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Abstract— This paper presents a new P300 paradigm for
brain computer interface. Visual stimuli consisting of 8 arrows
randomly intensified are used for direction target selection for
wheelchair steering. The classification is based on a Bayesian
approach that uses prior statistical knowledge of target and
non-target components. Recorded brain activity from several
channels is combined with a Bayesian sensor fusion and then
events are grouped to improve event detection.

The system has an adaptive performance that adapts to user
and P300 pattern quality. The classification algorithms were
obtained offline from training and then validated offline and
online. The system achieved a transfer rate of 7 commands/min
with 95% false positive classification accuracy.

I. INTRODUCTION

Brain computer interface (BCI) is a new type of human

interface that can contribute to the augmentation of human

capabilities, namely for people affected by severe motor

disabilities. Typical diseases include neurological diseases

such as amyotrophic lateral sclerosis and locked-in syndrome

but also certain types of cerebral palsy where there is no

control of voluntary movements. In such cases, standard

interfaces such as language processing, eye tracking and head

or teeth switches are not suitable.

Current BCI systems use mainly four different neuromech-

anisms, namely slow cortical potentials (SCP) [1], event

related synchronization and desynchronization (ERD/ERS)

of µ and β rhythms usually through motor imagery [2]

[3], visual evoked potentials (VEP) and steady VEP [4],

and finally, P300 [5] [6]. The first two approaches require

that the subjects learn to control their brain rhythms. This

usually takes a long term training and some subjects are

unable to learn how to control their brain rhythms. The two

other approaches use neuromechanisms that do not require

learning since they are natural brain responses to external

events. Users only have to focus attention on the stimuli.

However, the user intention depends on the emergence of

the desired event/stimulus which can slow down the transfer

rate.

We are developing at the institute for systems and robotics

(ISR) a visual P300-based BCI system to be used for
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wheelchair steering [8]. The system intends to be used for

people suffering from general motor disabilities. Specific

application cases are being studied in collaboration with

motor neurological diseases associations. The goal is to

evaluate the applicability of a BCI in patients unable to steer

a wheelchair with standard devices such as head switches

synchronized with a scanning display.

Some works have already been proposed to steer a

wheelchair using BCI and reached relative success. In [7],

a BCI based on ERD/ERS is used to discriminate 3 dif-

ferent commands which allow to steer a wheelchair (with

navigation assistance) in indoor environment. This is a new

research area to ISR, notwithstanding other human machine

interfaces (HMI) have already been developed, for instance

a voice HMI to steer a wheelchair [8]

P300 is an event related potential (ERP) elicited by an

oddball paradigm. In this paradigm there are two events, one

infrequent and the other common. It is asked to the subject to

mentally count the infrequent events. In response, a positive

peak (P300) will appear around 300 ms after the stimulus

(visual or auditory).

The majority of P300 paradigms are used as spelling

devices. The present study follows a different approach as

it intends to detect a desired direction to follow, never-

theless the applied oddball concept is similar to the other

approaches.

II. METHODS

Two healthy subjects, one male and one female partici-

pated at the experiments. The subjects were seated in front

of a computer screen at about 60 cm.

The EEG activity was recorded from 12 Ag/Cl electrodes

at positions Fz, Cz, C3, C4, CPz, Pz, P3, P4, PO7, PO8,

POz and Oz according to the internacional 10-10 standard

system (see Fig. 1). The electrodes were referenced to

the right mastoid and the ground was placed at AFz. The

EEG channels were amplified with a gUSBamp (g.tec, Inc.)

amplifier, bandpass filtered at 0.1-30 Hz and notch filtered

at 50 Hz and sampled at 256 Hz. All electrodes were kept

with impedances under 5 KΩ.

A. P300 Paradigm

The P300 visual stimuli paradigm is showed in Fig. 2.

It is composed by 8 arrows and a square, gray colored,

in a black background. Each arrow and square is uniform

randomly intensified during 100 ms with a green color. The

time interval between each intensification was 100 ms settled.

Each arrow indicates one of 8 possible directions to steer the

wheelchair. The central square is used as a stop command.
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Fig. 1. Electrodes of the 10-10 international standard system. The EEG
electrodes used for data acquisition are marked with a solid circle. The
right side of the figure shows the average and standard deviation of Cz
P300 component for target stimulus and the average of non-target stimulus.
The data segment epochs are raw data, i.e. without any pre-processing.

Fig. 2. Robchair prototype[8] and P300 Paradigm at computer screen.

The subject has to fixate attention to the target arrow/square

that he wants to follow. The occurrence probability of a

target stimulus and a non-target stimulus is respectively ≈
1/9 and 8/9. These probabilities ensure the effectiveness of

an oddball paradigm, however it is possible to include extra

stimulus (small squares in Fig. 2) to decrease the probability

of the infrequent event.

The on-line identification of the target stimulus follows

two approaches: 1) the identification is only taken after 9

intensifications which include the 9 possible targets (1 trial).

The most probable target is chosen. The number of trials to

make the decision can be adjusted to the desired classification

accuracy; and 2) the identification is performed after each

intensification or after the average of several intensifications.

These approaches allow an adaptive system performance in

accordance to P300 data quality. In the best scenarios, a

target would be detected each 3 seconds in the first approach,

and in the second approach a target would be identified one

second after its appearance, which are non-realistic scenarios

as described in the next section.

B. Signal Processing and Classification

The ERP P300 component has a large variance and its

magnitude is in the order of the ongoing EEG activity. This

variance is highly dependent of subject’s focus and of the

presence of artifacts such as noise and muscular activity.

The P300 pattern component become apparent averaging a

large number of epochs. Fig. 1 shows the P300 average

and standard deviation for ≈ 70 target epochs (0-1 second

after the intensification). Fig. 1 presents also the average

and standard deviation of ≈ 500 nontarget epochs. The large

variance shows the difficulty to perform classification based

on a single epoch of a single channel.

1) Pre-processing: Before classification, EEG data are

pre-processed as follows:

1) Filtering - data are low-pass filtered by a 4th order

Butterworth filter with 7 Hz cut frequency. This filter

is used to remove unwanted ongoing EEG activity and

noise;

2) Downsampling - depending on the classification algo-

rithm data may have to be downsampled to improve

the computational effort;

3) Windowing - after each stimulus, a data segment

is collected (epoch). Typical epochs correspond to

the data samples between 200 and 650 ms after the

intensification. However, this window is adjusted to

each channel and depends of the algorithm;

4) Normalization - each epoch is normalized to zero

mean and unitary standard deviation, according to:

xN =
x−µx

σx

(1)

The normalization allows to adjust trial to trial and

session to session variances. Also, sensor fusion is

more robust.

2) Bayesian Approach: Taking the average and standard

deviation information of target and non-target stimuli for

each individual channel, it is possible to build target and non-

target models suitable for a two-class Bayesian classifier.

Consider xi(t) the EEG amplitude of the ith (i = 1 · · ·12)

channel at instant t. The training set averages and standard

deviations for target and non-target events are respectively

defined for each time instant t as µ i
k(t), σ i

k(t) where k = 1

stands for target and k = 2 for non-target. Under a gaussian

distribution assumption, the probability of observing xi(t)
given the model wi

1 (target class) or wi
2 (non-target class) is

given by:

p(xi(t)|wk(t)) =
1√

2πσk(t)
exp(− (xi(t)−µk(t))

2

2σk(t)2
) (2)

This conditional probability is called the likelihood function

of wk [9]. If the xi time sequence is a vector with n obser-

vations, then µ i
k is a vector [n×1] and the full covariance Σ

is a [n×n] matrix. The joint probability of all time sample

is given by:

p(xi|(µ i
k,Σ

i
k)) =

1

(2π)n/2|Σi
k|1/2

exp(− (xi −µ i
k)

T (xi −µ i
k)

2Σi
k

)

(3)
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In order to have a tractable computation, eq. (3) requires

that x has a small number of observations. This can be

obtained either through choosing a small epoch window or

by downsampling the time sequence. Another approach is

to use only the diagonal matrix under the assumption of

observations independence. The joint probability is given by

the product of the density probability of each observation

(2):

p(xi|wk) =
n

∏
t=1

p(xi(t)|wk) (4)

The probability that has to be derived is the posterior

probability p(wk|x), i.e. the probability of a data pattern

belong to class wk knowing an observation vector x. This

probability is obtained through the Bayes rule:

p(wk|x) =
p(x|wk)P(wk)

p(x)
(5)

where p(x) is the unconditional density of x called the

evidence and that will be treated here as a normalization

factor, and P(wk) is the prior probability of each of the

classes. As already referred above, the unconditional prior

probability of a target intensification P(w1) is 1/9 and the

probability of a non-target intensification P(w2) is 8/9. The

estimated class ŵ j follows the conditional risk principle [9]

which associates a cost function C(ŵ j|wk) with correct or

incorrect classification:

R(ŵ j|x) =
2

∑
k=1

C(ŵ j|wk)P(wk|x) (6)

The cost function is slightly different of the uniform cost

function used in MAP classifier:

C(ŵ j|wk) = 0 if j = k

C(ŵ1|w2) = ∆1

C(ŵ2|w1) = ∆2

(7)

This modification allows to adjust the rate of false positive

vs. false negative in the classification process. The Bayes

decision function is written as:

ŵ(x) = argmax{{∆2 p(x|w1)P(w1)},{∆1 p(x|w2)P(w2)}}
(8)

The arguments of the decision rule returns the probabilities

for a single EEG channel.

A sensor fusion is required to combine the probabilities

of all channel recorded data. Under the assumption of chan-

nel independence, the joint conditional probability can be

written as the product of the individual channels conditional

probabilities:

p(X|wk) = p(x1 ∧x2 ∧·· ·x12|wk) =
12

∏
i=1

p(xi|wi
k) (9)

The new decision rule is obtained replacing p(x|wk) by

p(X|wk) in (8).

3) Assemble of Events: Let define a trial as the assembly

of 9 different events (which comprises one target and 8 non-

targets, all unknown) and consider the classification probabil-

ity of the event j given by v j(X) and obtained from (8) using

(9). Let WTarget(X) = {· · · ,vT
i (X), · · ·} and WnonTarget(X) =

{· · · ,vNT
k (X), · · ·} i,k ∈ 1 · · ·9 i 6= k be respectively the set

of probabilities of events detected as targets and non-targets,

then:

ŵ(X) =







argmax(WTarget(X)) if WTarget 6= /0

argmin(WnonTarget(X)) if WTarget = /0

(10)

If more then one event (arrow or square) is detected as target,

it is chosen the one with larger associated probability. If none

of the events is detected as target then it is chosen the event

with minimum probability within WnonTarget(X).

III. RESULTS

Several data sets were collected in several sessions for

classification training. Each session consisted of 70 target

events, 560 non-target events and 350 events that are neither

target nor non-target. These events were created to increase

the temporal interval between target events and therefore to

reduce the target inter symbol interference (ISI). Each session

lasted about 5 min. Classification models were obtained off-

line and then tested on-line.

The performance of each channel was evaluated individu-

ally. The classifier used the decision rule (8). Classification

was performed for different number of averaged-epochs

for the 12 channels as shown in Fig. 3. The performance

measure was the rate of false positive (FP) and false negative

(FN). These measures are much more relevant than the

simple error rate because the probabilities of the two events

are substantially different. If a FP occurs, a wrong arrow

direction will be detected which substantially degrades the

performance of the overall system. If a FN occurs it simply

reduces the transfer rate. Therefore, it is preferable to have a

higher error rate of FN than FP. To control these rates, the ∆
parameters in (7) were adjusted during training. Fig. 3 shows

that for some channels after an average of 7 epochs the FP

rate is zero or almost residual and the FN rate is zero for

almost all channels. Consequently, after 7 averaged epochs

we have almost a perfectly reliable system (see Fig.3). These

classification results were used to establish a channel ranking

score. The 4 best channels (CPz, P3, PO7 and PO8) were

used for Bayesian fusion (9). Fig. 4 compares the FP and

FN rate using: 1) fusion of selected channels, 2) average

of selected channels; and 3) average of all channels. Fusion

improves both the FP and FN rates (see Table I). After 5

epochs average, the FP rate is about 1%.

In the online experiments, the algorithms with best per-

formance and best ranked channels were used. In the first

experimental approach, the decision was made after averag-

ing several epochs. The number of epochs was selected to

6 using the average of selected channels, achieving a 3.5

commands/min transfer rate. The fusion algorithm with 5

averaged epochs returned 4 commands/min. In the second

660



1

2

3

4

5

6

7

123456789101112

0

0.05

0.1

0.15

0.2

0.25

classification error

channels

number of epochs

F
P

 e
rr

o
r 

ra
te

1

2

3

4

5

6

7

123456789101112

0

0.1

0.2

0.3

0.4

classification error

channels

number of epochs

F
N

 e
rr

o
r 

ra
te

Fig. 3. FP (top) and FN (bottom) error rate for different number of epochs
per trial. The electrodes channels are ordered as: Fz, Cz, C3, C4, CPz, Pz,
P3, P4, PO7, PO8, POz and Oz.
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Fig. 4. FP and FN error rates for different number of epochs per trial.
The curves represents: 1) fusion of selected channels (fusion); 2) average
of selected channels (avg2); and 3) average of all channels (avg1).

experimental approach the decision was made only after two

trials, each trial composed by one target epoch and 8 non-

target epochs. The decision rule follows (10). The event with

larger probability is chosen. For one trial, the FP, FN and

error rate were respectively (0.0205, 0, 0.1642) and for two

consecutive trials a residual error rate was achieved. This

approach allowed a significant improvement achieving a 7

commands/min transfer rate. The results are summarized in

Table II. All presented transfer rates were obtained with a

FP accuracy above 95%.

IV. CONCLUSIONS AND FUTURE WORKS

A P300-based visual paradigm is proposed for wheelchair

steering. The experimental off-line and on-line validation

TABLE I

OFFLINE RESULTS FOR AVERAGE AND FUSION OF SELECTED CHANNELS

Average of selected channels

number of epochs FP rate FN rate error rate

1 0.1541% 0.2463% 0.1878%

2 0.0931% 0.2121% 0.1272%

5 0.0192% 0.0769% 0.0449%

6 0.0097% 0.0227% 0.0445%

Fusion of selected channels

1 0.1437 % 0.1279 % 0.2537%

2 0.0833 % 0.0736 % 0.1515%

5 0.0192 % 0.0110 % 0.0769%

6 0 % 0% 0%

TABLE II

ONLINE RESULTS: TRANSFER RATES

method command/min

channel average (6 epoch) 3.5

channel fusion (5 epoch) 4

2 trials (1 target ep & 8 non-target ep) 7

showed that this system can be used as an effective BCI.

Using a Bayesian classifier with sensor fusion, transfer rates

of 7 commands/min were achieved. Notwithstanding the

good results when compared with other reported works, the

experimental validation was performed with only 2 healthy

subjects, so more experimental results are needed to attest the

system robustness. ISI compensation and artifact elimination

are two relevant issues that have to be studied in future work.

The first one was overcame extending the number of events.

The artifact problem was minimized during experimental

sessions.
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