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Abstract— This paper presents a new collaborative approach
for robot motion planning of an assistive robotic platform
that takes into account the intentions of the user provided
through Electrooculographic (EOG) signals, as well as obstacles
surrounding the robotic platform. In order to increase human
confidence in the operation of robotic platforms with some
degree of navigational autonomy, the intent of the user must
be included in the decision process. In our system, the human-
robot interface works through ocular movements (saccades and
blinks), which are acquired as EOG signals and classified using
a Convolutional Neural Network. In our proposed approach,
a model-free Reinforcement Learning (RL) layer is used to
provide commands to a virtual robotic platform. The RL layer is
constantly being updated with the inputs from the user’s intent,
environment perception and previous machine-based decisions.
In order to prevent collisions, machine-based perception using
the proposed RL motion planning approach will assist the user
by selecting suitable actions while learning from prior driving
behaviors. The approach was validated by a set of tests that
consisted of driving a robotic platform in an in-house 3D virtual
model of our Research Center (ISR-UC). The experimental
results show a better performance of the proposed approach
with RL when compared to the version without the RL-based
motion planning component. Results show that the approach is
a promising step in the concept put forward for collaborative
Human-Robotic Interaction (HRI), and opens a path for future
research.

I. INTRODUCTION

In the last decade, there have been significant advance-
ments in the development of robotic interfaces intended for
the still incipient field of assistive robotics. From a utility and
usability point-of-view, Human-Machine Interfaces (HMIs)
must be capable of instilling in the user a sense of confidence
when being used. The robot’s reliable performance is the
most important element when building a user’s trust in the
machine [1]. This is a particularly important aspect when
developing navigational aids for motor-impaired users. In
this work an RL-based navigation paradigm is proposed,
with user EOG-based commands (no movement, leftward
movement, rightward movement and single or double blink),
which can be the basis for the implementation of different
collaborative human-robot navigation approaches featuring
learning capacity. Having in view the need to mitigate the
apprehension with which the mobility aids – both motorized
and non-motorized – are often seen by their users [2], it
becomes necessary to equip the devices with human-oriented
modes supporting reliable, safe and smooth navigation. To
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accomplish this goal, in this paper we propose an RL-
based approach, aided by an EOG-based HMI in which the
user’s ocular movements contribute to navigating the plat-
form around an indoor environment. The RL approach was
implemented in a virtual environment so that its premises
could be safely tested, validated, and compared to the results
that an equivalent platform would obtain without the RL
component.

We research whether it is possible to build a robotic
navigation paradigm that benefits from model-free training,
by taking into account the user intent, to overcome difficult
navigation situations and penalize collisions and dead-ends,
and compare it to an EOG-only navigation paradigm. Our
approach to robotic navigation has the potential to increase
trust of human users on robotic platforms, a particularly
relevant topic in assistive robotics as it enhances adherence
of potential users to robotic interfaces whose purpose is to
assist aged or impaired people.

The remainder of the paper is organized as follows.
Section II refers to related work, and the structure and
modules of the proposed approach are detailed in Section
III. In Section IV we present the virtual environment, the
experimental results, and respective discussion. Final con-
clusions are drawn in Section V.

II. RELATED WORK

A. EOG for HMIs

Electrooculography (EOG) signals have been mostly used
to perform activity recognition of users [3], [4], but over
the last few years interest has grown on the use of EOG in
Human-Machine Interfaces (HMIs), in particular for physi-
cally impaired people. EOG has been used as a single input in
wheelchair navigation [5], [6], [7], or in multimodal naviga-
tional paradigms employing two or more biosignals sources
to control the wheelchair, either in a hybrid setting [8] or as
one of a multiplicity of alternatives [9]. Similar to wheelchair
guidance, EOG has also been used to aid human navigation.
For example, in [10] it was used to provide six low-level
navigational commands that were tested for navigational
purposes in a virtual environment. To some extent, EOG-
based implementations intended for navigational purposes
can also be applied to games which, albeit simple, can be
made intuitive enough to be successfully played by users
without any experience in the use of EOG-based HMIs [11].

For the purpose of this work we employed a Convolutional
Neural Network (CNN) for decision upon transformed EOG
inputs. CNNs have seen exponential growth in their usage
since 2012, but have remained mostly confined to image



recognition [12], [13], with some recent applications in
facial recognition [14]. Their use in biosignal-based Human-
Computer Interfaces (HCIs) is still limited, although some
examples combining CNNs with EOG signals can already
be found [15], [16].

B. Reinforcement Learning in HMIs

The use of RL in the context of HMIs has become
steadily more prevalent over the last few years. This has
happened because RL is a fitting method for dealing with the
unpredictability that comes when introducing a human factor
into the context of machine learning. This factor, in turn, is
compounded by the rise of collaborative robotics in which
Human-Robot Interaction (HRI) is becoming more and more
mainstream [17]. An example of a human-robot collabora-
tive RL-based algorithm is proposed in [18]. The learning
algorithm empowers the robot to adaptably switch its col-
laboration mode from autonomous to semi-autonomous.

Another example of the use of RL in an HRI can be
seen in [19], where an RL-based robot-assisted navigation is
implemented for a robotic walker taking into account both
environmental data and user intent in the decision-making
process.

III. PROPOSED APPROACH

In this Section we provide an overview of the systems that
were used in this work, and describe our novel collaborative
approach for robotic platform operation. In this context, we
also describe the subsidiary systems whose development was
necessary to arrive at a proof-of-concept situation.

A. System Overview

The system is composed of three major modules: the EOG
acquisition and classification module, the virtual environment
on which the platform moves, and the Reinforcement Learn-
ing robot motion planning method used to fuse input data
from three different sources in order to output a valid motion
command. An overview of the proposed system pipeline is
presented in Fig. 1.

B. EOG classification

1) Ocular event definition: Since EOG-based classifica-
tion decisions are one of the input types to the motion
planning method, and the sole source of human interaction
with the robotic platform, we divided ocular movements into
four distinct classes: a “Null” event comprised of either no
ocular movement or small leftward and rightward movements
(E = 0), a leftward movement (E = 1), a rightward movement
(E = 2), a single or a double blink (E = 3). Respectively,
they will signal the user’s intention for the platform to keep
moving forward, to turn left or right, and stop (or resume
moving if the platform was stopped). A stronger behavior of
the platform towards user intent can be attained when the
same event is repeated successively several times (through
repeated EOG commands). The algorithm to obtain the user’s
intent from the EOG events is presented in Algorithm 1.

2) Neural network architecture, training and validation:
For the EOG-based image classification that takes place in
this work we implemented a CNN with three convolutional
layers and four fully connected layers, with a Rectified
Linear Unit (ReLU) following each layer. The architecture
of this CNN is shown in Fig. 2. We used a cross-entropy
loss function to train it and the Adam optimizer [20]. The
training dataset consists of 3200 EOG images, collected from
the calibration phases of several independent experimental
trials conducted in our laboratory employing EOG as one of
the biosignal inputs [11]. Images produced for the dataset
were expert-labelled into one of the four classes. We used
a workstation equipped with an Intel® Core™ i7-5930K
processor, 64GB of memory and a NVIDIA’s GeForce GTX
1080 graphics card.

C. Reinforcement Learning Robot Motion Planning

The platform’s simulated 3D point cloud is its only
source of information from the surrounding environment.
To produce a viable command for the robotic platform,
this information is combined both with decisions based on
the ocular movements (or lack thereof), acquired via EOG
signals, and with the robot’s estimated pose in the virtual
environment.

The proposed approach, using RL, aims to learn patterns
(represented by states) between the local environment repre-
sentation (M) and the user’s intended motion. The proposed
RL approach is divided in two stages: an offline learning
stage and an online decision stage. The RL model has three
inputs: a 3D point cloud, the pose of the robotic platform and
the user’s intention. The proposed RL model follows a divide
and conquer approach commonly used in optimization tasks,
in which a global problem is subdivided in smaller tasks that
later will contribute to attain the final solution.

The consequences of both EOG-based commands and ob-
stacle detection-based actions will impact the Reinforcement
Learning method. Our method is a model-free Q-learning
method employing state-based penalties and rewards. At each
moment, states are determined based on the proximity and
position of obstacles relative to the platform. State update
rules are defined by both the local representation and the
user’s intention, and are subject to the consequences of
previous actions (e.g., actions taken with or without assisted
navigation).

After each command is issued to the platform, an evalua-
tion of its effects on the platform’s final state is executed, and
a reward is calculated. The complete information pipeline,
from EOG-based decisions to final evaluation in the context
of Q-learning, is shown in Fig. 1. The proposed RL model
is composed by multiple submodels (kernels) that compute
local RL models from patches of the Obstacle cost map
(RLsubmodels). Those models are evaluated in order to
obtain an action that the platform will perform, where the
action is given by the consensus of all the submodels.

The learning stage occurs offline (in the sense that it
does not require a user to provide commands or move the
platform) and creates an initial RL model that will provide
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Fig. 1. Data processing of the navigation system approach encompassing both human and machine-based inputs. Note that effects of each command
issued to the platform can only be evaluated in the following time step, and that most of the EOG inputs occurring will belong to the “Null” class of
ocular events, such that human input will only produce an effect when the user deems it actually necessary.
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Fig. 2. Architecture of the CNN used in this work. It is composed of two convolutional layers and three fully connected layers.
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Fig. 3. Pipeline of the decision process showing the three different inputs of the RL model: user intent, point cloud, and robot pose. The obstacle cost
map is merged with the local map and each of the RL submodels (kernels) compute a preferred action taking into account all three inputs; the most voted
action is chosen to actuate the robotic platform. The RL state, for each kernel, is represented by a frame with 49 bits allocated to obstacle data from the
7 × 7 submodel and 8 bits dedicated to user intent information.

initial actions for the robotic platform to follow. The first
step in the learning stage is to update the current local
environment representation (LocalMapUpdate) with the 3D
point cloud. In this work we consider a 2D occupancy grid
representation, and for that reason, the ground points from
the 3D point cloud are removed and the occupancy cells
are updated by the remaining points, projected in the XY
plane. The following step provides a memory-like model
(MRL) by merging the local map with a modified obstacle
map (RLMapUpdate). A decay is applied to each cell in
MRL and the occupied cells in M are projected to the new grid
with an inflation radius. A reward is computed (GetReward)
considering the nearest obstacle, the user’s requested intent
and previous action command. A new intent (EV 0 through

EV 3) is computed from the last EOG event (E) and the
previous estimated intent (UpdateIntent). The EOG event 3
(EV 3) updates the linear speed while the other events update
the angular speed. Since events are computed at 4Hz, a buffer
window of 1s is used to aid the update of user intent. A left or
right EOG event is in most cases provided sequentially (e.g.,
users tend to move the eyes to the left side of the screen and
then return to the middle) and need to be carefully processed
in order to provide an accurate representation of an user’s
intent. The proposed method is presented in Algorithm 1.

The last action is obtained by analyzing the data from a
user driving a robotic platform and by exploring the possible
actions in each scenario. For each submodel in the set KRL
the state is computed and the internal Q-Matrix is updated.



Algorithm 1: Buffer-based user intent update
(UpdateIntent).

Input: Event window (BE )
EOG event (E)
linear and angular velocities (v,w)
angular update (∆w)

1 Initialization:
2 BE ← 01xN ;
3
4 Update Rules:
5 if EV 3 6∈ BE then
6 if E = 3 then
7 w ← 0;

8 v ←
{

0 , If v = vmax
vmax , If v = 0 ;

9 if EV 1 ∈ BE then
10 if E = 1 then
11 BE ← BE

⋃
E;

12 else

13 BE ← BE
⋃ {EV 3 , If E = 3

EV 0 ,otherwise

14 else if EV 2 ∈ BE then
15 if E = 2 then
16 BE ← BE

⋃
E;

17 else

18 BE ← BE
⋃ {EV 3 , If E = 3

EV 0 ,otherwise ;

19 else
20 if E = 1 then
21 w ← w+∆w;

22 else if E = 2 then
23 w ← w−∆w;

24 else
25 w ← 0;

26 BE ← BE
⋃

E;

27 BE ← BE \ BE (1);
Output: uuser ← (u,w)

The online decision stage initially follows a similar ap-
proach as in the learning stage. Instead of relying on
the user’s actions, this stage relies on the previous action
provided by the RL model. After the model’s update, an
histogram is computed with all the decisions of the sub-
models. For a state not observed in the training stage or for
a maximum Q-value action that has a negative Q-value a
special empty action is accumulated in the histogram (−1).
The output action is given by the most voted action by all the
submodels; a threshold can be added in this step to guarantee
a certain degree of confidence in the final decision. If the
selected action corresponds to the empty action, a DWA-
like procedure [19] with a modified cost function is applied
to compute an acceptable command that complies with the
user’s request and avoids the nearest obstacles. The DWA-
like cost function is defined as follows:

cDWA(M,uuser,u)) = Nt |uuser−u|+KO

Nt

∑
i=1

1
di(M)

(1)

where Nt is the number of lookahead steps in the DWA, u

Algorithm 2: RL-RMP - Q-Learning inspired local
robot motion planning.

Input: Local Environment Model (M)
Pose (x̂R)
3D Point cloud (P)
EOG event (E)

1 Initialization:
2 KRL ← RLsubmodels(size(M)),MRL ← /0,uuser ← (0,0),ucmd ← (0,0);
3 SA ← ActionCommands(wb)
4 Learning Loop:
5 M ← LocalMapUpdate(M,P,x̂R);
6 MRL ← RLMapUpdate(M,MRL);
7 R ← GetReward(M,uuser ,ucmd );
8 uuser ← UpdateIntent(E,uuser);
9 a ← getLastAction();

10 foreach k ∈ KRL do
11 s ← GetState(MRL,uuser);
12 kQ(ks,a) ← kQ(ks,a)+α(R+maxA′ (kQ(s, :))− kQ(ks,a));
13 ks ← s;

14 ucmd ← uuser
15
16 Decision (with update):
17 M ← LocalMapUpdate(M,P,x̂R);
18 MRL ← RLMapUpdate(M,MRL);
19 R ← GetReward(M,uuser ,ucmd );
20 uuser ← UpdateIntent(E,uuser);
21 foreach k ∈ KRL do
22 s ← GetState(MRL,uuser);
23 kQ(ks,ka) ← kQ(ks,ka)+α(R+maxA′ (kQ(s, :))− kQ(ks,ka));
24 ks ← s;

25 D ← 0(|A|×|1|);
26 foreach k ∈ KRL do
27 a ← argmax

ai∈A
kQ(ks,ai);

28 D(a) ← D(a) + 1;

29 a ← argmax
ai∈A

(Histogram(D(ai)));

30 if a = −1 then
31 a,ucmd ← DWA(M,uuser);

32 else
33 ucmd ← SA(a)

34 foreach k ∈ KRL do
35 ka ← a;

Output: a,ucmd

the control command associated with a given action, di the
distance at step i to the nearest obstacle and KO a weight.

The proposed RL approach is shown in Algorithm 2.
1) States: The RL state encodes the environment repre-

sentation as well as the user’s intended action. The definition
of the RL state must be made carefully, as in this particular
application, the use of a large kernel window may result
in an overwhelmingly large number of possible states; this
would make it prohibitive in terms of memory, for example,
if all possible states have a representation. For a 7× 7 RL
kernel, the number of possible obstacles’ combinations is
5.63× 1014. This would be a concern if all combinations
where equally possible; however, some combinations will
never occur in online applications. The use of the obstacles
in the RL state would only allow the generation of an almost
random avoidance model where the actions would be selected
in order to avoid collisions. In order to generate a model
that is able to select an action that is according to the
perceived user’s action a representation of that intention must



be present in the RL state definition. In order to incorporate
the user’s EOG-based request, the user’s intent is discretized
into a total of 256 possible orientations. Each RL state for
each submodel has the format shown in Fig. 3.

2) Actions: The actions are defined based on the limits
imposed on the angular speed of the robotic platform. In
the specific application of this study, the linear speed of the
robotic platform will be small (± 0.1m/s) and only two linear
motion states are allowed (considering the CNN output, the
double blinking event – EV 3 – will pause or unpause the
platform). The linear and angular speeds are computed from
the selected action. The linear component is taken from the
double blinking event while the angular speed is selected
from a discretized set of previously defined angular speed
values (ActionCommands) that respect the designed angular
speed limits of the platform (wb). The number of elements
in the set of angular speed values is the same as the number
of actions.

3) Rewards: To assess the reward for a performed motion,
two metrics are evaluated: distance to the nearest obsta-
cles and the existence of a major discrepancy between the
computed command (ucmd) and the user’s intended motion
(uuser). Depending on the scenario, the two metrics may be
conflicting (e.g., the user may try to go towards an obstacle)
and in order to avoid ambiguous rewards, the final reward
(R) is given by the minimum reward for the two metrics,

R=min

Ko−Kle
−
(

(xo−xc)2

2σ2x
+

(yo−yc)2

2σ2y

)
︸ ︷︷ ︸

Nearest Obstacle

,Ku + e
−
(
|ucmd−uuser |

σu

)2

︸ ︷︷ ︸
Error to Request


(2)

where (xo,yo) are the coordinates of the nearest obstacle,
(xc,yc) are the coordinates of the robotic platform in the local
map and σx, σy and σu are metric-specific parameters. Kl , Ko
and Ku are bias constants employed to modify the reward.

IV. RESULTS AND DISCUSSION

A. Virtual Environment

Validation tests were conducted in a virtual environment.
The virtual model “driven” by the user simulates a differ-
ential drive robotic platform, which is inspired in a real
platform in continuous development at ISR-UC [21]. Its
environmental perception module is informed by a virtual
LIDAR-like 3D point cloud that is generated through ray-
tracing. This point cloud can have up to 4000 points.

Figure 4 shows a view, as seen by a user of the robotic
platform navigating in the virtual environment, which repre-
sents a full-scale model of the first floor of ISR-UC.

B. System architecture and physical setup

We used 67% of the dataset described in Section III-B.2
for training and 33% for validation. The dataset was divided
into batches of 100 events and optimized over 200 epochs,
with a final accuracy of 93.73% in cross-validation. The
confusion matrix is shown in Table I.

We acquire EOG channels using a g.tec g.USBamp biosig-
nal amplifier connected to a Matlab/Simulink-based PC in-
terface. Horizontal and vertical EOG signals acquired from

TABLE I
CROSS-VALIDATION RESULTS OF CNN TRAINING FOR THE

CLASSIFICATION OF EOG EVENTS.

Target class
0 1 2 3 Precision

Output
class

0 416 13 9 10 92.9%
1 12 222 0 0 94.9%
2 10 0 244 0 96.1%
3 11 0 1 106 89.8%

TABLE II
VALIDATION PARAMETERS.

Parameter Value Parameter Value Parameter Value

Ko 0.5 KO 0.05 vmax 0.1
Kl -1 (xc,yc) (0,0) α 0.5
σx 0.4 σy 0.3 Nt 20
Ku -0.5 σu 0.3 ∆w 0.1
wb [-0.5, 0.5] − - − -

bipolar facial electrodes are converted into a single intensity
map constructed as an RGB matrix, which is encoded into
an image. One new image is sent to the CNN every 0.25s
using a TCP/IP connection. Each decision of the CNN model
serves as input to Algorithm 1, where it is converted into
a user intent command. The user intent command is applied
on the virtual robotic platform, so that this method can be
generalized for human collaboration on any type of mobile
robotic platform. Table II presents the parameters used during
the validation process with the proposed approach.

C. Test scenario and metrics

The virtual environment that was constructed for the
validation tests is shown in Fig. 5; the built-up area is a
model of the first floor of the ISR-UC building. The virtual
test area consists of a rendering of part of the ISR-UC HCMR
lab, where the work was developed, the corridor around it,
and the corridor leading to the entrance to a second room,
where the endpoint of the test path lies. Two test modalities
were conducted:
• Scenario 1 – Direct control of the robotic platform using

EOG events (user’s intent).
• Scenario 2 – Human-robot collaboration, with EOG

input and RL model.
Both scenarios were performed by four volunteers, and

the geometric paths of each volunteer’s run with and without
the RL robot motion planning are presented in Fig. 5. For
each test performed by each volunteer, we recorded the path
followed by the platform, as well as the user intent and
the control commands sent to the platform. We also present
in Fig. 6 the occurrences in which human and machine
commands were conditioned by the Q-learning method, and
how long did it take for the platform to complete the assigned
course. An initial training of the RL model was performed
prior to the tests, with a virtual joystick, in order to initialize
the model, with good and bad examples of motion behaviours
performed during this training.



Fig. 4. Snapshots from the virtual environment from the user’s point of view. From left to right: HCMR lab; corridor; ISR-UC hall entrance with
overlapping picture of a volunteer with the EOG acquisition physical setup, and corridor with overlapped 3D point cloud.

EOG only
EOG and RL A

B

Fig. 5. Top view of the virtual environment used in the tests, showing an at scale representation of the ground floor of ISR–Coimbra and the obtained
results for both scenarios performed by four volunteers. A and B squares mark the start and end points of the test path (in red and green respectively). In
red the EOG-only geometric paths (Scenario 1) and in green the geometric paths where the RL was enabled (Scenario 2).

The results presented in Fig. 6 show that it was possible
for the volunteers to execute the requested task in the two
scenarios. However, for the proposed method the obtained
geometric paths present a smoother shape and were more
quickly completed (see Fig. 6). The volunteers struggled
with the door entrances, where aligning the platform in order
to avoid collisions was hard and led to multiple in-place
adjustments. Although the behaviour of the CNN model
is not directly evaluated in these scenarios, the proposed
pipeline successfully provided events that were accurate
classifications of user intent. The challenges observed by the
volunteers were heavily related to the environment structure.
For volunteers, the dependability of the robotic platform
depends mainly on the smoothness of the navigation it
provides, which means its effectiveness will increase with
the proposed robotic navigation paradigm.

One of the volunteers was asked to perform two runs with
the proposed RL approach. For the second run, the RL model
that was updated during the previous run was used. The three
runs for the two scenarios (with linear and angular speeds)
are shown in Fig. 6. The obtained results show that using
the proposed RL approach, the time needed to complete

each run decreased substantially. It is important to note that
the volunteers before the runs, performed tests inside the
environment in order to familiarize with the system and the
environment. The results for the first RL run show that in
most cases the pre-trained RL model was not enough to drive
the model, and the DWA-like approach was required to aid
the user and update the RL model. However, for the second
RL run and using the previous model learned under the
DWA-like approach updates, the RL model was successfully
refined and did not require in most cases the help from the
motion planner.

V. CONCLUSION

In this paper we provide exploratory results that merging
user intent and RL-based motion planning can be a factor in
improving the performance of users of mobility assistance
platforms when compared to a system lacking either the
former or the latter input modes. Results obtained with a
virtual platform are promising, and the RL motion planning
algorithm successfully controlled the platform, aided by user
intention anchored on EOG signals, after a single round of
training for the RL states. Overall, volunteers improved their
driving performance and the time needed to perform the
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Fig. 6. Plot of the three runs of one of the volunteers, showing where in time user commands (uuser(v) for linear speed intent and uuser(w) for angular
speed intent) and machine commands (ucmd(v) for linear speed and ucmd(w) for angular speed) were issued, and the moments when DWA was requested
for lack of a state describing the fusion of orientation and user intent. The first run (top plot) was conducted only on user intent (EOG-based guidance),
while the latter two allowed for the intervention of the proposed RL motion planning method. Note RL run 1 had a significant number of motions based
on DWA, while RL run 2 did not. This can be attributed to the update that the RL models suffered during RL run 1, in which they incorporated the most
common actions by this user into the learning model; when similar actions were executed again in RL run 2 the RL motion planning algorithm already
had states describing them, discarding the need for DWA-based motion planning to be used and making possible to complete the path even faster.

required scenarios was reduced. However, these preliminary
results were achieved with a small number of volunteers,
being in our plans to carry out a significant set of tests in
order to obtain a consistent empirical validation.
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