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Abstract— Brain-computer interface (BCI) opens a new com-
munication channel for individuals with severe motor disorders.
In P300-based BCIs, gazing the target event plays an important
role in the BCI performance. Individuals who have their eye
movements affected may lose the ability to gaze targets that
are in the visual periphery. This paper presents a novel P300-
based paradigm called gaze independent block speller (GIBS),
and compares its performance with that of the standard row-
column (RC) speller. GIBS paradigm requires extra selections of
blocks of letters. The online experiments made with able-bodied
participants show that the users can effectively control GIBS
without moving the eyes (covert attention), while this task is
not possible with RC speller. Furthermore, with overt attention,
the results show that the improved classification accuracy of
GIBS over RC speller compensates the extra selections, thereby
achieving similar practical bit rates.

I. INTRODUCTION

A brain-computer interface (BCI) directly translates brain

signals into messages or commands, without recurring to

output channels of peripheral nerves and muscles [1]. BCIs

based on electroencephalographic (EEG) signals recorded

on the scalp may provide a new communication channel

for people suffering from severe motor impairments. P300

is an event related potential (ERP) modulated by attention

that has been used worldwide to control BCIs. The first

BCI system based on the P300 component was introduced

by Farwell and Donchin [2]. The system, known as row-

column (RC) speller, consists of a 6× 6 matrix, where rows

and columns are randomly intensified (flashed) according

to an oddball paradigm. Target events (rare events) elicit

a P300 component associated with the row or column that

includes a symbol mentally selected. The RC paradigm has

already shown successful results in clinical applications [3]

[4]. Despite the successful results, the RC speller presents

some aspects that limit its performance, such as: the frequent

occurrence of adjacency-distraction errors, the double-flash

errors, the overlapping of successive targets, the low target

probability (1:6), and the strong influence of non-target

flashes [5], [4]. Moreover, a high number of symbols/events

of a paradigm may increase the number of distractors, which

makes difficult the perception/discrimination of the flashing
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events. All these issues adversely affect the evoked P300 and

its detection. In order to overcome some of these limitations,

several approaches have been researched, proposing modifi-

cations to the RC speller or proposing alternative paradigms,

e.g., see [5], [6], [7]. Another limitation of the RC speller is

that it depends on eye gaze, i.e., subjects have to gaze the

mentally selected letter. This issue, that has been addressed in

[8], [9], [10], is particularly relevant for individuals that lose

the ability to move the eyes (e.g. advanced stages of disorders

such as amyotrophic lateral sclerosis). Detection with covert

attention, i.e., without moving the eyes, is very difficult

if targets are in the visual periphery since spatial acuity

decreases with increased visual eccentricity, and because the

identification of symbols is hampered by the crowded effect

[8]. As a result, it is very difficult to attend the letters in

the periphery of the RC matrix. To address this problem,

several solutions have been proposed in [8], [11], [9] wherein

the letters are placed at the center of the screen. However,

in [8] and [11], the paradigms were not tested online. In

[9], successful online results are presented but only for 10

repetitions of the same event.

In this paper we propose a new speller paradigm hence-

forth designated by GIBS (gaze independent block speller).

This paradigm addresses the problem of covert detection.

We show that GIBS allows the selection of the letters using

covert attention and with effective transfer rates. On the

other hand, we show that in overt attention experiments, the

achieved classification rates of GIBS are superior to the ones

achieved with RC speller. The paradigms are assessed online

based on accuracy, number of repetitions and practical bit

rates in bit per min (bpm).

II. METHODS

A. GIBS paradigm and RC speller

Screenshots of the proposed Block-speller are presented in

Fig. 1 a) and b). The paradigm allows to select all letters of

the alphabet, the symbols 0 and 1, the space (’sp’), and the

delete (’dl’), totalizing 30 symbols. The symbols are grouped

into four blocks following an alphabetical order. The symbols

’sp’ and ’dl’ are repeated in every group. The paradigm

layout is composed by a group of 9 symbols in the center

and 3 lateral small blocks with the remaining symbols. To

select a symbol, the user has first to select the small block

where it belongs. When the respective block is selected, the

symbols of that block move to the center and the respective

small block disappears (see Fig. 1 a) and b)). The user can

then select the attended symbol. The symbols at the center

are large, well apart, and placed in the visual angle of the

fovea. The symbols at the center flash individually while the
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a)

b)

c)

Fig. 1. a) Screenshot of GIBS when a block is flashed; b) Screenshot of
GIBS after the lower left block has been selected; c) Screenshot of the RC
speller.

symbols within the small blocks flash as an entire block.

The small blocks are placed outside of the visual fovea,

but this does not represent a problem because the user has

only to detect the entire block and not an individual symbol

within the block. Since there are 9 symbols at the center

and 3 small blocks flashing, the number of events is 12, and

thereby the target event probability is 1:12. The symbol ’sp’

is used to separate the words of the sentences. Since this

symbol is frequently used, it was included in all groups to

enable its selection without having to switch between blocks.

The ’dl’ symbol is also included in all groups with the

same purpose. The stimulus onset asynchrony (SOA), i.e.,

the interval between the onset of two consecutive stimuli,

was set to 150 ms, and the duration of each flash was set

to 75 ms. The time between selections, i.e., the inter-trial

interval (ITI) was set to 3.5 s.

From an information transfer rate perspective, the time

taken for the transitions between blocks is clearly a disad-

vantage over the RC speller. However, GIBS has a lower

target probability, a lower occurrence of double-flash, a

lower probability of overlapping, and fewer elements of

distraction when compared with RC. It is therefore expected

that the P300 component elicited by GIBS will have a

higher signal-to-noise ratio (SNR), leading thereby to an

increased classification accuracy. An analysis of how much

the classification accuracy should be improved to compensate

the transitions between blocks is made in sections II-B and

II-C.

The RC speller is based on the paradigm introduced in [2]

as seen in Fig. 1c). The SOA and ITI were respectively set

to 200 ms and 3.5 s.

B. Block transitions rate

To estimate the time required for a symbol selection in

GIBS, we need first to estimate the average rate of transitions

between blocks (Ntr). Taking several hundred of sentences

of informal dialogs and generic texts in the English language

we computed the average number of transitions that would

occur using the groups of letters in Fig 1, i.e., using the

alphabetical order {Group 1 = [’A”B”C”D”E”F”G’], Group

2 = [’H”I”J”K”L”M”N’], Group 3 = [’O”P”Q”R”S”T”U’],

Group 4 = [’V”W”X”Y”Z”0”1’]}. The average number

of transitions was Ntr ≈ 0.60 transitions per selection.

The possibility of reducing Ntr by using different groups

of letters was also investigated. The average number of

transitions was computed grouping the letters according

to letters frequency and digrams frequency in the English

language. The achieved number of transitions were

respectively 0.51 for {Group 1 = [’A”E”I”O”N”S”T’],

Group 2 = [’C”D”H”L”M”R”U’], Group 3 =

[’B”F”G”P”V”W”Y’], Group 4 = [’J”K”Q”X”Z”0”1’]},

and 0.48 for {Group 1 = [’E”H”I”N”A”R”T’], Group 2

= [’O”B”C”M”P”S”U’], Group 3 = [’J”K”Q”V”W”X”Z’],

Group 4 = [’D”F”G”L”Y”0”1’]}. So, it is possible to

improve the Ntr, however these groups are less intuitive

than the ones in alphabetical order and users may experience

difficulty in memorizing the letters included within each

group.

C. Bit rate metrics

In [1], Wolpaw et. al presented a metric to compute the

information transfer rate (ITR) of a BCI system. The ITR

formula was derived from Shannon’s theory [12], modeling

the BCI system as a noisy communication channel (see Fig.

2). The average mutual information, I(X;Y ), between the

intention of the user and the detection made by the BCI
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system is given by

I(X;Y ) = H(X)−H(X|Y ) (1)

where H(X) is the source entropy and H(Y |X) is the

information lost in the noisy channel, i.e., it represents the

classification error rate of the BCI system. Assuming a BCI

with Ns possible choices (number of symbols) which are

equiprobable, and an online classification accuracy of Pac,

then I(X;Y ) ≡ B, measured in bits/symbol, is given by

B = log
2
(Ns) + Pac log2(Pac) + (1− Pac) log2

(1− Pac)

(Ns − 1)
.

(2)

Taking the rate of possible selections per minute rs (sym-

bols/min), then the ITR is expressed by

ITR = rsB. (3)

This formula has been widely used by the BCI community as

a benchmark metric for performance comparison, particularly

in P300-based BCIs. However, the use of this metric for the

assessment of a BCI should always be accompanied with the

accuracy [6]. Metric (3) can be fallacious because low levels

of accuracy may provide reasonable bit rates and at the same

time be unacceptable for communication. Several authors

[5], [13] argue that a more practical and generic metric is

needed to assess and compare BCIs. In P300 spellers, a

metric that takes into account the correction of misspelled

letters is more suitable because it clearly expresses the effect

of classification accuracy. The time needed to correctly spell

a letter can be obtained by computing the average number

of retries, Nr. Each time an error occurs two additional

selections are required (one for deleting and one for re-spell).

The Nr value is computed according to [5], [13]

Nr =
1

1− 2(1− Pac)
(4)

which holds for (1−Pac) < 0.5. The practical bit rate (PBR)

is obtained from

PBR =
rs
Nr

log
2
Ns, (5)

where log
2
Ns is the source entropy, H(X). In our study,

GIBS and RC speller are compared using this practical bit

rate.

We know that for the same number of repetitions and

classification accuracy, the bit rate for GIBS is lower than for

the RC speller. Our goal now is to determine what should

be the relative improvement in the classification accuracy

of GIBS needed to compensate the time taken for transitions

between blocks. The number of selections per minute is given

Noisy channel

X Y

User intention Detected symbolBCI detection 

system

Fig. 2. BCI system modeled as a communication channel.
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Fig. 3. Time duration of a trial (Td) for RC speller (6) and GIBS (7)
varying the number of repetitions and setting the classification accuracy to
90%.
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Fig. 4. Time duration of a trial (Td) for RC speller (6) and GIBS (7)
varying the classification accuracy and setting the number of repetitions to
5 and 6.

by rs = 60/Td, where Td is the trial duration (time required

for selecting a symbol). For the RC speller, the trial duration

is given by

Td = Nr(Nrep × (Nev × SOA) + ITI) (6)

and for GIBS, by

Td = (1 +Ntr)Nr(Nrep × (Nev × SOA) + ITI), (7)

where Nev is the number of events and Nrep is the number

repetitions to make a symbol selection (Nev is 12 for

both paradigms and the number of transitions in GIBS is

Ntr = 0.60). The difference of the values of Td between

the two paradigms depends simultaneously on the number

of repetitions and on the accuracy. Taking (6) and (7), Td

for two different situations was analyzed. In Fig. 3, the

classification accuracy was set to 90% for both paradigms,

and the number of repetitions within a trial was varied. In

Fig. 4, the number of repetitions was set to 5 and 6, while

varying the classification accuracy. Some particular cases are

presented to exemplify the analysis. In Fig. 3, we can see for
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example that it is possible to achieve a similar Td by taking

5 repetitions in RC, and 3 repetitions in GIBS (illustrated

in Fig. 3 by the horizontal line segment). In this particular

case, to have the same Td, the detection with GIBS would

have to be achieved with two repetitions less than with the

RC speller. Setting the number of repetitions and varying

the accuracy, the curves in Fig. 4 show that, for example,

for Nrep = 5, for an 80% accuracy in RC, a 90% accuracy

is required in GIBS to achieve the same Td, i.e., 10% more

(illustrated in Fig. 4 by the horizontal line segment).

D. Participants and data acquisition

Four able-bodied subjects participated in this study of

whom two were first time BCI users (S01 and S03). The

EEG activity was acquired with a g.tec gUSBamp amplifier.

Signals were recorded from 12 Ag/Cl electrodes at positions

Fz, Cz, C3, C4, CPz, Pz, P3, P4, PO7, PO8, POz and Oz

of the international extended 10-20 standard system with a

g.tec cap. Channels were selected according to our previous

study [4]. Vertical and horizontal EOGs were also recorded

to monitor movements of the eyes. The electrodes were

referenced to the right or the left ear lobe and the ground was

placed at AFz. Signals were sampled at 256 Hz, and filtered

by a 0.1-30 Hz bandpass filter and a 50 Hz notch filter. The

electrodes impedance varied from subject to subject, but were

almost always kept under 10KΩ.

III. EXPERIMENTAL TESTS

A. Procedure

During the experiments, the participants were seated in

front of a computer screen at about 60 cm. The experimental

conditions for RC and GIBS paradigms were the same.

Participants were instructed to be relaxed and to attend the

desired target, mentally counting the number of intensifi-

cations of target events. Two different experiments were

performed. In one experiment, the participants were allowed

to gaze the target symbols (overt attention) and in the second

experiment they were not allowed to gaze the target symbols

(covert attention). In the second experiment, the HEOG and

the VEOG signals were recorded to ensure that no ocular

movements occurred. The online sessions were preceded by

a calibration session of approximately 5 min. During the RC

calibration phase, the user had to attend the letters of the

word ’INTERFACE’, and during GIBS calibration, the user

had to attend 7 letters of the central group and 5 choices of

small blocks. The labeled datasets obtained from calibration

have 180 target epochs and 900 non-target epochs for the RC

speller, and 96 target epochs and 1056 non-target epochs

for GIBS. These datasets were used to obtain the models

for online classification. The classification algorithms use

the same methodology that was used in our previous work,

which showed state of the art results with the RC speller

[4]. It is based on a statistical spatial filter that is a cascade

of a Fisher beamformer and a Max-SNR beamformer (C-

FMS). The twelve EEG channels are transformed into two

high SNR projections, which are then feed to a naı̈ve Bayes

classifier.

TABLE I

ONLINE RESULTS - OVERT ATTENTION.

RC speller GIBS

Subject Nrep Pac(%) PBR (bpm) Pac (%) PBR (bpm)

S01
5 100 20.01 - -
3 68.4 10.68 100 19.64
2 - - 78.9 14.25

S02
5 78.9 11.58 100 13.98
3 - - 94.7 17.57

S03 5 78.9 11.58 100 13.98

S04
5 89.4 15.79 100 13.98
4 84.2 16.20 - -
3 - - 89.4 15.50

Average 4.75/3.5 85.5 14.89 96.02 16.67

TABLE II

ONLINE RESULTS - COVERT ATTENTION.

RC speller GIBS

Subject Nrep Pac(%) PBR (bpm) Pac (%) PBR (bpm)

S02
5 (a) 100 13.98
3 - - 84.2 13.43

S04 5 (a) 89.4 11.04

B. Online results

Four participants tested both paradigms using overt at-

tention. Two of them, S02 and S04, underwent the second

experiment were they tested both paradigms using covert

attention. The participants had to spell the 19 character

sentence ’THE QUICK BROWN FOX’. The results obtained

with overt attention are in Table I. The averaged results,

using the number of repetitions that maximizes the PBR,

show that the performance achieved with GIBS, regarding

accuracy and number of repetitions, is substantially better

than that obtained with RC. The results are 14.89 bpm,

85.5% accuracy and 4.75 repetitions for RC speller, and

16.67 bpm, 96.02 % accuracy and 3.5 repetitions for GIBS.

The results show that the classification improvements with

GIBS were enough to compensate the occurrence of tran-

sitions between blocks, even reaching a PBR higher than

that obtained with RC speller. As concerns the experiments

based on covert attention, the online results are in Table II.

None of the participants was able to control the RC speller.

Participants reported that they were unable to perceptually

attend the targets placed outer the center. On the other hand,

both participants were able to covertly control GIBS with

effective transfer rates. In Tables I and II, (a) means that

participant was unable to perform the task, and (-) means

that the experiment was not performed.

C. Offline analysis

To compare the P300 elicited in overt and covert attention

experiments, we computed the averages taking the data

collected during the calibration phases. Fig. 5 Top) shows

the waveforms of the P300 average for GIBS. Both overt
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Fig. 5. P300 average for participant S02. Top) P300 waveforms for GIBS;
Bottom) P300 waveforms for RC speller.

and covert experiments evoked a P300, and as expected the

P300 with overt attention is higher. Fig. 5 Bottom) shows

the waveforms of the P300 average for RC speller. The overt

attention task elicits a P300, however there is no traceable

P300 in the covert attention task. These results are consistent

with the online results.

IV. CONCLUSIONS AND FUTURE WORKS

In this study, we proposed a novel Block speller paradigm

called GIBS. The results show that GIBS can be controlled

without moving the eyes (covert attention). This has particu-

lar relevance for individuals unable to control the movements

of the eyes. On the other hand, a practical bit rate analysis

showed that GIBS can achieve information transfer rates

similar to those obtained with the standard RC speller. GIBS

can still benefit from different arrangements of the letters

within each group, further reducing the number of transitions.

To robustly assess the performance of GIBS, the experi-

mental tests should be in a future work extended to a larger

group of able-bodied and motor disabled individuals.
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