples)

S1 39.1 25.0 82.9 28.2 75.0 89.5 87.2
S2 32.8 21.0 72.8 14.5 55.0 93.9 86.6
S3 34.4 22.0 100.0 14.5 66.0 96.6 90.4
S5 40.6 26.0 81.9 24.8 66.0 87.4 70.8
S6 59.4 38.0 78.6 11.7 31.0 85.6 77.9

Mean 41.3 26.4 83.2 18.7 58.6 90.6 82.6

The mean value of the balanced accuracy of the ErrP detector

(obtained using 10-fold cross-validation) was 83.2%. Despite

the high similarity between positive and negative feedback for

the high error-rate condition, the accuracy of the classification

was still high. Plotting the projection of the FCB spatial filter

(Fig. 3) we observe that the spatial filter was able to maximize

the discrimination of the features of the two classes, approach-

ing the projection obtained with the lower error-rate condition,

which explains the good accuracy. For Calibration2 the bal-

anced accuracy of the ErrP detector was 90.6%. The average

result of the ErrP-detector in Calibration1 was 7.4% lower,

but the number of error-samples used for training was less than

half of that of Calibration2, which influenced the classifier

training. To verify whether this difference in classification

accuracy is related to the high error-rate condition or it is

due to the lack of error samples, we computed the results

that would be achieved in Calibration2 if only half of the

calibration dataset would have been used, which yielded an

accuracy of 82.6%. Thus, for a similar number of errors, the

two conditions have similar performance (around 83%). This

suggests that the ErrP classifier is not strongly affected by

the error-rate, but mainly by the number of training samples.

Additionally, the FCB spatial filter seems to have an important

contribution to confer robustness to changes of the ErrP

waveforms between the two error-rate conditions. Authors in

[11] also highlighted the influence of spatial filtering in the

classification accuracy across conditions.

To further analyze whether there is a direct correlation

between ErrP accuracy, error-rate and number of error-

samples we made a regression analysis, using data from

Calibration1 and Calibration2 (Fig. 4). Joining the datasets

of Calibration1 and Calibration2, we observe a linear

relationship between ErrP accuracy and the number of error-

samples (regression coefficient is 0.13), however we stress

that this result is not statistically significant (t-test, p =
0.22). For the regression between ErrP accuracy and error-

rate we analyzed the datasets separately. There is a negative

relationship (coefficients of −0.24 and −0.27 respectively

for Calibration1 and Calibration2), but the result is not

statistically significant (t-test, p = 0.68 and p = 0.19
respectively). A two-way ANOVA was also performed to

evaluate the combined effect of error-rate and number of error-

samples in the classification performance. The p-value of 0.28

(F = 1.32) showed that the combination of these variables is

TABLE III
ONLINE CLASSIFICATION RESULTS IN Test1 USING THE CLASSIFICATION

MODEL FROM Calibration1 AND ACCURACY OF 1ST ERRP OBTAINED IN

Test2 [4].

Pre-Acc
(Test1)

Post-
Acc
(Test1)

Acc-
ErrP1
(Test1)

Acc-
ErrP2
(Test1)

Acc-
ErrP1
(Test2)

Nrep

S1 79,6 90,5 91,4 75,0 90,8 5,0
S2 87,4 90,5 93,2 100,0 96,3 4,0
S3 90,5 94,7 99,5 89,5 89,5 3,0
S5 82,2 77,0 74,3 52,3 92,1 6,0
S6 87,4 90,5 75,7 85,7 76,3 5,0

Mean 85,4 88,7 86,8 80,5 89,0 4,6

not statistically significant. Despite the inconclusive analysis,

the results point to the need for more error-samples for

training, which could be obtained by increasing the duration

of the calibration or pushing the error-rate to 50%, achieving a

balanced number of samples with correct and wrong responses.

C. Online Classification Accuracy

Table III presents the online BCI results obtained in Test1
using the classification model from Calibration1. The online

average classification accuracy of the 1st ErrP was 86.8%

(error-rate of 14.6%), i.e., 3.6% higher than the one obtained

from cross-validation in Calibration1 (error-rate of 41.3%).

This result showed that the calibration model obtained for

the higher error-rate generalized well for the lower error-

rate condition, the main hypothesis that we wanted to verify.

Comparing the average accuracy achieved in Test2 (89.0%)

there was only a small performance loss (2.2%).

Regarding the 2nd ErrP (ErrP evoked when the automatic

correction is wrong), the ErrP classification dropped to 80.5%.

The classification of the 2nd ErrP uses the model trained with

the responses of the 1st ErrP. This shows that the classification

model of the 1st ErrP does not generalize well to the 2nd ErrP.

This was also identified in [4], which consistently shows that

the characteristics of the 1st and 2nd ErrPs are different.

D. Analysis of Automatic Error Correction

The classification accuracy before the automatic error cor-

rection was 85.4%, and increased 3.2% after automatic error

correction. However, the enhancement is not statistically sig-

nificant (paired t-test, p = 0.14). Participant S1 had the greatest

improvement, about 10%. On the other hand, participant S5

had a worse classification accuracy after correction. The 2nd
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Fig. 5. Improvement after automatic error correction for each participant
using datasets of present and previous study [4].

ErrP is effective in reducing the number of false positives by

correcting the correct targets that are detected as errors in the

1st error-detector, however when the classification accuracy

of the 2nd ErrP-detector is poor, the performance decreases

(which was the case of this participant).

To analyze the relationship between the number of errors

obtained in the calibration of the error-detector and the online

improvement after automatic error correction, we grouped the

data in three categories (Fig. 5): poor performance (the final

classification accuracy is equal or lower than initial accuracy),

medium performance (improvement less than 5%) and good

performance (improvement greater than 5%). Averaging the

number of errors got in Calibration1 and Calibration2
for participants of each category, the mean number of errors

for poor, medium and high performance was 28.5, 51.3 and

56.8 respectively. This result may suggest that a calibration

phase with at least 50 error-samples could always produce

an improvement after error correction. However, it should be

noted that the improvement also depends on the correction

rate, i.e., the ability of replacing a wrong symbol by the correct

one.

V. CONCLUSION

In this paper, we evaluated the generalization of the ErrP

classifier over different error-rates. The online ErrP accuracy

(trained with high error-rate and tested with low error-rate)

was higher than the offline ErrP accuracy (trained and tested

with high error-rate). This result is indicative that classification

model built from a calibration with high error-rate generalizes

to conditions with lower error-rates. Nevertheless, the classifi-

cation is still affected by the low number of samples gathered

during training. The results show that the FCB spatial filter

makes the ErrP features almost stable over different error-rates.
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