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Abstract— This paper presents a new shared-control ap-
proach for assistive mobile robots, using Brain Computer
Interface (BCI) as the Human-Machine Interface (HMI). A
P300-based paradigm that allows the selection of brain-actuated
commands to steer a Robotic Wheelchair (RW), is proposed. At
least one specific motor skill, such as the control of arms, legs,
head or voice, is required to operate a conventional HMI. Due
to this reason, they are not suited for people suffering from
severe motor disorders. BCI may open a new communication
channel to these users, since it does not require any muscular
activity. The number of decoded symbols per minute (SPM)
in a BCI is still very low, which means that users can only
provide sparse, and discrete commands. The RW must rely on
the navigation system to validate user commands effectively.
A two-layer shared-control approach is proposed. The first,
a virtual-constraint layer, is responsible for enabling/disabling
the user commands, based on certain context restrictions.
The second layer is an user-intent matching responsible for
determining the suitable steering command, that better fits the
user command, taking the user competence on steering the
wheelchair into account. Experimental results using Robchair,
the RW platform developed at ISR-UC [1], [2] are presented,
showing the effectiveness of the proposed methodologies.

I. INTRODUCTION

This research work aims to develop assistive navigation

techniques to increase autonomy of people with severe motor

disabilities. Assisted navigation is a challenging research

topic, since it has to deal with robots navigating in semi-

structured and unstructured dynamically changing environ-

ments, with a high level of uncertainty, and being able to

interact with human users in a safe manner. Usually assis-

tive navigation is a type of semi-autonomous architecture

requiring at least two agents, a human agent, and a machine

agent (MA), sharing the control of the robot. Shared-control

can be defined as a type of control scheme that causes the

output or response of a system to be influenced by two

or more agents, as opposed to fully autonomous systems,

where the control belongs solely to the robot [3]. In recent

years different shared-control architectures were developed

for applications in the fields of assistive robotics, such as

intelligent wheelchairs [1], [4], and [5], minimally invasive

surgery [6], or intelligent mobility assistants [7], and [8].

When dealing with semi-autonomous systems, care must be
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taken in the choice and the design of the most appropiate

system interface. The HMI must be well suited to the user

needs and capabilities, and the semi-autonomous system

must be able to identify, and respond to the user requests

and commands in the most adequate and safe manner.

People with motor disorders such as amyotrophic lateral

sclerosis, progressive muscular dystrophy, cerebral palsy and

spinal cord injuries are unable or have great difficulty to

control standard interfaces. Brain computer interfaces (BCIs)

open a new communication channel that is independent

of muscular activity. It has already been shown that these

patients can use BCI to spell characters with acceptable

communication rates [9], [10], [11]. The use of a BCI to

control a robotic wheelchair could help these patients to

increase their autonomy and improve their quality of life. The

use of BCI control of physical devices is a research topic of

growing importance. The number of decoded symbols per

minute (SPM) in a BCI is however still very low, which

means that users can only provide a few discrete commands

per minute (less than 10 SPM). Thus, the control of a

wheelchair must rely on a navigation system that receives

sparse commands from the user and that performs safe and

smooth manoeuvres according to steering information. Sev-

eral brain-actuated wheelchairs have already been proposed

following different neuromechanisms. Motor imagination, a

neuromechanism based on sensorimotor rhythms, is used in

[12] to detect 3 mental steering commands (forward, left

and right) and in [13] to detect left and right mental states.

The P300 signal, an event related potential elicited by an

oddball paradigm [14] is used in [15] and [16]. P300 is an

evoked potential characterized by a positive peak that occurs

about 300 ms after the onset of a target event in an oddball

paradigm (a random and rare target event among frequent

non-target events). In [15] the BCI is used to select high-level

predefined locations and in [16] it is used to select low-level

locations in a 3D map of the surrounding environment.

This paper proposes a P300-based paradigm that allows

the selection of brain-actuated commands to steer a RW. To

alleviate user effort, low-level commands are only issued

when there are dynamic changes of the environment or

when ambiguous situations occur. A two-layer shared-control

approach is proposed to obtain a safe and effective navigation

of the RW, receiving user commands that are issued sparsely.

II. NAVIGATION SYSTEM ARCHITECTURE USING BCI

In this section, a navigation architecture capable of pro-

viding intelligent motion control of semi-autonomous RW

is conceptually described. The architecture presented in Fig.
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Fig. 1. Assistive navigation system architecture.

1 is structured in five levels: HMI, global motion planning,

local motion planning, motion tracking, and motion control.

This architecture has been tested in a player/stage [17]

simulation environment, and in Robchair [1].

As HMI, a P300-based BCI is used to provide the user

intent: the final localization goal, and steering commands

issued sparsely. The global planner determines the trajectory

to a predefined goal, based on the information provided by

the a priori grid map. The local planner calculates new tra-

jectories to avoid new obstacles in the environment. Obstacle

detection is carried out based on laser information. A Markov

localization system is used to fuse dead-reckoning data with

laser map matching [18]. A sliding mode controller is used

for path tracking [19]. The shared-controller determines the

set of appropriate manoeuvres to reach a predefined goal

based on user and machine commands.

III. SYSTEM INTERFACE: BCI

A. Paradigm

The proposed P300-based paradigm is an upgrade of our

earlier paradigm introduced in [20] and it is henceforth

referred as Arrow Paradigm (Fig. 2). It provides a small

set of steering options that includes both low-level com-

mands (’FORWARD’, ’RIGHT’, ’ROR’, ’STOP’, ’LEFT’,

’ROL’, and ’BACK’), high-level commands indicating a goal

(’ROOM A’, ’ROOM B’, ’ROOM C’), and basic interaction

communication (’YES’,’NO’). Each symbol/word is intensi-

fied during 100 ms and with an inter-stimulus interval (ISI)

settled to 75 ms. When the symbol/word is intensified (event

occurrence), the color is changed and the size is slightly

increased. This aims to enhance user perception of the events.

For every round, each symbol/word is intensified once in a

Fig. 2. Overview of the Robchair and screenshot of the Arrow Paradigm.

random order. The target event corresponds to the symbol

mentally selected by the user. All other symbols are called

standard or non-target events. The total number of events is

12 which establishes a target event probability of 1/12. The

data segment (epoch) associated to each event has a duration

of 1 second. The detection of a target event can occur after a

single round of events or after several rounds, which depends

on the performance of the user.

B. EEG signal acquisition and static analysis

EEG signals are acquired with a g.tec gUSBamp amplifier

from 12 Ag/Cl electrodes at positions Fz, Cz, C3, C4, CPz,

Pz, P3, P4, PO7, PO8, POz and Oz of the international

extended 10- 20 standard system. The electrodes were refer-

enced to the left or right ear lobe and the ground was placed

at AFz. Signals were sampled at 256 Hz and filtered through

0.1-30 Hz bandpass filter and a 50 Hz notch filter.

1) BCI online results: A static analysis was carried out

to characterize the used BCI system [11]. The experiments

were performed with 3 able-bodied volunteers. To assess the

online performance it was asked to each user to select a set of

15 consecutive commands. This task was performed without

movement of the wheelchair. The number of repetitions

(Nrep) needed to obtain a 100% classification accuracy, and

the respective time needed to issue a command (trial time -

TT) are shown in Table I. Participants A and C can issue a

command each 10.6 s and participant B each 6.7 s.

C. Inter-operating systems and BCI calibration

The BCI module and the navigation module run on

two different computer systems that communicate through

TCP/IP. The BCI system sends steering commands to the

navigation system and receives requests from it. The naviga-

tion module can also activate or deactivate the BCI system.
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TABLE I

RESULTS OF ONLINE EXPERIMENTS FOR A 100% ACCURACY AFTER 15

CONSECUTIVE STEERING COMMANDS.

Participant NRep TT (s)

A 5 10.6
B 3 6.7
C 5 10.6

Online operation of the BCI system must be preceded

by a calibration phase that takes about 5 minutes. During

the calibration, a dataset with 90 target epochs and 990

non-target epochs is gathered. This labeled dataset is then

used to obtain the classification algorithms. The classification

approach uses the same methodology as in our previous

work, which showed state of the art results with a P300-

based row-column speller [11]. It uses a statistical spatial

filter that cascades a Fisher beamformer and a Max-SNR

beamformer (C-FMS). The twelve input channels are trans-

formed into two high SNR projections, which are then feed

to a naı̈ve Bayes classifier (NB). Because the signal-to-noise

ratio (SNR) of the signal is very low, it is necessary to

combine several repetitions of the same event. The number

of repetitions depends on the user performance. In online

operation the classifier algorithm is applied to each event

and then the target associated with the highest classification

score is selected.

IV. LOCALIZATION AND MAPPING

The assistive navigation architecture is provided with

an a priori grid map of the environment. Localization is

performed using dead-reckoning data (odometry) for rough

positioning, and laser data for map matching. A Markov

localization system was designed to fuse odometry with laser

map matching [21], [18]. The Belief Bel(xt) is evaluated for

every possible state xt , however, in this case localization

method was only applied locally, regarding the odometry

information. Markov localization is composed by two stages:

a prediction stage, and a correction stage, as presented in

Algorithm 1, where Bel−(xt), and Bel(xt−1) are the predicted

posterior and prior probabilities, respectively, and Bel(xt)
represents the posterior probability for the correction stage.

In the correction stage, a map matching method is applied,

where the sensor measurement model compares a local map

mlocal (given by a laser range scan) to the predicted map

mre f (based on a priori map m), such that the more similar

mre f and mlocal , the larger P(mlocal |xt ,m). It is important to

highlight that map matching is only applied to a submap of

the global map, which is determined based on odometry data,

and taken the odometry model into account. To improve the

performance of the Markov localization system, two filters

were applied before map matching, namely: a distance filter,

and a dynamic obstacle filter. The former reduces the max-

imum range to a predefined threshold (DistFilter(mlocal)),
and the latter removes all range data resulting from dynamic

obstacles (DynamicObstFilter(m′local)), which are not repre-

sented in the a priori map. Map matching is summarized

in Algorithm 2, where the Re f erenceMap(m,xt) function

determines the predicted map to be matched to the filtered

local map m′′local , m̄ is is the average map value, and θbg

represents the scan bearing.

Figure 3 shows some experimental results of the im-

plementation of the Markov Localization algorithm using

Robchair.

Algorithm 1 MarkovLocalization(Bel(xt−1),ut ,mlocal ,m)

for all xt ∈ ms do

//Prediction Stage

Bel−(xt)←
∫

P(xt |ut−1,xt−1)Bel(xt−1)dxt−1

//Correction Stage

Bel(xt)←MapMatching(mlocal ,m,xt)
end for

return Bel(xt)

Algorithm 2 MapMatching(mlocal ,m,xt )

m′local ← DistFilter(mlocal)
m′′local ← DynamicObstFilter(m′local)
mre f ← Re f erenceMap(m,xt)
for all points ∈ m′′local do

m̄ = 1
2N ∑θbg

(mre f +m′′local)
end for

for all points ∈ m′′local do

ρmre f ,m
′′
local

,xt
=

∑θbg
(mre f − m̄)(m′′local− m̄)

√

∑θbg
(mre f − m̄)2 ∑θbg

(m′′local− m̄)2

end for

P(mlocal |xt ,m) = max(ρmre f ,m
′′
local

,xt
,0)

return(P(mlocal |xt ,m))

V. PLANNING AND NAVIGATION

A. Global planner

The A* algorithm [22], [23] finds the least-cost path from

a given initial node to a goal node. This approach is an

exploration algorithm in the graph theory, and it fits well

to grid space modeling. The choice of the next node to be

analyzed is determined by heuristics, which is an estimation

of the distance from the current node to the goal.

B. Obstacle detection and local planner

A vector field histogram [24] is determined for obstacle

detection purposes, using laser range finder data. The local

perception module includes a context situation module that

is responsible to determine if an obstacle (detected by the

obstacle detection module) is new to the environment. Every

time a new obstacle is detected, the local planner is activated,

and the VFH+ method is used to determine the best free

steering direction. Obstacle detection is carried out using

a laser range finder located at the front of the RW. These

methodologies are only applied to new static obstacles. In

case of approaching a moving obstacle, it stops.
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Fig. 4. Obstacle avoidance based on VHF+ local planner: a) robot detects the obstacle and determines a free path to a target pose P1 (center point of the
free space between the obstacle and the infra-structure); b) robot follows the path; c) robot reaches P1, and determines a path to pose P2; d) robot reaches
P2 and determines a path to merge with global path P3; e) robot follows the path to reach P3; f) robot follows the global path. The dotted line represents
the path provided by the global planner.

Fig. 3. Markov Localization results: odometry pose; and scan mapping
based on odometry pose; corrected pose and scan mapping based on
corrected pose.

1) VFH+ Algorithm: The VFH+ [24] module determines

a cost function g(c) for a candidate direction c as follows:

g(c) = µ1∆(c,kt)+ µ2∆(c,θi)+ µ3∆(c,kn,i−1) (1)

where kt is the target direction, θi gives the current direction

of the RW, and kn,i−1 gives the previously selected direction

of motion. The generic term ∆(c1,c2) gives the absolute

angle difference between two sectors c1 and c2. Terms µ1,

µ2 and µ3 are the cost parameters. In order to achieve a

good blending between the global and the local planner, the

target direction kt is a subgoal of the reference path, i.e. is

the next subgoal provided by the global planner. Figure 4

shows how the local planner works to avoid one obstacle

placed in the robot trajectory. The VFH+ method is used to

calculate the best steering direction to avoid the obstacles in

the environment. Using a simple path-planner method three

local paths are determined according to the best steering

direction provided by the VFH+ module. As depicted in Fig.

4, after detecting the obstacle, a new path is planned on the

direction provided by the VFH+ module, in order to reach

target pose P1 (center point of the free space between the

obstacle and the infra-structure). After reaching P1 a new

path is calculated in order to reach P2. A third path to P3

is then planned to merge the local path to the global one.

A sliding mode path-following controller was used as the

system path tracker [19].

C. Shared-Control

The shared-control module depends on the user’s ability

to steer the RW. In this sense, user characterization, must

be carried out previously. An assistive navigation training

framework (ANTF) [25], was developed with two main goals

in mind: to train users to carry out navigation tasks, in

an autonomous manner (not requiring continuous help of

therapists), and to characterize user models on steering a

powered wheelchair. The ANTF is intended to train users to

decide the best set of manoeuvres to reach a predefined final

goal, as well as to train them using the system interface, in

this case a brain computer interface. The ANTF platform

classifies users in three stages of development, according

to their steering capabilities, namely: beginner, average, and

advanced user. For each stage of development the user has

a capability efficiency rate ra [25] that is used in the intent-

matching layer of the proposed shared-controller.

The shared-control architecture receives commands from

two agents: a user agent (UA), and a machine agent (MA).

The user issues BCI-actuated commands θUA using the BCI.

The proposed shared-control architecture includes a virtual-

constraint layer and an intent-matching layer. The former

is responsible for enabling/disabling user commands, as a

function of certain criteria, and the latter determines the

suitable manoeuvres, taken into account her/his steering

competence, as outlined in Fig. 6.

1) Virtual-Constraint Layer: The virtual-constraint layer

(VCL) is responsible for enabling/disabling the user com-

mands. This layer is required because the BCI system is

continuously providing navigation commands, independently

of user. While in a disabled state, the system becomes
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autonomous. User commands are enabled by the VCL ac-

cording to the following perceived situations:

• S1: Multiple possible directions to avoid an obstacle;

• S2: Solving a deadlock moving backwards;

• S3: Solving a deadlock with left/right pure rotations.

The VCL includes a situation aware module responsible for

detecting the occurrence of the referred perceived situations.

When one of those situations occur, the user is requested

to choose a desired steering command, through the visual

arrow paradigm shown in Fig. 2. Additionally, the VCL also

takes into account constraints related to the user steering

competence, as follows:

Basic User :

θVC =







θUA i f (S1 && θUA ∈ {L, F, R})
θUA i f (S3 && θUA ∈ {ROL, ROR})

0 otherwise

Average User :

θVC =







θUA i f (S1 && θUA ∈ {L, F, R})
θUA i f (S2||S3)

0 otherwise

Advanced User :

θVC =

{

θUA i f (S1 || S2 || S3)
0 otherwise

(2)

where L ≡ LEFT , F ≡ FORWARD, R ≡ RIGHT , ROL and

ROR denote a pure rotation left and right, respectively.

2) Intent-Matching Layer: This layer determines the final

steering command to the RW, based on user-intent properly

modified by the VCL, and taking into account a set of

steering directions proposed by the MA outputs. The error

ei
θUA

between the user command, and the directions provided

by the MA is calculated as follows:

ei
θUA

= θVC−θ i
MA i = 1, ...,n (3)

where n is number of MA proposed directions. Each pro-

posed direction has an associated machine weight, which

is defined by the machine steering weight vector ηMA =
[η1

MAη2
MA...ηn

MA]T . For a perceived situation S1, the MA

always determines a steering direction θMA, which is selected

according to the cost function (1). For all the candidate

directions a cost function g(θ) is defined as follows:

g(θ) = ηMA · e
i
θMA

+ηUA · ra · e
i
θUA

(4)

where ei
θMA

is the error between the selected direction, and

each of the proposed directions,

ei
θMA

= θ i
MA−θMA i = 1, ...,n (5)

The weight ηUA is defined according to the user steering

competence, and ra denotes her/his efficiency rate, which

varies according to ra ∈ [0...1]. The selected direction θ

is the one that minimizes the cost function g(θ). For a

deadlock perceived situation (S2 and S3), the MA is not able

to determine any free direction, and, in that case, the user

must move the RW backwards or perform pure rotations left

or right (commands BACK, ROL, and ROR, respectively) to

leave the deadlock, and attain a S1 situation.

Fig. 5. Two-layer shared-control architecture.

VI. EXPERIMENTAL RESULTS

A. System setup - Robchair

Figure ?? illustrates the Robchair control architecture. The

wheelchair is composed by two motorized rear wheels, and

with two casters in front. There is also a fifth rear wheel

connected to the back of the wheelchair with a damper

used for stability. It has been equipped with several devices

such as two power-driver modules, which can guarantee an

independent control of each motor, joystick, and several

sensors such as: magnetic sensor ruler, laser range finder

(LSR), inertial measurement unit (IMU), and ultrasound.

The wheelchair also includes an industrial embedded PC,

mounted on the front, powered by Linux with RTAI for

real-time processing. The embedded PC connects to sensors

and actuators through CAN fieldbus. The platform connects

to external devices, such as an industrial laptop, through a

wireless link.

B. Wheelchair on road

The user can not be continuously issuing commands

because it would be tiresome. The navigation system was de-

signed to reduce the user effort to a minimum. In the current

experiments the user selects global goals, and the navigation

module follows the paths determined by the global planner

to reach the goals. The navigation module considers the BCI

input commands according to user steering competence, and

according to situation awareness, more precisely, if situations

S1, S2 or S3 occur. These situations were experimentally

tested, and results are presented in the sequel. An automatic

switch on/off of the BCI system directly controlled by the

user is also being researched but this issue is beyond the

scope of this paper.

1) Direction selection to avoid an obstacle (S1): Figure

7 shows results related to the navigation of a wheelchair

in an office-type building scenario. These results are related

to situation S1 described as multi-direction possibilities to

avoid new obstacles in the trajectory. This experiment was

simulated in player/stage environment for three types of
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Fig. 6. Robchair data flow diagram.

users, according to their steering competence: basic, average,

and advanced. According to Fig. 7, when position 1 is

reached, the navigation system faces an ambiguous situation,

and the user is requested to select the desired direction. The

final steering direction is then calculated according to (4).

For these experiments, machine steering weights η i
MA are

equal to 1, and user weights are as follows: ηbasic
UA = 2,

η
average
UA = 3, and ηadvanced

UA = 4. An efficiency rate ra = 1

was also considered in all experiments. According to user

weights, and considering an efficiency rate of 1, it is possible

to conclude that advanced, and average users always have

the power to change the direction selected by the MA.

Basic users always have less power than the MA. Of course,

with lower efficiency rates user power can be reduced to

nearly zero, and the system may become purely autonomous,

for any type of users. The results depicted in Fig. 7 are

similar for all types of users, with weights and efficiency rate

described previously. Figure 8 shows a S1 experiment using

Robchair, the real platform. Robchair detects an obstacle,

and the MA proposes two steering directions due to the

door opening, which results in an inappropriate steering

direction, leading to a dubious situation. The user chooses the

appropriate steering direction (LEFT command), the obstacle

is avoided, and Robchair is able to reach the final localization

goal.

2) The deadlock problem (S2, S3): Figure 9 shows how

different users solve the deadlock problem, after selecting the

wrong direction. In case of basic users, they are not allowed

to move backwards, and they can only perform pure rotations

(ROL or ROR) if they are in a deadlock situation, where

the MA is not able to determine any free steering direction.

Fig. 7. Direction selection to avoid an obstacle. 1 - user selects to move
left to avoid the obstacle.

Fig. 8. Direction selection to avoid an obstacle. 1 - user selects to move
left to avoid the obstacle. The MA proposes two steering directions due to
the door opening.

Average and advanced users can solve the deadlock because

they are allowed to move backwards in case of entering the

deadlock.

VII. CONCLUSION AND FUTURE WORK

This paper presents an assistive navigation architec-

ture based on shared-control, and using P300-based BCI

paradigm, which allows the selection of brain-actuated com-
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Fig. 9. Experimental results: each user tries to solve the deadlock
problem: 1 - user selects RIGHT and enters the deadlock; 2, 3 - basic
user stops and tries to perform a pure rotation right (ROR) but gets stuck;
4,5 - average/advanced user stops and move backwards (BACK); 6,7 -
average/advanced user stops and selects LEFT.

mands. Since BCI-actuated commands are issued sparsely, an

assistive navigation architecture based on a two-layer shared

controller was designed, and implemented in player/stage

environment and in Robchair (ISR-UC wheelchair platform).

The shared-control architecture, includes a virtual-constraint

layer, and an intent-matching layer.

In the actual stage of the project, the BCI paradigm

always presents a constant set of commands to users (all

the arrow paradigm options shown in Fig. 2). Research is

being carried out to have a variable set of commands, which

is function of the situation. An automatic switch on/off

of the BCI system directly controlled by the user is also

being researched. A new dynamic local planner that takes

into account robot geometry to plan more efficient obstacle

avoidance manoeuvres, and that be able to effectively avoid

slow dynamic obstacles, such as people and other moving

objects is also being pursued.
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