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Abstract

The effective use of brain-computer interfaces (BCI) in real-world environ-
ments depends on a satisfactory throughput. In a P300-based BCI, this can
be attained by reducing the number of trials needed to detect the P300 signal.
However, this task is hampered by the very low signal-to-noise-ratio (SNR)
of P300 event related potentials. This paper proposes an efficient method-
ology that achieves high classification accuracy and high transfer rates for
both disabled and able-bodied subjects in a standard P300-based speller sys-
tem. The system was tested by three subjects with cerebral palsy (CP), two
subjects with amyotrophic lateral sclerosis (ALS), and nineteen able-bodied
subjects.

The paper proposes the application of three statistical spatial filters. The
first is a beamformer that maximizes the ratio of signal power and noise
power (Max-SNR). The second is a beamformer based on the Fisher criterion
(FC). The third approach cascades the FC beamformer with the Max-SNR
beamformer satisfying simultaneously sub-optimally both criteria (C-FMS).
The calibration process of the BCI system takes about 5 minutes to collect
data and a couple of minutes to obtain spatial filters and classification models.

Online results showed that subjects with disabilities have achieved, on
average, an accuracy and transfer rate only slightly lower than able-bodied
subjects. Taking 23 of the 24 participants, the averaged results achieved
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a transfer rate of 4.33 symbols per minute with a 91.80% accuracy, corre-
sponding to a bandwidth of 19.18 bits per minute. This study shows the
feasibility of the proposed methodology and that effective communication
rates are achievable.

Keywords: Brain computer interface, electroencephalography, P300,
spatial filtering, signal-to-noise ratio.

1. Introduction1

Brain computer interfaces (BCI) based on electroencephalography (EEG)2

emerge as a feasible type of human-computer and human-machine interfaces3

that open new communication channels to persons suffering from severe mo-4

tor disabilities, such as amyotrophic lateral sclerosis (ALS), full paraplegia5

and certain types of cerebral palsy, without recurring to the conventional mo-6

tor output pathways. For some of these patients, standard interfaces such as7

speech recognition, eye tracking and head or teeth switches are not suitable8

because they suffer from total lack of motor control or very low dexterity9

affecting head, limbs, eyes and speech.10

Scalp recorded EEG is a non-invasive technique that presents a very good11

temporal resolution and requires relatively low-cost devices. These are the12

two main reasons that explain its widespread use in BCI. However, EEG13

presents a poor spatial resolution mainly due to volume conduction (Srini-14

vasan et al., 1998). This phenomena associated with the presence of artifacts15

such as muscular activity, external stimuli, environmental noise and sponta-16

neous ongoing EEG, substantially degrade the signal-to-noise ratio (SNR),17

particularly in event related potentials (ERP). Moreover, EEG signals are18

nonstationary and present inter-subject and within-subject variability. The19

decoding of user intentions from brain patterns therefore requires the ap-20

plication of signal processing and pattern recognition techniques that can21

enhance the desired components and attenuate noise from EEG data. In the22

context of classification, another important issue is the reduction of feature23

dimensionality to attenuate overfitting of training data and to increase the24

computational efficiency of algorithms for real time operation (Hall, 2000).25

Several approaches have been proposed for classification in P300-based26

BCI systems. One common practice is to apply feature extraction, or simply27

decimation, on each raw channel, and then concatenate the features from28

every channel into a feature vector used for classification (Thulasidas et al.,29
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2006; Lenhardt et al., 2008). This approach can be combined with feature30

selection algorithms, via wrapper or filter methods, able to find the most31

discriminative features (Rakotomamonjy and Guigue, 2008; Hoffmann et al.,32

2008b). One popular combination of classification and feature selection is33

the stepwise linear discriminant analysis (SWLDA), which has demonstrated34

good classification results (Farwell and Donchin, 1988; Donchin et al., 2000;35

Krusienski et al., 2008; Townsend et al., 2010). Other efficient classifica-36

tion methods were already proposed such as support vector machine (SVM)37

(Rakotomamonjy and Guigue, 2008; Kaper et al., 2004) and Fisher linear38

discriminant analysis (FLDA) (Hoffmann et al., 2008a). See (Krusienski39

et al., 2006) for a comparison of several P300 classification methods. Fea-40

ture selection is a way of increasing the SNR because it removes noisy and41

non-discriminative features, but it does not take full advantage of the spatial42

combination of multichannel data as it happens in spatial filtering. When43

signal and noise have different spatial foci, spatial filtering can decompose44

raw signals into different components separating noise and meaningful com-45

ponents, leading to an enhanced SNR. Feature selection algorithms can still46

be applied after spatial filtering further improving the SNR. Spatial filter-47

ing assumes particular importance when the temporal frequency spectrum48

of noise and interferences overlaps the temporal frequency spectrum of the49

transient P300 signal, since temporal filtering is not able to separate noise50

from signal (see section 3.1).51

Three spatial filtering methods are commonly applied in BCI: indepen-52

dent component analysis (ICA), principal component analysis (PCA) and53

common spatial patterns (CSP). Both ICA and PCA are mainly used on an54

unsupervised way, the former for separation of multichannel EEG data into55

statistically independent components, and the second for dimensionality re-56

duction (Lenhardt et al., 2008) and denoising. Most of the ICA applications57

have been on offline neurophysiologic analysis (Makeig et al., 1999), and for58

strong artifact removal, such as eye blinking, eye movement and muscular59

activity (Jung et al., 2000; Müller et al., 2004). Still, there are successful60

online and offline applications of ICA in the context of P300-based systems,61

as you can see respectively in (Serby et al., 2005; Piccione et al., 2006) and62

(Xu et al., 2004). The CSP method is a supervised technique that relies63

on the simultaneous diagonalization of two covariance matrices, maximiz-64

ing the differences between two classes (Fukunaga and Koontz, 1970). It65

was first applied in (Soong and Koles, 1995) for localization of neurophysi-66

ologic features and since then it has been mainly applied in motor imagery67
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based BCIs (Müller-Gerking et al., 1999; Ramoser et al., 2000; Blanchard68

and Blankertz, 2004; Li et al., 2004; Lemm et al., 2005; Dornhege et al.,69

2006), outperforming ICA and classical EEG re-referencing montages such70

as Laplacian derivations (Naeem et al., 2006). As concerns the effective71

use of CSP for P300 detection, see (Krusienski et al., 2007) for a variant72

of CSP called common spatio-temporal patterns (CSTP) and (Pires et al.,73

2009) where a straightforward application of CSP was proposed. In (Rivet74

et al., 2009) it is proposed the xDAWN algorithm, which estimates spatial75

filters that find the evoked subspace by maximizing the signal-to-signal plus76

noise ratio. In other contexts than BCI, many other spatial filtering tech-77

niques have been proposed specifically for ERP denoising (de Cheveigne and78

Simon, 2008; Ivannikov et al., 2009).79

This paper analyzes and assesses the application of several statistical80

beamformers in a P300 based BCI, with experimental testing on a stan-81

dard row-column speller paradigm. Beamforming techniques were origi-82

nally developed in the field of antenna and sonar array signal processing83

(Van Veen and Buckley, 1988; Trees, 2002) and are currently used in many84

other areas including magnetoencephalography (MEG) and EEG source re-85

construction/localization (Van Veen et al., 1997; Sekihara et al., 2001; Grosse-86

Wentrup et al., 2009).87

Firstly, we propose a beamformer based on the classical SNR maximiza-88

tion criterion (Max-SNR) (Van Veen and Buckley, 1988). The filter is ob-89

tained from the eigenvector that maximizes the output ratio of signal and90

noise powers. The method works blindly, i.e., it does not use geometrical91

information about the sensor array or the underlying sources. It requires the92

estimation of covariances matrices associated with periods of the P300 signal,93

and periods of only noise-plus-interference. Secondly, a beamformer based on94

the Fisher Criterion (FC) is proposed following the same eigenvector-based95

principle used in Max-SNR. The method extends the well known Fisher lin-96

ear discriminant (FLD) to the spatial domain using an approach similar to97

(Hoffmann et al., 2006). Third, the two beamformers are cascaded in order to98

satisfy simultaneously in a suboptimum way both criteria (Fukunaga, 1990,99

Ch.10). This spatial filter is henceforth designated C-FMS.100

Experimental assessment of the spatial filters show the effective improve-101

ment as concerns SNR and classification accuracy. Their performance is com-102

pared with the one obtained with best channel and with Laplacian spatial103

filtering. The Laplacian method is a high-pass spatial filter that computes104

for each electrode the instantaneous second derivative of the spatial voltage105
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Figure 1: Screenshot of 6× 6 matrix speller paradigm.

distribution, emphasizing localized activity and attenuating surrounding ac-106

tivity. It is an unsupervised technique that significantly increases the SNR107

and thereby increases the classification accuracy (McFarland et al., 1997).108

Two classification methodologies, one combining the average of the signal109

epochs and the other combining the a posteriori probabilities, are compared.110

The system requires a short calibration time of about 7 minutes, more ex-111

actly, 5 minutes to collect data plus 2 minutes to obtain spatial filters and112

classification models. The C-FMS filter combined with feature selection and113

a Bayesian classifier is tested online on a group of 19 able-bodied partici-114

pants and 5 disabled participants. For performance comparison purposes,115

the C-FMS method is also tested on the data sets of the BCI-competition116

2003 (BCI-Competition, 2003).117

Although the methods are applied in a P300-based BCI framework, they118

can also be used to reduce the recording duration in patient examinations,119

when P300 detection is used as a diagnostic tool (e.g., cognitive impairments,120

neurological and psychiatric disorders) (Mell et al., 2008).121

2. Paradigm, Data Acquisition and Participants122

2.1. Participants123

The experiments were performed by nineteen able-bodied volunteers, three124

subjects with cerebral palsy (CP), and two subjects with amyotrophic lat-125

eral sclerosis (ALS). All participants gave informed consent to participate126

in the study. Fourteen of the able-bodied subjects and the five disabled127
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Table 1: Clinical data of CP and ALS patients

Patient Age Sex Diagnosis Time since diagnosis (years)

S20 18 F CP: spastic tetraparesis and
dysarthria

posnatal

S21 34 M CP: spastic tetraparesis and
dysarthria, and involuntary
movements with high amplitude

perinatal

S22 46 M CP: spastic tetraparesis,
dysarthria and discal hernia
C3-C4

perinatal

S23 67 F bulbar ALS (FRS-r 46) 7
S24 75 F bulbar ALS (FRS-r 40) 1

subjects never had used a BCI before. Table 1 presents a summary of clin-128

ical data of disabled subjects. The three subjects with CP present severe129

spastic tetraparesis (neuromuscular mobility impairment characterized by130

hypertonic muscle tone affecting all four limbs and trunk) and dysarthria131

(speech disorder characterized by poor articulation), and are all confined to132

a wheelchair. Subject S20 steers the wheelchair using an head-switch that133

selects the direction via a scanning interface, subject S21 uses an adapted joy-134

stick controlled by the right foot, and subject S22 controls the wheelchair with135

the chin. All present involuntary movements which are more pronounced on136

subject S21. Subjects S23 and S24 present a bulbar-onset ALS whose main137

signs are dysarthria and dysphagia (swallowing difficulty). Subject S23 also138

begins to exhibit muscular weakness in upper limbs with distal predominance.139

The degree of disability was rated by using the revised ALS functional rating140

scale (ALSFRS-r) where 48 is normal and 0 a complete loss of functionality141

(Cedarbaum et al., 1999). Spoken communication with subjects S20-S23 was142

hard, and impossible with subject S24. All patients presented normal cog-143

nitive capabilities. The group of able-bodied volunteers was composed of 10144

males and 9 females with ages from 18 to 42 years old, averaging 30.1 years145

old.146

2.2. Paradigm and procedure147

The speller system is based on the paradigm proposed by Farwell and148

Donchin (Farwell and Donchin, 1988) as shown in Fig.1. The speller paradigm149

presents a 6 × 6 matrix with the alphabet letters and other useful symbols150

such as the ’spc’ and ’del’. The rows and columns are intensified during 100151
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ms with an inter-stimulus interval (ISI) settled to 200 ms. For every complete152

scanning (round), each row and column is intensified once in a random order.153

The target events are the row and column that include the symbol mentally154

selected by the user. All other rows and columns are the non-target events.155

Thus, for each round there are 2 target events and 10 non-target events,156

which corresponds to a target event probability of 2/12. It is expected that157

target events will elicit a P300 ERP. The EEG signals are recorded and syn-158

chronously marked with event codes. The data segment associated to each159

event is called an epoch and has a duration of 1 second. The interval be-160

tween each group of rounds is called inter-trial interval (ITI). This interval161

was settled to 2.5 seconds to allow the user to switch the attention focus for162

a new letter mentally selected.163

The experiments took place on regular rooms in an environment with164

some noise and people moving around. The sessions with CP and ALS sub-165

jects took place respectively at the facilities of the Cerebral Palsy Association166

of Coimbra (APCC) and the Hospitals of the University of Coimbra (HUC).167

The sessions with able-bodied participants took place at working labs. The168

experiments consisted of a calibration phase and of an online phase. Before169

the calibration phase, the subjects were instructed to be relaxed and attend170

the desired target, mentally counting the number of intensifications of tar-171

get rows and columns. The able-bodied and ALS subjects were seated on a172

standard chair, while the CP subjects were seated at their own wheelchairs.173

A 15” computer screen was positioned in front of the participants at about174

60-70 cm. It was asked only to the able-bodied subjects to avoid blinking175

and moving the eyes.176

During the calibration phase, the subjects attended the letters of the word177

’INTERFACE’ (9 characters) which were successively provided at the top of178

the monitor (Fig. 1). Each row and column was repeated 10 times for each179

letter. Therefore, the data collected during the calibration phase consisted180

of 180 target epochs and 900 non-target epochs. This calibration session181

took about 5 minutes, and after that, the classification models were trained182

from collected and labeled data, taking only a couple of minutes. The online183

sessions took place just after the calibration phase.184

The EEG activity was acquired with a g.tec gUSBamp amplifier. Signals185

were recorded from 12 Ag/Cl electrodes at positions Fz, Cz, C3, C4, CPz,186

Pz, P3, P4, PO7, PO8, POz and Oz of the internacional extended 10-20187

standard system with a g.tec cap. The electrodes were referenced to the188

right ear lobe and the ground was placed at AFz. Signals were sampled at189
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256 Hz, and filtered by a 0.1-30 Hz bandpass filter and a 50 Hz notch filter.190

The electrodes impedance varied from subject to subject, but were almost191

always kept under 10KΩ.192

3. Signal Processing and Classification Methods193

3.1. Assumptions and notation194

Consider an EEG epoch X defined as a time sequence of measures, X =195

[x(t1) x(t2) · · · x(tT )], where T is the number of time samples and x(t)196

is a column vector with dimension N (number of EEG channels). Therefore,197

each epoch is represented by a spatio-temporal matrix X with dimension198

N × T (in our case, N = 12 channels and T = 256 samples). Target and199

non-target epochs are represented respectively by X+ and X−, where the200

subscripts + and − stand respectively for target and non-target.201

Let us consider target epochs modeled according to202

X+,k = Sk + Vk (1)

where X+,k is the kth recorded epoch and Sk is the kth P300 signal, mea-203

sured in the N dimensional space. Vk contains activity from ongoing EEG,204

plus the interference from not-attended flashes, plus white noise. Non-target205

epochs occur immediately before target epochs and thus the activity should206

be similar to Vk. Hence, X−,k is modeled as the noise and interference part207

of the measured target epochs208

X−,k = Vk. (2)

Models (1) and (2) were experimentally sustained by means of a fre-209

quency analysis. It consisted of calculating and analyzing the FFT spectra210

over representative data collected from one session (180 target epochs and211

900 non-target epochs). Color maps in Fig. 2(a) and Fig. 2(b) represent212

respectively the FFT spectra of 90 target and 90 non-target epochs mea-213

sured at channel Pz. The spectra for both conditions, X+ and X−, present214

similar frequency distributions. This overlapping of spectra is evidenced in215

the example of a single realization in Fig. 2(c). This shows, firstly, that216

much of the non-target activity is contained in target epochs, and secondly,217

that temporal filtering is insufficient to remove noise from target epochs, and218

thus it should be used carefully. Figure 2(d) presents the average of the219

FFT spectra of target and non-target epochs. The average attenuates the220
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Figure 2: FFT spectrum of a representative data set of one session (180 target and 900
non-target epochs) measured at channel Pz; (a) Color map of the FFT spectra over 90
out of the 180 target epochs; (b) Color map of the FFT spectra over 90 out of the 900
non-target epochs; (c) Example of one FFT of a single epoch (target and non-target); (d)
Average of the FFT spectra of all epochs (180 FFTs of target epochs and 900 FFTs of
non-target epochs).

spectrum of random components, and emphasizes the spectrum of the P300221

ERP and other uncorrelated interfering signals. A strong interference at 5 Hz222

appears in the target spectrum (see Fig. 2(d)). This interference comes from223

the rows/columns flashing with an ISI of 200 ms, i.e, 5 Hz (see its effect in224

time domain in Fig. 3). These stimuli generate a steady state visual evoked225

potential (SSVEP) at 5 Hz, and a 2nd harmonic at 10 Hz as well. This 2nd226

harmonic affects target epochs with less impact because it does not overlap227

the spectrum of the P300 signal.228

9



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time [s]

A
m

pl
itu

de
, µ

V

 

 
Target
Non−target

200 ms

Figure 3: Average of 180 unfiltered target epochs and 900 unfiltered non-target epochs
recorded at channel Pz. The result evidences an oscillatory component with 200 ms period
in non-target epochs, which is also visible in target epochs.

3.2. Spatial Filtering229

A spatial filter is generically an weighting vector, w, that combines the230

data of N channels at each time instant t231

yj(t) =
N∑

i=1

wijxi(t) , j = 1, · · · , N (3)

where yj is the output projection obtained from input channels xi, which can232

be denoted in the matrix notation from:233

Y = W ′X (4)

where ′ denotes the transpose operator.234

3.2.1. Max-SNR beamformer235

In this first approach, the spatial filtering of P300 is stated as a denoising236

problem. The solution is an optimum beamformer, based on statistical data,237

that maximizes the output SNR238

SNR =
E[W ′SS′W ]

E[W ′X−X
′
−W ]

w W ′R+W

W ′R−W
(5)

where W is the weighting vector, E[·] represents the expectation operator,239

and the matrices R+ and R− are the estimated covariance matrices for target240

and non-target. The maximum SNR is obtained by maximizing the discrimi-241

native Rayleigh quotient in (5). The optimal W is the eigenvector associated242
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to the largest eigenvalue. The solution is achieved by finding the generalized243

eigenvalue decomposition that satisfies the equation244

R+W = R−WΛ (6)

where Λ is the eigenvalue matrix. The eigenvectors W are obtained from245

the eigenvalue decomposition of (R−)−1R+ provided that R− is nonsingular.246

The principal eigenvector W (1) maximizes the SNR, and therefore the output247

of the beamformer is given by248

y = W (1)′X. (7)

The N×T−dimensional measurement X is transformed into a 1-dimensional249

subspace, 1×T . This reduction of the feature space is an important achieve-250

ment for subsequent classification.251

The matrices R+ and R− are estimated from the average over the epochs252

within each class, gathered during calibration sessions. Consider the N ×N253

normalized spatial covariance for each epoch k given by Rk = XkX
′
k/tr(XkX

′
k),254

then, R+ and R− are computed from255

R+ =
1

K+

K+∑

k=1

R+,k and R− =
1

K−

K−∑

k=1

R−,k (8)

where K+ and K− are the number of target and non-target training sam-256

ples. The size of the target and non-target classes is highly unbalanced and257

therefore a regularization of the covariance matrices according to258

R+W = (R+ + αR−)WΛ, (9)

where α ≤ 1, can alleviate overfitting and improve class discrimination.259

The Max-SNR solution (6) is similar to that obtained from CSP, which260

can also be stated as a generalized eigenvalue problem as can be seen in261

(Tomioka et al., 2007). The Max-SNR can be regarded as a particular case262

of CSP.263

3.2.2. FC Beamformer264

The Max-SNR criterion relies on the ratio of signal and noise cross-powers.265

From a pattern recognition perspective, other criteria can be investigated to266

implement a beamformer. One of such criteria is the Fisher’s criterion (FC)267

11



(Duda et al., 2001), which aims to increase the separation between classes268

while minimizing the variance within a class (Fisher linear discriminant -269

FLD). This concept can easily be extrapolated to the spatial domain us-270

ing spatio-temporal data as was done in Max-SNR (section 3.2.1). The FC271

takes into consideration the difference between target and non-target spatio-272

temporal patterns. Then it is expected that the spatial filter maximizes the273

spatio-temporal differences, leading to an enhancement of specific subcom-274

ponents of the ERP. The FC is given by the Rayleigh quotient275

J(W ) =
W ′SbW

W ′SwW
(10)

where Sb is the spatial between-class matrix and Sw is the spatial within-class276

matrix. The optimum filter W is found solving the generalized eigenvalue277

problem278

SbW = SwWΛ. (11)

The selected filter is the eigenvector associated with the largest eigenvalue,279

i.e., W (1), and the spatial filter output is obtained by applying expression280

(7).281

Taking the spatio-temporal matrix Xk (dimension N×T ) from each epoch282

k, the matrices Sb and Sw are computed from283

Sb =
∑

i

pi(Xi −X)(Xi −X)′ (12)

and284

Sw =
∑

i

∑

k∈Ci

(Xi,k −Xi)(Xi,k −Xi)
′ (13)

where i ∈ {+,−} and, C+ and C− represent respectively the target and non-285

target classes, and pi is the class probability. The average of the epochs in286

class Ci and the average of all epochs are respectively denoted Xi and X,287

with288

Xi =
1

Ki

Ki∑

k=1

Xi,k and X =
1

K

K∑

k=1

Xk (14)

where Ki is the number of epochs in class Ci and K is the total number of289

epochs. To increase generalization, Sw in (11) can be regularized according290

to291

SbW = [(I − θ)Sw + θI]WΛ (15)
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where θ is the regularized parameter that can be adjusted from training data292

to increase class discrimination.293

3.2.3. C-FMS beamformer294

In order to satisfy both Max-SNR and FC, a cascade of the two spatial295

filters is proposed using a suboptimum approach (Fukunaga, 1990, Ch.10).296

FC is applied first since it is more discriminative than Max-SNR. The first297

transform is obtained from298

Y = W1
′X (16)

where W1 is the spatial filter computed according to (15). The first feature299

vector is obtained from the first projection300

y1 = W
(1)
1

′X. (17)

The feature vector y1 preserves the information about FC while the remain-301

ing components in the (N − 1)−dimensional space are used for a second302

transform303

Z = W2
′Y(2:N) (18)

where the spatial filter W2 is estimated according to (9) taking Y(2:N) data304

from the 1st stage of cascade (16). The first projection satisfies the Max-SNR305

criterion306

z1 = W
(1)
2

′Z. (19)

The concatenation of the two projections307

v = [y1 z1] (20)

maximizes both FC and max-SNR criteria in a suboptimum way.308

3.3. Classification and Feature Selection309

In terms of pattern recognition, the oddball paradigm reduces a n-events310

detection to a binary discrimination problem, i.e., the discrimination between311

target events (desired row and column events: two of the n-events) and non-312

target events (remaining (n - 2) events). The final decision to detect the313

target is reached combining the n binary classification outputs.314

The classification is performed by a Bayesian classifier. It presents prop-
erties that makes it a suitable option for our classification problem. Namely,
it offers an easy way to include prior probabilities and to control false pos-
itive and false negative rates, it returns probability values that can be used
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for combination of event classification outputs, and the parameters are easily
tuned requiring a short period of training. Furthermore, its application is
straightforward and computationally undemanding. More powerful classifi-
cation algorithms could be implemented such as SVM or neural networks,
further improving the classification results presented in this study. The com-
parison of classification methods is however beyond the scope of this pa-
per. After spatial filtering, the feature space is an unidimensional vector
y = [y(t1) y(t2) · · · y(tT )]. The features are scored according to the
r-square discrimination (square of the Pearson’s correlation coefficient) be-
tween target and non-target epochs, and then the features with higher score
are selected for classification. The Bayesian classifier is presented in its näıve
form (NB), i.e., it assumes that the features are conditionally independent.
Under this assumption, the joint pdf is given by the product of the pdf of
each individual feature

p(y|Ci) =

Nf∏
j=1

p(y(j)|Ci) =

=

Nf∏
j=1

1√
2πσi(j)

exp (−(y(j)− µi(j))
2

2σ2
i (j)

) (21)

where each feature j is assumed to have a normal distributionN (µi(j), σ
2
i (j)).315

The number of features is defined by Nf , and Ci (i ∈ {+,−}) represents316

the target and non-target classes. The a posteriori probability p(Ci|y) is317

computed from the conditional probabilities using the Bayes theorem:318

P (Ci|y) =
P (Ci)p(y|Ci)

p(y)
. (22)

The prior probabilities P (Ci) are respectively 2/12 and 10/12 for target and319

non-target. The class is detected using the following maximum a posteriori320

decision rule321

ĉ = arg max{P (C+|y), P (C−|y)}. (23)

4. Results322

The proposed spatial filter methods were experimentally evaluated through323

two assessment parameters: SNR measure and classification accuracy.324
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The data sets for this analysis were obtained for each participant during325

the calibration phase, according to the protocol defined in section 2. The326

beamformers Max-SNR, FC and C-FMS were estimated from calibration327

data sets using respectively (9), (15), and combining (15) with (9) following328

the methodology in section 3.2.3. The parameters α in (9) and θ in (15) were329

pre-set with the same values for all participants.330

4.1. SNR and Discrimination Enhancement331

One natural measure to evaluate the performance of the spatial filters is
the SNR. It was estimated according to (Lemm et al., 2006)

SNR(y) = 10 log
Vart(Ek[y])

Ek[Vart(y − Ek[y])]

= 10 log
Vart(ȳ)

Ek[Vart(y − ȳ)]
(24)

where Vart is the temporal variance of the ERP signal and Ek[·] denotes the332

mathematical expectation operator, applied over all K epochs of calibration333

data sets. To assess the improvement performance, the SNRs of Max-SNR334

and FC beamformers were respectively compared with: 1) the SNR of the335

best channel; 2) the averaged SNR over the 12 channels; and 3) the SNR336

of Laplacian derivations at channels Cz and Pz, taking respectively (Fz, C3,337

C4, Pz) and (Cz, Oz, PO7, PO8) as surrounding electrodes. The SNR of338

C-FMS was not computed because its first projection coincides with the FC339

beamformer, and thereby would lead to the same results. The SNR estimates340

were then averaged taking 23 of the 24 subjects, achieving the results in Fig.341

4. The results were obtained for different number of averaged epochs1, K,342

(K = 1 · · · 7), thus simulating a different number of repetitions of the events.343

The data sets from subject S21 were discarded in the analysis because this344

subject did not evoke a visible P300. The results are statistically evaluated345

with a t-test. For single epochs (K = 1), the SNR is −6.36 dB for FC346

beamformer, which is significantly higher than the values obtained respec-347

tively for: 1) all-channel average, −14.60 dB, (t(22) = 9.93, p ≤ 0.001);348

1It is important to note that, when averaging, the number of samples of the data sets
is reduced by the number of epochs, K, used in the average. For instance, if K = 2 the
number of target and non-targets epochs will be respectively 180/2 = 90 and 900/2 = 450;
for K = 3, 180/3 = 60 and 900/3 = 300, and so on.
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Figure 4: SNR estimated from 23 subjects. Analysis for a single epoch (K=1) and K-epoch
average K = 2 · · · 7.

2) best-channel, −12.05 dB (t(22) = 10.68, p ≤ 0.001); 3) Laplace deriva-349

tions, −12.22 dB (t(22) = 9.05, p ≤ 0.001); and 4) Max-SNR, −8.44 dB350

(t(22) = 6.68, p ≤ 0.001). In the case of K-epoch average, K = 2 · · · 7, the351

spatial filters were applied to the average of K epochs and then the SNR was352

computed from the spatial projection. The positive SNR margin between FC353

and, all-channel average, best channel, Laplace derivations and Max-SNR,354

are respectively 8.18 dB, 5.68 dB, 5.76 dB and 0.87 dB. These differences355

are approximately constant over the K = 2 · · · 7 averaged epochs, and al-356

ways statistically significant (p ≤ 0.001). For all methods, as the number357

of epochs taken for average increases, the SNR also increases, which was ex-358

pected given the phase-locked properties of ERPs. The SNR improvements359

led to an enhancement of the ERP and thereby to an increased discrimina-360

tion between target vs. non-target. The statistical r-square measure was361

used to assess this discrimination. The color maps in Fig. 5 compares the362

r-square values before spatial filtering (top) and after C-FMS spatial filter-363

ing (bottom), for a representative data set with 180 target epochs and 900364

non-target epochs. Channels with higher discrimination are usually over the365

parietal and parietal/occipital regions (typically, PO7 and PO8 provide the366

higher levels of discrimination). For C-FMS filtered data, the r-square was367
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computed from projections obtained in (20). Projection 1 is the output of FC368

beamformer, y1, and projection 2 is the output of Max-SNR beamformer, z1.369

The remaining projections are obtained from Z(2:N−1) (18). As expected, the370

first C-FMS projection shows the higher r-square discrimination, increasing371

the pre-filter maximum of approximately 0.3 to a 0.6 post-filter maximum.372

Although lower, the second projection of C-FMS also shows some degree of373

discrimination. The other projections show no discrimination. This result374

confirms that FC and Max-SNR outputs retain the most discriminative in-375

formation. Figure 6 shows the mean, µ(t), and mean ± standard deviations,376

µ(t) ± σ(t), of target and non-target epochs measured at each instant t at377

channel Cz before spatial filtering (top), and µ(t) and µ(t) ± σ(t) of first378

C-FMS projection (bottom). The increased margin of separation between379

the patterns of the two classes after C-FMS filtering is remarkable. Figure380

7 shows also the effect of spatial filtering in the frequency domain. The381

plot represents the average of the FFTs spectra of the first spatial projec-382

tion. Comparing with Fig. 2(d), it can be seen that the 5 Hz interference is383

almost eliminated from target epochs.384

4.2. Spatial Filtering Robustness385

The ERP exhibits an inter-trial variability regarding latency, amplitude386

and morphology. However, there is a spatial correlation between channels387

(scalp distribution) that is invariant across trials in normal conditions. The388

estimation of spatial filters takes advantage of this spatial correlation which389

gives the spatial filter the property of robustness to inter-trial variability.390

To test the robustness of spatial filtering, we compared the FC beamformer391

estimated from two independent data sets obtained from the same subjects.392

Figure 8 shows the weights of the two filters obtained from one subject of the393

able-bodied group, one subject of the CP group and one subject of the ALS394

group. The weights of the spatial filters obtained from the two data sets are395

very similar. These and similar results give good indications that the spatial396

filters provide a good generalization without training overfitting.397

4.3. Offline Classification Results398

For each participant, the classification models were obtained from one399

training data set collected during the calibration session. A second data set,400

with the same amount of data, was collected for testing, such that all offline401

results presented in this section were obtained from unseen data.402
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Figure 5: Results obtained from representative data of one session: 180 target epochs
and 900 non-target epochs using a 5-epoch average. Color map representing the r-square
statistical measure of the discrimination between target and non-target classes. Top: r-
square of channels Fz, Cz, C3, C4, CPz, Pz, P3, P4, PO7, PO8, POz and Oz before spatial
filtering (X+,X−). Bottom: r-square of projections of C-FMS beamformer according to
(20), where projection 1 is the output of FC beamformer, y1, and projection 2 is the
output of Max-SNR beamformer, z1. The remaining projections are Z(2:N−1) according
to (18).

The classification performance is assessed using the NB classifier (21),403

(22), (23). Since the target and non-target classes are highly unbalanced,404

the measure of error was FNR+FPR
2

, where FNR and FPR denote respec-405

tively false negative rate and false positive rate. Opting for testing on an406

equal number of target and non-target epochs would be misleading because407

the classifier assumes different target and non-target probabilities. Two ap-408

proaches were followed. In the first, the spatial filtering was applied to the409

average of K-epoch and then the a posteriori probability obtained according410
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Figure 6: Results obtained from the same data shown in Fig. 5. Top: mean, µ(t), and
mean ± standard deviation, µ(t) ± σ(t), of 180 target epochs and 900 non-target epochs
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to411

P (Ci|y) ≡ P (Ci| 1

K

K∑

k=1

yk) , i ∈ {+,−}. (25)

In the second approach, the spatial filtering was applied to single epochs and412
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Figure 8: Comparison of FC beamformer estimated from two independent data sets. Re-
sults obtained from one subject of the able-bodied group (left), one subject of the CP
group (middle), and one subject of the ALS group (right).

then the K-posterior probabilities were combined according to413

P (Ci|y) ≡
K∏

k=1

P (Ci|yk) , i ∈ {+,−} (26)

where P (Ci|yk) is the a posteriori probability for the epoch k and K is the414

number of epochs (repetitions). Class detection was done in both cases using415

P (Ci|y) in (23).416
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Figure 9: Classification results using the K-epoch average approach for K ∈ {1, · · · , 7}.
The results are the averaged values obtained from 23 subjects.

Figure 9 shows the classification error rate following the K-epoch average417

approach. The error rate was obtained averaging the results of all 23 subjects,418

i.e., using 23 × 180 = 4140 target epochs and 23 × 900 = 20700 non-target419

epochs. The plot shows results of the the 3 proposed spatial filters, and for420

sake of comparison, the results of the Laplacian derivations, as well as the421

results concerning the channel presenting the highest discrimination. Figure422

9 shows that the classification accuracy increases sharply, for all methods,423

for K ≤ 3. For a single epoch (K = 1), the spatial filter C-FMS, when424

compared respectively with the best channel, Laplace derivations, Max-SNR425

and FC, presents a reduction in the error rate of about 17.3% (t(22)=16.95426

p ≤ 0.001), 10.8% (t(22)=12.17 p ≤ 0.001), 9.5% (t(22)=5.10 p ≤ 0.001) and427

1.1% (t(22)=3.65 p = 0.0014). For K ≥ 2 these differences remain constant428

or slightly decrease for best channel, Laplace derivations and FC. For Max-429

SNR the difference decreases to approximately 5%. This result shows that430

the Max-SNR filter benefits from higher SNR levels. For best channel and431

Laplace derivations, their differences to C-FMS are always statistically sig-432

nificant (p ≤ 0.001). For Max-SNR and FC, their differences to C-FMS for a433

given K provide the following statistical values: K = 2, p ≤ 0.001 for Max-434

SNR and p ≤ 0.01 for FC; K = 3, p ≤ 0.005 for Max-SNR and p = 0.056 for435
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Figure 10: Classification results using the K-probability approach for K ∈ {1, · · · , 7}. The
results are the averaged values obtained from 23 subjects.

FC; K = 4, p ≤ 0.05 for Max-SNR and p = 0.52 for FC; K = 5, p ≤ 0.05436

for Max-SNR and p = 0.067 for FC; K = 6, p = 0.084 for Max-SNR and437

p ≤ 0.02 for FC; K = 7, p ≤ 0.005 for Max-SNR and p = 0.13 for FC. The438

difference between C-FMS and FC fails the significance test for some values439

of K. Comparing Fig. 4 and Fig. 9 a direct relationship between SNR and440

classification results becomes apparent, i.e., methods with higher SNR pro-441

vide a better classification. The exception goes to the Laplacian derivations,442

which shows a better classification than best channel and notwithstanding443

similar SNRs.444

In the K-probability approach, the NB classifier is applied to single epochs445

and the probabilities are combined using (26). Figure 10 presents the clas-446

sification results. The statistical t-test was again applied to evaluate the447

significance of the results. For a single epoch, the results are coincident with448

the K-epoch approach, since for K = 1, (26) is equal to (25). For K = 2 · · · 7449

the reduction of classification error rates between C-FMS, and best channel,450

Laplace derivations and FC, is very similar to the K-epoch average approach.451

The differences are statistically significant with p ≤ 0.001 for best channel452

and Laplace derivations, and p ≤ 0.005 for FC. The Max-SNR results are453

poorer than for the K-epoch average. The difference between C-FMS and454
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Max-SNR is about 10% (p ≤ 0.001). As referred above, these results show455

that Max-SNR works better with data with higher SNR provided by the K-456

epoch average approach. The C-FMS filter is not affected because the feature457

selection algorithm selects mainly features from the FC filter.458

4.4. Online Results459

In online operation, the binary classifier is applied to each one of the 12
events. Each event is classified as target or non-target with an associated a
posteriori probability using (25) or (26). The selected method for our online
experiments was the K -epoch approach (25). The final decoded symbol
(detected row number, #row, and detected column number, #column) is
obtained from the combination of the a posteriori probabilities according to

if the number of events detected as target is ≥ 1, then (27)

#row = arg max
j∈{1,··· ,6}

P j
+ ∧ #col = arg max

l∈{1,··· ,6}
P l

+

else, if all events are detected as non-target, then

#row = arg min
j∈{1,··· ,6}

P j
− ∧ #col = arg min

l∈{1,··· ,6}
P l
−

where P
{j,l}
{+,−} are the a posteriori probabilities associated the events of rows460

(index j) and columns (index l). By words, if more than one event is detected461

as target, the method chooses the event most likely to be a target. If all the462

events are detected as non-target, then the method chooses the event less463

likely to be a non-target.464

Each online session occurred after the respective calibration session. The465

classification models were tested offline and it was selected the least number466

of repetitions, K, for which an error rate up to 5-10% was found. The467

number of repetitions was then adjusted, when necessary, according to the468

online performance of the subject. The C-FMS was the selected spatial filter469

since it consistently provided better results during the pilot experiments and470

throughout the sessions in this study as confirmed by the offline analysis in471

the last section.472

Under the same conditions that occurred during the calibration sessions,473

the subjects were asked to write a sentence. Subjects S1 to S12 (see Table474

2) wrote the sentence ’THE-QUICK-BROWN-FOX-JUMPS-OVER-LAZY-475

DOG’ (39 characters), subjects S13 to S19 wrote the sentence ’THE-QUICK-476

BROWN-FOX’ (19 characters) and subjects S20 to S24 wrote the Portuguese477
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sentence ’ESTOU-A-ESCREVER’ (16 characters) which means in English (’I478

am writing’). Participants S13 to S24 wrote a shorter sentence since they479

underwent an additional paradigm during the same sessions (for a study480

beyond the scope of this paper). The sentences were written at once without481

interruptions. In case of error, subjects could opt to correct the character482

using the ’del’ symbol.483

To assess the online classification and for comparison with state of the art484

results it was computed the number of decoded symbols per minute (SPM),485

and the bandwidth, B, according to (Wolpaw et al., 2000)486

B = M

[
log2(Ns) + Pac log2(Pac) + (1− Pac) log2

(1− Pac)

(Ns − 1)

]
(28)

where Ns is the number of possible selections (36 symbols), Pac is the accu-487

racy, and M is the number of possible decisions per minute. The parameter488

M takes into consideration the number of event repetitions and ISI time.489

Table 2 summarizes the online results, showing the number of SPM and the490

associated number of repetitions (NRep), and respective accuracy and band-491

width measured in bit/min (bpm). The online accuracy, Pac, was measured492

according to493

Pac = 1− Ne

Nc + Nce

(29)

where Ne is the number of misspelled characters/symbols, Nc is the number494

of characters of the sentence and Nce is the number of corrected errors with495

’del’. The average of the results are presented for each group of subjects.496

Group 1 (S1-S12) spelled on average 4.3 SPM with a success rate of 91.01%497

corresponding to a bandwidth of 18.78 bpm. The best result was achieved498

by subject S11 who wrote the sentence with 100% accuracy requiring only 3499

repetitions. Group 2 (S13-S19) spelled on average 4.89 SPM with a success500

rate of 90.32% (bandwidth of 21.31 bpm). These results are better than for501

group 1, which is understandable because the spelled sentence is shorter and502

therefore less susceptible to fatigue. The best result was achieved by subject503

S18 who wrote the sentence with 95% accuracy requiring only 2 repetitions.504

From the group of participants with CP, subject S21 was unable to perform505

the online session because the algorithms did not detect target events with506

an accuracy above 80% even for K ≥ 7, which was insufficient for online507

operation. The averaged results were obtained only from S20 and S22. This508

group spelled on average 3.13 SPM with a success rate of 96.68% (bandwidth509
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of 15.12 bpm). The group of ALS participants spelled on average 3.75 SPM510

with a success rate of 96.87% (bandwidth of 18.15 bpm). The SPM was511

computed omitting the ITI of 2.5 seconds. Taking into account the ITI time,512

the SPM averages were respectively 3.63, 3.96, 2.76 and 3.24 for group 1,513

2, 3 and 4. Comparing the results of able-bodied and disabled participants,514

and taking the bandwidth as the main parameter, we see that on average the515

results are only slightly lower for disabled participants. It is worth noting516

that almost all SPM values were obtained for classification accuracies above517

85%. Many of the participants wrote the sentences with a fewer number of518

repetitions (some of them with a single repetition) but with lower accuracies,519

so we chose not to show these results. Comparing the online and offline520

results (see Table 3), we can observe that the achieved results for similar521

SPM and accuracy are just slightly lower for online than for offline. These522

results corroborate that the online experiments validate the offine results.523

4.5. Benchmarking dataset524

For performance comparison purposes, the C-SMF filter was tested on the525

benchmark data sets available for the BCI-Competition 2003 (BCI-Competition,526

2003). Simulating the conditions of the competition, we trained the spatial527

filter, feature selection and classifier from labeled data sets (sessions 10 and528

11), which were then tested on unlabeled data sets (session 12), for a differ-529

ent number of repetitions. The inferred words and error rates are shown at530

Table 4. The achieved results are very competitive with ones presented in531

(BCI-Competition, 2003).532

5. Discussion and Conclusion533

This paper has shown that statistical spatial filtering is an effective ap-534

proach to increase the SNR of ERP components. As a direct consequence,535

the P300 component is enhanced and classified with a higher accuracy. There536

are two different trends in the BCI literature for EEG signal classification:537

spatial filtering preprocessing followed by classification, and spatiotemporal538

classification (where feature vectors are the concatenation of spatiotemporal539

features). As was seen in section 4.2, spatial filtering results give indications540

of good generalization properties, which provides an important argument to541

use the spatial filtering approach. From a neurophysiologic perspective, the542

spatial filtering provides enhanced versions of the input signals. From one543

hand, this contributes to a better signal interpretation by neurophysiologists544
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Table 2: Online results.
Subject SPM (NRep) Pac (%) Bandwidth (bpm)

S1 4.68 (4) 95.12 21.74
S2 3.75 (5) 95.12 17.39
S3 3.75 (5) 86.67 14.69
S4 6.25 (3) 95.12 28.99
S5 3.75 (5) 95.12 17.39
S6 3.75 (5) 86.67 14.69
S7 2.67 (7) 90.70 11.37
S8 3.75 (5) 79.59 12.72
S9 4.68 (4) 90.70 19.90
S10 3.75 (5) 90.70 15.92
S11 6.25 (3) 100.0 32.31
S12 4.68 (4) 86.67 18.37

Average 1 4.30 (4.6) 91.01 18.79
S13 2.67 (7) 84.21 9.99
S14 3.75 (5) 82.60 13.54
S15 3.75 (5) 100.0 19.38
S16 4.68 (4) 90.47 19.81
S17 3.75 (5) 85.00 14.21
S18 9.38 (2) 95.00 43.38
S19 6.25 (3) 95.00 28.91

Average 2 4.89 (4.4) 90.32 21.31
S20 3.13 (6) 100.0 16.15
S21 - - -
S22 3.13 (6) 93.37 14.10

Average 3 3.13 (6) 96.68 15.12
S23 3.75 (5) 100.0 19.38
S24 3.75 (5) 93.75 16.92

Average 4 3.75 (5) 96.87 18.15
Overall Average 4.33 (4.7) 91.80 19.18

Table 3: SPM and bandwidth using the offline classification accuracy obtained in Fig. 9
with C-FMS.

Number of repetitions (K)
1 2 3 4 5 6 7

Pac(%) 82.92 89.82 92.66 94.52 96.01 96.99 97.56
SPM 18.75 9.37 6.25 4.68 3.75 3.12 2.67
bpm 68.14 39.12 27.59 21.48 17.71 15.06 13.07

or psychologists, because it preserves and accentuates the biomarkers, and545

on the other hand it can reduce the duration time of clinical tests.546
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Table 4: Inferred words and associated error rates for different number of repetitions,
using data sets from BCI - Competition 2003.

NRep Inferred words Error

1 FCOD MMON BBM JIC CAAC TTNB ZTBUT XXX1 58.0 %
2 FCOD GMOT BAM JIE CALC TCNA ZMAOT X0Z7 41.9 %
3 FOOD MOOT HAM JIE CAKC TCNA ZSAOT X457 25.8 %
4 FOOD MOOT HAM PIE CAKE TUNA ZYGOT 4567 0.0 %

Following the K-epoch average approach, the three proposed spatial filters547

showed higher classification accuracy than those obtained with Laplacian548

derivations and best channel. Following the K-probability approach, the549

Max-SNR beamformer had a lower performance than Laplace derivations,550

however FC and C-FMS remained with higher accuracies. The classification551

accuracy of C-FMS filter was statistically higher than all other methods using552

both approaches.553

The gold standards to evaluate a BCI performance should be the on-554

line accuracy and online bandwidth. Only these parameters can attest the555

effective application of BCI in real world scenarios. Additionally, the require-556

ment of a reduced time (ideally a zero time) for calibration is also an im-557

portant issue for effective use of BCI. We demonstrate in this paper that the558

proposed methodology provides efficient accuracy and bandwidth for able-559

bodied subjects and subjects with CP and ALS. Considering only the group560

of able-bodied participants, the achieved online results were on average 4.3561

SPM with a success rate of 91.01% and a respective bandwidth of 18.78562

bpm for group 1, and 4.89 SPM, 90.32%, 18.79 bpm for group 2. These563

results are higher than those found in (Farwell and Donchin, 1988; Serby564

et al., 2005; Thulasidas et al., 2006; Krusienski et al., 2008) and similar to565

the ones presented in (Lenhardt et al., 2008), which presents an effective566

SPM (including ITI) of 3.91 with 83.33% mean accuracy in comparison to567

our result of 3.63 SPM (including ITI) with a 91.01% accuracy for group568

1, and 3.96 SPM (including ITI) with 90.32% accuracy for group 2. The569

results were obtained for 12 subjects with a sentence of 22 characters, while570

in our case the sentences had lengths of 39 and 19 characters, tested by 19571

participants. Considering the group of subjects suffering from CP and ALS,572

only subject S21 was unable to perform the online task. Apparently, the573

high amplitude of nonvoluntary movements affected his attention to relevant574

targets, but there may be other neurophysiologic causes. The other ALS and575
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CP participants achieved, on average, results just slightly lower than those576

achieved by able-bodied. The results are good in comparison with other577

studies reported in the state of the art. However, the results can not be di-578

rectly comparable because there are many different parameters to take into579

account, namely, different levels of functionality, different pathologies and580

stage of the disease, different number of sessions (extension of the study),581

and different visual paradigms. For the purpose of comparison of P300 BCI582

studies on people with motor disabilities, the following recent studies are583

suggested. In (Nijboer et al., 2008), 10 subjects with advanced ALS tested584

a 6 × 6 and a 7 × 7 matrix speller paradigm. Two 8 × 9 speller paradigms585

were compared by 3 advanced ALS participants in (Townsend et al., 2010).586

Donchin et al. (2000) describes a study with 4 paraplegic participants who587

tested a 6 × 6 matrix speller paradigm. Five subjects with different motor588

disabilities (ALS, locked-in, spinal cord injury, multiple sclerosis and Guillain589

Barre syndrome) tested a 4 choice paradigm in (Piccione et al., 2006). The590

study in (Sellers and Donchin, 2006) reports 4 choice paradigm tested by 3591

ALS subjects but all with communication ability. In (Hoffmann et al., 2008a)592

5 subjects with different motor disabilities (CP, multiple sclerosis, late-stage593

ALS, spinal cord injury and post-anoxic encephalopathy) tested a 6 choice594

visual paradigm. It is worth to note that this last study is the only reported595

work on P300 based BCIs that includes a CP subject. The achieved results596

in our study indicate the effective possibility of people with severe CP to be597

able to use a BCI as a communication channel. Taking into consideration598

that the participants were non-experienced users, it is expected that they599

can still improve their performances. The use of our BCI as an alternative600

to other standard interfaces still requires a higher bandwidth. For instance,601

subject S20 uses in his daily life a scanning interface controlled by an head602

switch to write. The number of selected symbols per minute is on average603

6.5, i.e., twice of what he achieved with our BCI system. Furthermore, the604

strong involuntary movements of the head and the body of some subjects605

can be a limitative factor for the use of a P300-based BCI. The good results606

obtained with ALS participants are encouraging. However, they only had607

their spoken communication affected, still retaining other alternative means608

of communication.609

For a more robust evaluation, the next step is to extend the study to610

a larger group of CP patients and include ALS patients in more advanced611

stages.612
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