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Abstract

This paper presents an Assistive Navigation System (ANS) for a Robotic Wheelchair
(RW) relying on a Brain-Computer Interface (BCI), as the Human-Machine Inter-
face (HMI). A two-layer collaborative control approach is proposed to steer the
RW, taking into account both, user and machine commands. The first layer, a
virtual-constraint layer, is responsible for enabling/disabling the user commands,
based on context. More specifically, user commands are enabled for a set of sit-
uations requiring user decision, namely, bifurcations, multiple-directions caused
by new obstacles in the environment, and deadlocks. The second layer is a user-
intent matching responsible for determining the suitable steering command that
better fits the user selection, taking into account the user competence to steer the
wheelchair, and situation awareness of potential directions at a given location. A
P300-based BCI allows the selection of commands to steer the RW. Experimental
results using RobChair [1], [2] are presented, showing the effectiveness of the pro-
posed methodologies. The ANS was validated with ten able-bodied participants,
and one participant with cerebral palsy, in two different scenarios: a structured
known environment, and a structured unknown environment with moving objects.
The overall result was that all participants were able to successfully operate the
device, showing a high level of robustness of both, the BCI system, and the navi-
gation system.

Keywords: Wheelchair Navigation, Brain-Computer Interface, Human-Machine
Interfaces, Discrete HMIs, Shared Control, Traded Control, Collaborative
Control.
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1. Introduction

The main goal of this research work is to contribute with new methods and al-
gorithms for collaborative control in assisted navigation, taking into account user
competence in steering a RW with BCI, and context. The proposed assisted navi-
gation is based on a semi-autonomous controller that requires at least two agents,
a Human/User Agent (HA/UA) and a Machine Agent (MA), that collaborate to
control the robot. Safety issues are a key research topic in assisted navigation,
being required to deal with unknown obstacles, and to perceive and interact with
humans. When dealing with semi-autonomous systems, care must be taken in the
choice and design of the most appropriate system interface. The HMI must be
well suited to user needs and capabilities, and the semi-autonomous system must
be able to identify and respond to user’s commands, in the most appropriate and
safe manner.

In this paper, we propose an ANS, which uses a non-invasive BCI. This ANS
was designed for people with severe motor disorders such as Amyotrophic Lat-
eral Sclerosis (AMS), and Cerebral Palsy (CP). In the case of neuro-degenerative
motor disorders, the level of functionality depends on the stage of the disease, and
can go to complete locked-in states [3]. In non-degenerative motor disorders, such
as CP, the symptoms vary significantly among patients, and can go from a simple
difficulty to walk to rough motor control, or total lack of control of muscular ac-
tivity. Since at least one specific motor skill is required to operate most of HMIs,
BCI opens a new communication channel for these users. Bearing these facts in
mind, we propose a BCI based on electroencephalography (EEG) that translate
brain patterns into commands to steer a RW [4, 5] (videos and project details can
be found in [6]). In previous works we have already showed that individuals with
severe motor disabilities can use BCI to spell characters with acceptable com-
munication rates [7], [8]. However, the number of decoded symbols per minute
(SPM) is still low for a continuous control of a wheelchair. Due to this fact, users
are only able to provide sparse commands over time. To overcome this problem,
the RW also relies on the ANS to achieve a safe and effective navigation. Addi-
tionally, and to ease user effort, low-level commands are only issued when there
are dynamic changes in the environment, or when ambiguous situations occur.

1.1. Related work
In recent years different assisted navigation architectures were developed for

intelligent wheelchair platforms, such as RobChair developed at ISR-UC [1], [4].
Other ANSs for RWs are presented in [9, 10, 11, 12, 13, 14]. Most of these
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architectures are based on semi-autonomous control approaches that consist on
sharing, trading, or a combination of both, the control of the tasks between hu-
man and machine agents. Shared control incorporates the strength of the human
and robot by letting them control different aspects of the system simultaneously
in situations that require teamwork. In a shared controller each task has a simulta-
neous intervention of the robot and the human operator, meaning that the tasks are
not mutually exclusive, concerning human and machine command signals [15].
Traded control is a mutually exclusive control approach, meaning that either the
human or the robot turns over control to the other. For a traded controller each
task is assigned either to the robot or to the human according to their ability to
execute it [15]. Semi-autonomous control can also be adaptive when the system
is capable of changing the nature and degree of control shared or traded between
human and machine during task execution [9]. In [16] a collaborative control
mechanism that assists users as and when they require help, was proposed. The
system uses a multiple-hypothesis method to predict the driver’s intentions and,
if necessary, adjusts the control signals to achieve the desired goal. If the power
assigned to agents is variable, it would be expected that this variability would also
depend on user ability to steer the RW. There are some shared control approaches
that evaluate user and robot steering efficiencies at each time instant, and combine
their commands into a single order [17], [18]. However, the proposed evaluation
methodologies are applied with interfaces that are able to provide a continuous
signal over time (e.g. joystick), and mainly suited for people with some motor
capabilities. In [11] a shared control approach is proposed that continuously es-
timates the user’s intention and determines whether the user needs assistance to
achieve his/her intention. An implicit user model is incorporated in the frame-
work, in order to make the execution of both tasks adaptable to a specific user.
This technique is also applied with a conventional joystick interface.

Brain-actuated wheelchairs have been researched by several research groups.
See a summary of a set of representative works in Table 1. Systems are mainly
based on two types of brain control: 1) modulation of sensory-motor rhythms by
performing mental tasks (e.g. motor imagery) [19]; and 2) detection of P300 event
related potentials through the design of oddball paradigms [20]. While in motor
imagery the number of commands is limited to 3 or 4, P300-BCIs can provide a
significant number of commands, but depend on external visual stimuli (see [21]
for a practical comparison of some neural mechanism approaches). A BCI system
can work synchronously or asynchronously. Using sensory-motor modulation, the
asynchronous operation means that the onset of imagery tasks is not time-cued
by the system, but instead self-paced by the user. In P300-based systems, the
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Table 1: Summary of relevant research works in the field of brain-actuated wheelchairs. In all
works the participants were able-bodied.

BCI approach Asynch.
control

Description No. of
Partici-
pants

Left and right imagery
[22]

No Control of real wheelchair (com-
mands: left, right)

6

Motor imagery [23,
24]

Yes Control of real wheelchair (com-
mands: forward, left, right)

5

Motor imagery (left
hand and rest) and
words association [25]

Yes Control of a simulated wheelchair
in 3D environment (commands:
left, right, forward)

2

Motor imagery (left
and right hand) [26]

Yes Control of 2D simulated wheelchair
(commands: go, stop, right, left)

5

P300 visual paradigm
built in a virtual 3D
reconstruction of envi-
ronment [27]

No Control of real wheelchair and sim-
ulated wheelchair in virtual envi-
ronment (selection of local sur-
rounding points)

5

P300 visual paradigm
combined with motor
imagery [28]

Yes Control of real wheelchair (selec-
tion of high-level destination goals
with P300 (e.g. kitchen) and stop
detection with motor imagery

5

asynchronous operation assumes the detection of a non-control state, for which
no commands are sent. In both cases, it is the user who decides when to send
a command. The experimental results achieved with brain-actuated wheelchairs
until now are very positive, but show that its effective application in real-world
scenarios is not yet possible. The low transfer rate and low robustness of BCIs, and
the demanding requirements of human centered robots still pose many research
challenges, some of them being pursued in this work.

1.2. Overview and contributions
This paper proposes a navigation system based on collaborative control for a

brain-actuated intelligent wheelchair. A P300-based BCI that allows the selection
of brain commands to steer a RW is presented. To relieve user effort, low-level
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commands are only issued when there are dynamic changes of the environment
or when decision making is needed (e.g. bifurcation). A two-layer collaborative
control approach is proposed in order to obtain a safe and effective navigation of
the RW, receiving user commands that are issued sparsely. The two-layer collab-
orative controller includes a virtual-constraint layer and an intent-matching layer.
The former is responsible for enabling/disabling user commands, as a function of
certain criteria, and the latter determines the suitable maneuvers, taking into ac-
count the user competence to steer a RW. The ANS with BCI was validated with
eleven participants (10 able-bodied and one motor disabled). Metrics to evalu-
ate the performance of the BCI online system, user, and navigation system are
presented and discussed.

1.3. Paper organization
This paper is organized as follows: the introduction is presented in Section

1, including a literature review in Subsection 1.1, and main contributions in Sub-
section 1.2. Section 2 describes the navigation system architecture, including a
description of the system mapping (Subsection 2.1), local motion planning (Sub-
section 2.2), and localization (Subsection 2.3). The system HMI, particularly,
P300-based BCI, and the developed paradigm, are presented in Section 3. The
proposed collaborative controller is presented in Section 4. Experimental results
with able-bodied users and one user with cerebral palsy are presented in Section
5, before drawing some conclusions in Section 6.

2. ANS - Assistive Navigation System

The ANS has been tested in player/stage [29] simulation environment, and in
RobChair [4]. It is structured in five main levels, as shown in Fig. 1:

• HMI: provides user intent (sparse steering commands) to the system through
a P300-based BCI. Inputs: EEG signals; Outputs: user command (also de-
noted by brain-command) to the global motion planning and collaborative
controller.

• Global Motion Planning: is responsible for determining reference paths to
predefined goals. Two different approaches were adopted for global plan-
ning. In the first approach the user provides a goal using the system HMI.
For this case we use the A* algorithm to determine the global least-cost
path [30], [31] to the selected goal. This method is implemented online. In
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Figure 1: ANS - Assistive navigation system architecture.

the second approach, goals and waypoints are predefined, and multiple ref-
erence paths between waypoints are determined offline, using the method
proposed in [32]. The second approach was used in the experiments pre-
sented in this paper. Inputs: map info from knowledge database, goal po-
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sition from HMI (first approach), waypoints (second approach); Outputs:
global path (also denoted by reference path) provided to local motion plan-
ning.

• Local Motion Planning: is responsible for providing the motion tracking
level with a collision-free path that should converge to the reference path af-
ter obstacle-avoidance. The local planner links to the knowledge database,
perception, and collaborative control modules. Inputs: pose and admis-
sible openings from perception module; final steering command from the
collaborative controller; and a subgoal in the reference path provided by
knowledge database; Outputs: steering command candidates provided to
the collaborative controller; and a collision-free path provided to the mo-
tion tracking level.

• Motion Tracking: determines the speed reference commands for the motion
controllers. Inputs: collision-free path; Outputs: linear and angular speed
commands to the motion control level.

• Motion Control: is responsible for the robust velocity servo control. Inputs:
linear and angular speed commands that are converted by inverse kinematics
to angular speed commands to the wheels’ controllers; Outputs: odometry
determined by direct kinematics based on wheel encoders data, and laser
data.

The ANS also integrates a knowledge database that stores, namely, informa-
tion regarding the working environment, situation-based restrictions, and driving
rules. It also stores the global paths provided by the global planner. When re-
quired, this information is provided to several levels of the ANS, as depicted in
Fig. 1.

The perception module is in charge of maintaining a local environment model
using the obstacle detection module. It is also responsible for determining the
current pose of the RW, using a localization system that fuses data provided by
the dead-reckoning system with map-based information.

The key function of the collaborative controller is to determine a set of maneu-
vers to reach a predefined goal. This module relies on both, the ANS and sparse
user commands, resulting in a human-machine collaborative control system.

2.1. Grid and topological maps
At the current stage of RobChair, the ANS is provided with a type of location-

based map, normally known as an a priori occupancy grid map of the environment,
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Figure 2: A priori map used as the base scenario for the experimental tests: a) grid map; b)
topological map with possible paths.

such as the one depicted in Fig. 2 a) that was used as the base scenario for the
experimental tests. Occupancy grid maps are location based, since they assign to
each x-y coordinate a binary occupancy value, which specifies whether or not a
location is occupied with an object. Grid maps have several advantages for mobile
robot navigation, since they make it easy to find objects through the unoccupied
space. However, map construction, and adjusting the position of objects in the
grid map may become a difficult task.

The office-like grid map used as a priori occupancy grid map for our exper-
iments has a dimension of (5.6× 7.4) m2. Each grid cell has (width× length)
of (5× 5) cm2. Each grid node has an associated occupancy value related to the
presence of obstacles. RobChair is also provided with a topological map contain-
ing all possible goals and waypoints (bifurcations, and final destinations) of the
environment, as shown in the example of Fig. 2 b). The topological map was
constructed offline.

2.2. Local motion planning
The local planner is based on the VFH+ algorithm [33] with a few modifica-

tions as described below. This method is illustrated in Fig. 3. The obstacle detec-
tion module detects new obstacles in the environment using a matching algorithm,
which compares a current laser scan with a predicted laser scan determined from
the grid map. Every time an obstacle is closer to the RW than a certain threshold,
the obstacle detection module verifies if it is mapped in the grid map, or if it is
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Figure 3: Obstacle detection using an adaptation of the VFH+ algorithm. a) The RW detects a
new obstacle in the environment; b) Construction of the polar field histogram; c) Construction of
the binary field histogram; d) Steering command candidates computed by the local planner.

new to the environment. In case of a new obstacle is detected closer than a cer-
tain threshold, not allowing the RW to follow the reference path, the local planner
enters in operation. A polar field histogram is directly determined from the laser
scan (containing information of all obstacles in its range), assigning to each ith

scan sector a value βi that is equal to the range of that sector. To construct the
binary polar histogram, a threshold τ is used in such a way that a value of zero is
assigned to sectors with βi ≥ τ (the sector is considered free of obstacles), and a
value of one otherwise, as shown in Fig. 3.

Details on how the collaborative controller relates with the other system mod-
ules is shown in Fig. 4. The local planner is structured in three modules: steering,
local path-planner, and blending (see Fig. 4). The steering module receives the
admissible openings from the obstacle detection module, and then calculates the
steering command candidates derived from the previous admissible openings, as
proposed in [33]. For each candidate direction θ i

c a cost function is calculated as,

γ(θ i
c) = µ1∆(θ i

c,θt)+ µ2∆(θ i
c,θ) (1)

where θt is the target direction towards the next subgoal in the reference path, and
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Figure 4: Data flow exchange between the local perception module, local planner, and collabora-
tive controller

θ denotes the cartesian current orientation of the RW. The generic term ∆(c1,c2)
gives the absolute angle difference between two generic sectors c1 and c2.

The local path-planner determines a free-collision path as proposed in [4],
based on the final steering command, ϕ , provided by the collaborative controller.
In [4] we proposed a local path planner that determines local paths based on linear
interpolations, between the current pose of the RW and a new target pose that is
located a certain distance ahead of the RW as illustrated in Fig. 5 (positions P1
and P2).

As soon as the RW stops detecting new obstacles in the environment, local
and reference paths are blended. This is achieved by providing a subgoal of the
reference path (provided by the global planner) as the target direction, θt , in cost
function (1). Therefore, a final local path is planned as a linear interpolation
between the current pose of the robot and the subgoal of the reference path (P3 in
the example of Fig. 5), which is sufficiently ahead to comply with the geometric
constraints of the RW during the contour of the obstacles. Figure 5 shows an
example how the local planner works to avoid an obstacle placed in the robot
path.
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Figure 5: Obstacle avoidance method: a) robot detects a new obstacle and determines a free path
to a target pose P1 (center point of the free space between the obstacle and the infrastructure in
the direction provided by the collaborative controller); b) robot follows the path; c) robot reaches
P1, and determines a path to pose P2; d) robot reaches P2 and stops detecting the new obstacle;
a local path to blend with reference path P3, is determined; e) robot follows the path to reach P3;
f) robot follows the reference path. The dotted line represents the reference path provided by the
global planner [4].

2.3. Localization
Localization is performed using odometry for rough positioning, and laser

data for polar scan matching. A grid Markov localization system [34, 35] was
designed to fuse odometry with laser polar scan matching. Grid Markov local-
ization maintains as posterior a set of discrete probability values pi jk,t that are
defined over each grid cell xi j. In the implementation proposed in this paper, the
partitioning of the space of all poses is time-invariant, for which each grid cell
is of the same size (each grid cell has a fixed dimension of (5× 5) cm2). The
localization approach is presented in Algorithm 1. It is composed by two stages:
motion model update and measurement update. The motion model update uses
the differential motion model to compute x̄t from xt−1 and command signal ut .
In the measurement update, a polar scan matching algorithm (see Algorithm 3 in
Subsection 2.3.3) is used to weight each state x̄i jk,t with the likelihood of observ-
ing the current scan measurement rt , taking the map m into account. The function
De f ineLocalGrid(x̄t) constructs a local grid of (i, j) cells centered on the pose x̄t .
Associated to each grid cell, there is a set of poses x̄i jk,t with center defined by
xi j, and 21 orientations defined by the set {−10o,−9o...0o...+ 9o,+10o}. Since
grid Markov localization approach is, in general, computationally expensive, three
techniques to reduce the computational effort, were applied:

• Grid sampling, which consists in selecting a local grid, instead of consider-
ing the entire grid map to perform measurement and map correlation. The
local grid has a dimension of (30×30) cm2.
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Algorithm 1 MarkovLocalization(xt−1,ut ,m,rt)
//Motion model update
x̄t ← Di f f erentialMotionModel(xt−1,ut)
De f ineLocalGrid(x̄t)
//Measurement update
//for all local grid cell centers
for all i, j do

//for the 21 orientations
for all k do

pi jk,t ← ηPolarScanMatching(x̄i jk,t ,rt ,m)
end for

end for
return(xt with max(pi jk,t))

• Orientation sampling, which was obtained by applying the polar scan match-
ing algorithm to a subset of possible orientations. In our case we have con-
sidered that the orientation error estimation was below 0.17 rad (10o). The
orientation search resolution was 0.017 rad;

• The measurement update is applied whenever the RW travels approximately
30 cm, instead of being applied every time a new odometry value is calcu-
lated.

2.3.1. Scan preprocessing
To improve the performance of the Markov localization system, two filters

were applied before scan matching: a distance filter, Dist(rt), and a dynamic ob-
ject filter, DynamicOb j(rt). The former reduces the maximum range to a prede-
fined threshold, and the latter removes range data resulting from dynamic objects,
which are not represented in the a priori map. With the dynamic object filter, range
readings are segmented. Small segments are then ignored because they are likely
to belong to dynamic objects in the environment such as people, table and chair
legs. Segmentation was based in a very simple rule, for which a range reading is
in the same segment as its previous neighbor, if they are closer than a threshold
[36].

2.3.2. Virtual scan
An important step of scan matching is to determine a virtual scan, r̂t , to be

compared to the current scan, rt . Taking the map m as an input, we need to find
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out how the scan would look like, if it was taken from a pose estimation x̄i jk,t .
Algorithm 2 shows the VirtualScan(x̄i jk,t ,m) algorithm used to determine the vir-
tual scan from pose estimation x̄i jk,t . N represents the number of scan points,
MAXRANGE is the maximum range distance, and ∆ is a constant value to guar-
antee that all cells of the grid map between MAXRANGE and x̄i jk,t , in the di-
rection of θbg(l)+ θ̄i jk,t (l = {1, ...,N} represents the number of the scan sector),
are evaluated in terms of occupation. If a cell with position (Xr,Yr) is occupied,
m(Xr,Yr) = 1, then the range of the reference scan in the direction θbg(l)+ θ̄i jk,t
has been found. If we want to make sure that the virtual scan truthfully represents
the measured scan (denoted as the current scan), we must consider the effects of
small measurement noise, errors due to unexpected objects, errors due to failures
to detect objects, and random unexplained noise. In [35], the measurement is
modeled as a mixture of densities, each of which corresponds to a particular type
of the mentioned errors. However, since we carry out the preprocessing of the
current scan prior to map matching, the errors due to unexpected objects, failures,
and random noise are neglected. Therefore, we have only considered the effects
of noise in Algorithm 2. Considering r̂∗t (n) as the range measurement for an
ideal sensor, the noise was modeled as a normal distribution with mean 0.98r̂∗t (n),
which reflects a measurement accuracy of 2%, and standard deviation σ = 2.9
mm, as proposed in [37] for white surfaces.

Algorithm 2 VirtualScan(x̄i jk,t ,m)
for all n = 1 : N do

for all l = ∆ :−1 : 1 do
rnl ←MAXRANGE− l ∗ (MAXRANGE/∆)
Xr← X̄i jk,t +(rnl)∗ cos(θbg(n)+ θ̄i jk,t)
Yr← Ȳi jk,t +(rnl)∗ sin(θbg(n)+ θ̄i jk,t)
if m(Xr,Yr) is occupied then

r̂∗t (n)← rnl
r̂t(n)← (0.98r̂∗t (n))+σ ∗Randn(1)
break;

end if
end for

end for
return(r̂t)
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2.3.3. Polar Scan Matching
The laser scan matching method compares the current scan rt , given by a laser

scanner, with a virtual scan r̂t . The latter is determined based on the grid map
m, such that the more similar rt and r̂t are, the larger p(rt |xi jk,t ,m) is. We used
the sample Pearson correlation coefficient rrt ,r̂t to evaluate the similarity of both
current and virtual scans. We obtained rrt ,r̂t by substituting estimates of the co-
variances and variances based on a sample, as follows:

rr̂t ,rt =
∑

N
i=1(r̂t(i)− r̄)(rt(i)− r̄)√

∑
N
i=1(r̂t(i)− r̄)2 ∑

N
i=1(rt(i)− r̄)2

(2)

where N is the number of scan points, and r̄ is the average range value, as follows

r̄ =
1

2N

N

∑
i=1

(r̂t(i)+ rt(i)) (3)

Laser scan matching considers

P(rt |x̄i jk,t ,m) = max(rr̂t ,rt ,0) (4)

as the probability of the current scan conditioned by the map m and position x̄i jk,t .
Algorithm 3 presents the polar scan matching algorithm, where r′t and r′′t represent
the current scan after applying a distance filter and dynamic object filter respec-
tively. N′′ corresponds to the number of points in r′′t .

3. Brain-computer interface

The use of BCI to control a RW is very challenging because BCI yields low
transfer rates, and the decoded brain-commands have an associated uncertainty.
The low signal-to-noise ratio (SNR) and the non-stationarity of the EEG signal
make EEG classification a challenging task. The deployment of efficient signal
processing and machine learning techniques to classify the brain patterns are a
key issue to decrease the uncertainty. On the other hand, increasing the amount
of EEG data used for classification also increases the accuracy, but requires more
time and thereby reduces the transfer rate. The BCI must be designed as a compro-
mise between the transfer rate and the accuracy, trying to maximize the transfer
rate while keeping the accuracy above a reasonable value. The proposed BCI
is based on the detection of a brain pattern called P300 component, which is an
event related potential (ERP), elicited by a relevant event within an oddball task,
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Algorithm 3 PolarScanMatching(x̄i jk,t ,rt ,m)
//Scan preprocessing
r′t ← Dist(rt)
r′′t ← DynamicOb j(r′t)
//Virtual Scan and preprocessing
r̂t ←VirtualScan(x̄i jk,t ,m)
r̂′t ← Dist(r̂t)
//Polar scan matching
for all points ∈ r′′t do

r̄ = 1
2N′′ ∑θbg

(r̂′t + r′′t )
end for
for all points ∈ r′′t do

rr̂′t ,r′′t =
∑

N′′
i=1(r̂

′
t(i)− r̄)(r′′t (i)− r̄)√

∑
N′′
i=1(r̂

′
t(i)− r̄)2 ∑

N′′
i=1(r

′′
t (i)− r̄)2

end for
p(rt |x̄i jk,t ,m) = max(rr̂′t ,r′′t ,0)
return(p(rt |xi jk,t ,m))

that occurs typically around 300 ms after the relevant event occurs [20] (see Fig.
6a)). The BCI has been designed as a visual oddball paradigm, where the symbols
flash randomly (see Fig. 6b)). At a given moment, the relevant (target) event is the
symbol mentally selected by the user, which corresponds to the direction he/she
wants to follow, and all other flashing symbols are the standard (non-relevant)
events.

3.1. P300-based BCI paradigm
The paradigm comprises seven steering commands, θUA, encoded by the fol-

lowing symbols: FORWARD, RIGHT45, RIGHT90, BACKWARD, LEFT45,
LEFT90 and STOP (Fig. 6b)). These symbols flash randomly with an inter-
symbol interval (ISI) of 75 ms, and a flash duration of 100 ms, i.e., the stimuli
onset asynchrony (SOA) is 175 ms (Fig. 6c)). Because of the low SNR of P300
ERPs, several P300 responses have to be collected before machine learning al-
gorithms can identify the mentally selected symbol. Therefore, the overall time
needed for symbol detection (TT - trial time) depends on the number of event
repetitions (Nrep), yielding

T T = Nrep×Ns×SOA+1 (5)
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Figure 6: Overview of the BCI system: a) P300 component of the ERP: positive deflection occur-
ring approximately at 300 ms after the onset of the relevant stimulus; b) Visual arrow-paradigm
encoding 7 symbols for steering control; c) Temporal diagram of the events (Ev# ∈ {1 · · ·7} rep-
resents the code of the event).

where Ns is the number of symbols (Ns = 7), and the value 1 is the time required to
record the EEG associated with the last event of a trial (e.g., for a user requiring
3 repetitions, T T = 7× 0.175× 3 + 1 = 4.675 s). The number of repetitions is
adjusted for each participant according to his/her offline accuracy, obtained during
the BCI calibration. A threshold value of 90% accuracy was settled to select the
number of repetitions. Compared with our last arrow paradigm approach [4], we
reduced the number of symbols from 11 to 7 in order to reduce the TT.

3.2. EEG signal acquisition and classification
The EEG was recorded by a biosignal amplifier (gUSBamp, g.tec Inc.), from

12 passive electrodes at positions Fz, Cz, C3, C4, CPz, Pz, P3, P4, PO7, PO8,
POz and Oz according to the extended international 10-20 standard system (see
Fig. 9). The EEG was notch-filtered at 50 Hz and bandpass filtered between 0.5
and 30 Hz, and then sampled at a 256 Hz rate.

The detection of the P300 patterns uses the algorithms that we have imple-
mented and described in [7]. This classification methodology was already thor-
oughly tested and validated with success in experiments made by able-bodied and
motor disabled participants in our previous study [8]. Feature extraction is ap-
plied to segments (epochs) of EEG data associated with each event. A segment
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has T = 256 time samples corresponding to one second. Features are extracted
by applying an optimal statistical spatial filter to the original dimensional space
(12 channel × T ), resulting in two high SNR projections, which are then con-
catenated into a feature vector. A binary Bayesian classifier separates the feature
vector into target and non-target events, and associates a posterior probability to
each event classification. In the next step, the classifier selects the event with
the highest probability as being the most likely symbol mentally selected by the
user (see details in [7]). Signal processing and classification models are fitted to
each participant based on the EEG data collected during the calibration session
that occurs before the online operation. This calibration takes approximately 3
minutes.

4. Two-layer collaborative controller

The collaborative controller receives commands from two agents: a human
agent and a machine agent. The user issues BCI-actuated commands θUA. The
proposed controller includes a virtual-constraint layer and an intent-matching layer.
The former is responsible to enable/disable user commands, as a function of cer-
tain criteria, and the latter determines the suitable maneuvers, taking into account
his/her steering competence, as outlined in Fig. 7. The Assisted Navigation Train-
ing Framework (ANTF) approach [38] is used to evaluate the user steering com-
petence. With this approach users are sorted in one of three possible learning
stages: beginner, average, or advanced. In [38] we proposed the Rule-Based Lens
(RBL) model for the ANTF, which characterizes the achievement rate ra, of each
user in steering the RW. The achievement rate consists in the correspondence rate
between human judgments (user steering command to solve a certain navigation
task) and the actual value of the environmental criterion (expected steering com-
mand to solve that particular navigation task).

4.1. Virtual-constraint layer
The Virtual-Constraint Layer (VCL) is responsible to enable/disable the com-

mands provided by the user subject to context. This layer is required because
the BCI system is continuously providing navigation commands independently
of user intention, while in the disabled state, the RW disregards commands from
the user. The VCL enables user commands according to the following perceived
situations:

• S1: Multiple possible directions due to a bifurcation;
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Figure 7: Two-layer collaborative control architecture.

• S2: Multiple possible directions to avoid an obstacle;

• S3: Solving a deadlock moving backwards;

• S4: Solving a deadlock with left/right pure rotations.

The VCL includes a situation awareness module responsible for detecting the oc-
currence of the referred situations. If new obstacles appear close to the RW, the
obstacle detection module provides the admissible openings to the VCL. In case
there are multiple admissible openings, a situation S2 is perceived, and, on the
other hand, if there are no admissible openings the VCL perceives the situation
as a deadlock, corresponding to situations S3, or S4. Situation S1 is determined
with the aid of the localization system, which provides the VCL with the current
localization. When one of those situations occur, the user is requested to select
a desired steering command, through the visual arrow paradigm shown in Fig.
6. Additionally, the VCL also takes into account constraints related to the user
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steering competence, as follows:

Basic User :

θVC =


θUA i f (S1 & θUA ∈ {F, L90, R90})
θUA i f (S2 & θUA ∈ {F, L, R})
θUA i f (S4 & θUA ∈ {L90, R90})
none otherwise

Average User :

θVC =


θUA i f (S1 & θUA ∈ {F, L90, R90})
θUA i f (S2 & θUA ∈ {F, L, R})
θUA i f (S3 | S4)
none otherwise

Advanced User :

θVC =


θUA i f (S1 & θUA ∈ {F, L90, R90})
θUA i f (S2 | S3 | S4)
none otherwise

(6)

where F ≡ FORWARD, L ≡ (LEFT 45|LEFT 90), R ≡ (RIGHT 45|RIGHT 90),
L90 denotes a rotation left (LEFT 90), and R90 denotes a rotation right (RIGHT 90).

4.2. Intent-matching layer
This layer determines the final steering command to the RW, based on user-

intent constrained by the VCL, and taking into account a set of candidate direc-
tions proposed by the MA. The errors ei

θUA
, i = 1, ...,n between the user command

and the directions provided by the MA are calculated as follows:

ei
θUA

= θVC−θ
i
MA, i = 1, ...,n (7)

where n is the number of MA candidate directions. Each MA candidate direction
has an associated weight η i

MA that is calculated as the inverse of its cost (1). A
normalization factor is applied so that the sum of all machine weights is equal to
one. For all candidate directions a cost function g(θ) is defined as follows:

g(θ) = ηMA · ei
θMA

+ηUA · ra · ei
θUA

(8)

where ei
θMA

is the error between the selected direction, and each candidate direc-
tion,

ei
θMA

= θ
i
MA−θMA i = 1, ...,n (9)
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The weight ηUA is defined according to the user steering competence, and ra de-
notes his/her achievement rate, which varies according to ra ∈ [0...1]. The final
direction θ is the one that minimizes the cost function g(θ). For a deadlock per-
ceived situation (S3 and S4), the MA is not able to determine any free direction,
and, in these cases, the user should command the RW backwards or perform pure
rotations left or right (commands BACK, LEFT90, and RIGHT90, respectively)
to leave the deadlock. In case of a S1 situation, the RW waits for an admissi-
ble command to solve a particular bifurcation. Only the commands FORWARD,
LEFT90, and RIGHT90 are allowed. This set of commands may be reduced or
expanded according to the characteristics of each bifurcation. In the experimental
tests presented below, all bifurcations could be solved with LEFT90 or RIGHT90
commands, and for that reason these were the only admissible commands to solve
the S1 situation. The RW remained stopped for other commands.

5. Experimental results

In this section we present an assessment of the current stage of RobChair nav-
igation system, in which users are able to steer the wheelchair using a P300-based
BCI. Two different navigation tasks were used to assess the performance of the
ANS based on BCI. The first navigation task took place in a structured known
environment, and the second one in a structured unknown environment with the
presence of new static and moving obstacles (e.g. pedestrians). The two navi-
gation task experiments were carried out with ten able-bodied participants and a
participant with cerebral palsy and motor impairment. All participants gave in-
formed consent to participate in the study. The navigation module processes the
BCI input commands according to user steering competence, and the situation
perceived by the machine (e.g. situations S1-S4). S1 and S2 were experimentally
tested, and results are presented bellow, in order to assess the performance of BCI
online, the assistive navigation system, and users. A video showing parts of the
experiments described in this section can be seen in [6].

5.1. Characterization of participants
Participants without disabilities included: aged between 25 and 40 years old;

approximate number of participants from both genders; higher education; all
right-handed; without any relevant history of psychiatric or neurological disor-
ders. Ten able-bodied participants, six male and four female, were selected, all
of them being researchers or graduate students at university of Coimbra. From
this group, two of them had considerable experience using the P300-based BCI
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system, three of them had used the BCI system once, and five of them used the
P300-based BCI system for the first time. Only one user was familiar with the
Arrow Paradigm (AP) used in the BCI. Only one female participant with mo-
tor disabilities has carried out the proposed experiments. This participant suffers
from cerebral palsy disorders and is severe motor impaired. Mainly due to com-
fort reasons this participant did not sit in RobChair and carried out tests remotely.
This participant has high experience in steering a power wheelchair, but using a
head-switch interface, and has low experience using the P300-based BCI system,
and the AP. Table 2 shows the most relevant data concerning participant charac-
terization. All participants used the ANS for the first time.

Table 2: Characterization of participants. Degree of motor disability and participant experience
are classified as none, low, moderate or high. Gender is classified as M for male and F for female.

Experience
Participant Age Gender Degree

of Motor
Disability

Steering
RW

Using
BCI

Using
AP

1 36 F None Low Low None
2 25 M None Low High None
3 40 F None None Low None
4 39 M None Low High Moderate
5 37 F None None None None
6 31 F None None Low None
7 28 M None None None None
8 31 M None None None None
9 36 M None None None None
10 29 M None None None None
11 25 F High High Low Low

5.2. Experimental design and procedures
The experimental tests started with a BCI training/calibration phase where

participants selected a set of predefined commands, using the AP. After the train-
ing/calibration phase, each participant was required to perform two real-time nav-
igation tasks, in the wheelchair. The first navigation task, denoted by TASK1,
took place in a structured known environment that only included static mapped
obstacles (see Fig. 8 b)); the second task, denoted by TASK2, was carried out in
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Figure 8: a) Map and planned paths with only mapped obstacles; b) Sequence A: sequence of
waypoints required to perform navigation TASK1; c) Sequence B: first possible sequence of way-
points to perform navigation TASK2; d) Sequence C: second possible sequence of waypoints to
perform navigation TASK2;

a structured unknown environment, which included new obstacles in the environ-
ment of two types: static, and some moving obstacles, such as pedestrians walking
in the set (see Figs. 8 b), c)). Figure 9 shows a scene of the real test environment.

TASK1 consisted in navigating the wheelchair from START to GOAL1, and
returning to START again (designated as GOAL2). This navigation task was or-
ganized in a sequence of 12 waypoints denoted as sequence A, which is presented
in Table 3. The Decision Target (DT) points were B, E and G, where the user
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Figure 9: Robchair in test scenario.

was able to decide if he/she wants turn right (RIGHT90) or left (LEFT90). To
accomplish the navigation task with success, i.e. with a minimum number of re-
quired waypoints, each user needed to select an appropriate command (RIGHT90
or LEFT90) when a DT point was reached. If the user selected other command
besides RIGHT90 or LEFT90, the RW remained stopped till an appropriate com-
mand was provided. If the user selected a wrong but admissible command, the
RW followed the path selected by the user, and in that case the required waypoint
sequence was not followed as requested. Simultaneously, to assess the online BCI
performance, it was also asked to each user to select a set of predefined commands
between DT points. The commands between DT points were not taken into ac-
count by the navigation system, and are designated as non-decisive commands.

In TASK2, users were asked to perform two navigation sequences (sequence
B or sequence C as defined in Table 3) with the RW, in a structured unknown
environment, with the presence of new static obstacles and moving obstacles.
The users were allowed to perform one or both sequences defined in Table 3 for
TASK2.

For all experiments presented in this paper, ηUA and ra parameters were tuned
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Table 3: Requested waypoint sequences for navigation TASK1 and TASK2 with the predefined
orientation for each waypoint. DT stands for Decision Target point.

TASK1 TASK2
Sequence A Orientation Sequence B Orientation Sequence C Orientation
A ↑ A ↑ A ↑
B (DT) ↑ B (DT) ↑ B (DT) ↑
C ↗ C ↗ C ↗
D → D → D →
E (DT) ← E (DT) ← E (DT) ←
C ↓ C ↓ G (DT) ↙
B (DT) ↘ B (DT) ↘ A ↓
F ↑ A ↓
D →
E (DT) ←
G (DT) ↙
A ↓

manually, as proposed in [4], because all users experimented the ANS for the
first time. A user weight parameter, ηUA = 2, (all participants are beginners), and
an achievement rate, ra = 1, were also considered in all experiments. The cost
parameters in (1) were as follows: µ1 = 2 and µ2 = 1.

5.3. Assessment of overall performance
The metrics proposed in [27], [39] were adopted for the overall performance

assessment of the proposed ANS:

• Task success: degree of accomplishment of the navigation task;

• Path length: distance in meters traveled to accomplish the task;

• Time: time taken in seconds to accomplish the task;

• Path length optimality ratio: ratio of the path length to the optimal path (the
optimal path length was 23.03 m for TASK1, and 13.24 m for TASK2);
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Table 4: Metrics to evaluate the overall navigation system performance

Task 1 Task 2
Metrics min max mean std min max mean std
Task success 1 1 1 0 1 1 1 0
Path length (m) 23.0 31.7 24.6 3.6 21.9 32.3 28.7 3.1
Time (s) 185 333 234 59 324 479 390 46
Path opt. ratio 1.0 1.38 1.07 0.16 1.0 1.65 1.16 0.21
Time opt. ratio 1.61 2.89 2.03 0.51 2.95 4.90 3.25 0.49
Collisions 0 0 0 0 0 0 0 0
BCI accuracy 0.5 0.96 0.77 0.18 0.75 1.0 0.88 0.1

• Time optimality ratio: ratio between the time taken to accomplish the task
and the optimal time (the optimal time was calculated assuming an average
velocity of 0.2 m/s without stops, resulting in 115 s for TASK1 and 66 s for
TASK2).

• Collisions: number of collisions;

• BCI accuracy: accuracy of the pattern-recognition strategy (relation be-
tween correct commands and total commands).

According to Table 4 all participants were able to accomplish the navigation
tasks with success. The path length and the time needed to accomplish both tasks
were similar for all participants. The time differences were due to different trial
time, (T T ), and number of repetitions, Nrep, values required by each user to issue
BCI commands, and due to wrong command selections by some participants. The
path optimality ratio indicates that there was a small difference between the opti-
mal path length and that performed by the participants (1.07 and 1.16 on average
for TASK1 and TASK2, respectively, i.e. an increase of 10% to 15%). The time
optimality results indicate a good overall performance of the navigation and BCI
systems. The extra time above the optimal (115 s for TASK1 and 66 s for TASK2 -
sequence C) was mainly due to the time required to issue BCI commands. TASK2
has a higher value than TASK1 due to the presence of unknown obstacles, which
implies a reduced speed during its contour. Concerning the interaction with the
wheelchair using the BCI, results are very satisfactory. A mean BCI accuracy
of 77% was registered for TASK1. To calculate the BCI accuracy in TASK1, a
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Table 5: Results of online BCI experiments with users moving on the RW, and simultaneously
issuing non-decisive and decision commands.

HR
Participant NRep NDDC DC TT (s) Reached waypoints
1 4 50% 50% 5.9 16
2 4 83% 90% 5.9 12
3 4 92% 90% 5.9 12
4 4 96% 88% 5.9 12
5 4 50% 35% 5.9 12
6 3 85% 100% 4.7 12
7 4 58% 56% 5.9 16
8 5 88% 71% 7.1 12
9 3 92% 100% 4.7 12
10 4 60% 83% 5.9 12
11 4 88% 100% 5.9 12

large set of data was gathered (besides the 5 decision commands, a total of 21
non-decisive commands were requested to the users during the RW navigation).
For TASK2 a mean BCI accuracy of 88%, was obtained. In this case the partic-
ipants only had to worry about selecting commands on DT points, which helped
significantly the participants to perform the navigation task.

5.4. Assessment of online BCI on road
Results of online BCI performance for TASK1 and TASK2, with known and

unknown obstacles, are presented in Tables 5 and 6, respectively. According to
Table 5, the majority of the participants, including the motor disabled participant,
showed an Hit Rate (HR) higher than 80% for both, combined Non-Decisive and
Decision Commands (NDDC), and only Decision Commands (DC). It has to be
noticed, that all experiments were performed in a real-world scenario with several
types of disturbances, such as: people talking during experiments, mobile phone
ringing, dropping objects into the set, etc. The Nrep and respective T T to issue
a command are also shown in Table 5. Most participants were able to issue a
command each 5.9 s, including the cerebral palsy participant, but participants
5 and 9 only needed 4.7 s, and participant 8 required 7.1 s. Most participants
were able to accomplish TASK1 with the minimum of 12 waypoints, with the
exception of participants 1 and 7 requiring 16 waypoints, due to wrong selection
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Table 6: Results of online BCI experiments with users moving on the RW, issuing decision com-
mands for solving bifurcations and multiple directions due to new obstacles in the environment.

Participant NRep HR-DC TT (s) Reached Subgoals
1 4 78% 5.9 15
2 4 90% 5.9 15
3 4 90% 5.9 15
4 4 100% 5.9 14
5 4 83% 5.9 15
6 3 89% 4.7 15
7 4 75% 5.9 11
8 5 81% 7.1 15
9 2 100% 3.4 15
10 4 80% 5.9 14
11 4 100% 5.9 15

of an admissible command when reaching a DT point, forcing to the execution
of an additional track. The significant performance decay of some participants,
when comparing the performance during the calibration and the performance in
the wheelchair, may suggest that they have been negatively affected by stressing
situations during navigation tasks.

Table 6 summarizes TASK2 results of the online BCI experiments. Only deci-
sion commands, for solving bifurcations and multiple directions, are considered.
The Nrep, and the respective T T to issue a command are also presented in Ta-
ble 6. Most participants were able to accomplish the requested navigation task
composed by two sequences (4 sequence possibilities: BB, BC, CB, CC), with 15
reached waypoints, with the exception of participants 4 and 10 that only needed
14 waypoints. Participant 7 was only able to accomplish a course (none of the
predefined sequences) composed by 11 waypoints, due to wrong selection of an
admissible command when reaching a DT point. The motor disabled participant
showed an online BCI performance higher than the average online BCI perfor-
mance of all participants, requiring a number of repetitions similar to able-bodied
participants. The preliminary experiments with a cerebral palsy user indicate that
the ANS based on BCI has potential to be suited for certain cerebral palsy users.
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Table 7: Metrics to evaluate the navigation system for task 1

Task 1
min max mean std

Task Success 1 1 1 0
# Waypoints 12 16 12.7 1.6
# Collisions 0 0 0 0
Speed (m/s) 0.17 0.2 0.19 0.01
Time in Motion (s) 115 166 132 18
Clearance min (m) 0.3 0.5 0.4 0.06
Clearance mean (m) 1.99 2.14 2.03 0.05

5.5. Assessment of navigation performance
To evaluate the navigation system performance we used the metrics proposed

in [27, 40, 39], namely:

• Task success

• Collisions

• Obstacle clearance

• Number of waypoints

The results of the assessment of the navigation system performance for TASK1
and TASK2 are shown in Tables 7 and 8, respectively. The performance of
the navigation system was good, since all waypoints were reached without col-
lisions, and all navigation tasks were accomplished in a successful manner. In
total, the system reached 299 waypoints and traveled 670 m. There were no col-
lisions during these experiments. The mean of minimum clearance was 0.4 m for
TASK1, and 0.34 m for TASK2. This can be considered a good result, since the
scenario included very narrow passages, and in case of TASK2, sometimes there
were pedestrians quite close to the RW. The mean clearance was around 2 m for
both tasks, which indicates that the robot had enough safety margins to carry out
obstacle avoidance.

Another indication of safety performance is concerned with adaptability to
environments with different constraints [27]. In TASK1 the average speed was
0.19 m/s, but in TASK2, this value decreased for 0.11 m/s. This result indicates
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Table 8: Metrics to evaluate the navigation system for task 2

Task 2
min max mean std

Task Success 1 1 1 0
# Waypoints 11 15 15.5 1.6
# Collisions 0 0 0 0
Speed (m/s) 0.10 0.13 0.11 0.01
Time in Motion (s) 207 319 255 34
Clearance min (m) 0.3 0.4 0.34 0.05
Clearance mean (m) 1.89 2.0 1.95 0.04
# Localization uncertainties 0 2 0.73 0.7
# Avoided obstacles 3 6 5.30 0.9
# Multi-direction requests 2 4 2.64 1.1
# Avoided pedestrians 1 2 1.45 0.5

that the ANS was capable to adapt to the environment conditions, reducing in av-
erage the speed in TASK2, where maneuverability became more important, for
instance during obstacle avoidance. Since polar scan matching is computationally
high demanding, it was only applied for odometry correction after the RW trav-
eled a certain distance. This situation could lead to uncertainty in localization,
specially when the RW carried out pronounced maneuvers to avoid obstacles in
narrow spaces. When a high uncertainty in localization occurs, the RW remains
under the control of the local planner, while there is the perception that the RW
is out of the reference path. This situation happened sporadically (less than one
time per session) for TASK2, and the RW was always capable of recovering its
localization with success.

5.6. User assessment
For our collaborative control approach, users are sorted in one of three possible

learning stages: beginner, average, and advanced. Since all participants were
using the ANS for the first time, all of them were considered as beginners. We
used the ANTF approach [38] to evaluate users at the end of the experiments.

5.6.1. Environment and human models
The ANTF with BCI uses two main types of cues for decision-making, as pre-

sented in Table 9: Type I (X1 to X5) is related to bifurcations, and Type II (X6 to
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Table 9: Representation and definition of cues (inputs): Type I (related to bifurcations), and Type
II (related to obstacle position), where A : DT1 : C stands for decision target 1 (DT1) reached from
A and going to C; Representation and definition of judgments (outputs).

Representation Definition
Type I cues (Inputs)
X1 A : DT1 : C
X2 D : DT2 : C
X3 C : DT1 : A
X4 D : DT2 : G
X5 E : DT3 : A
Type II cues (Inputs)
X6 Front Obstacle Ahead
X7 Front Obstacle Right
X8 Front Obstacle Left
Judgments (Outputs)
Y1 RIGHT90
Y2 RIGHT45
Y3 LEFT90
Y4 LEFT45

X8) is related to obstacle positions (to solve multiple-directions). The system only
considers the BCI command in a multiple-direction situation, when more than one
steering direction can solve the obstacle situation. In other cases, user aid is not
required. A set of rules were established according to the Genetic Based Policy
Capture (GBPC) method described in [41, 42]. The models presented in Table
10 are simplified, because they only encode possible situations that may occur in
our navigation set. Accordingly, environment and beginner user models (Ŷ e and
Ŷ s) were established according to the experiments carried out for a structured un-
known environment with new static and moving obstacles in the set. Concerning
the environment and user models presented in Table 10, there are a few consid-
erations concerned with how the assisted navigation should react to Type II cues
(see Table 9 and Table 10). In case of cue X6 - front obstacle ahead, the system
model is established to go around the right with a minimum turning effort. This
can be done with a BCI command of RIGHT45. In case of cue X7 - front obsta-
cle in the right side, the navigation system goes around the left with a minimum
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Table 10: Environment model Ŷ e, and beginner user model Ŷ s in the experimental scenario.

Cue Type of Cue Ŷ e Ŷ s
X6 Type II Y 2 Y 1∪Y 2∪Y 3∪Y 4
X1 Type I Y 3 Y 1∪Y 3
X2 Type I Y 1 Y 1∪Y 3
X3 Type I Y 1 Y 1∪Y 3
X7 Type II Y 4 Y 1∪Y 2∪Y 3∪Y 4
X8 Type II Y 2 Y 1∪Y 2∪Y 3∪Y 4
X1 Type I Y 3 Y 1∪Y 3
X4 Type I Y 3 Y 1∪Y 3
X5 Type I Y 3 Y 1∪Y 3
X7 Type II Y 4 Y 1∪Y 2∪Y 3∪Y 4

turning effort (BCI command of LEFT45). For a cue X8 - obstacle in the left side,
the navigation system goes around the left with a minimum turning effort (BCI
command of RIGHT45). The participants were all beginners, and for that reason,
and despite the fact that they were previously instructed on which command they
should select for each specific situation, they tend to make choices that are not ac-
cording to the ideal system model. For instance, a beginner user is normally more
concerned with getting away from obstacles than minimizing the turning effort.

According to Table 10, Ŷ s column represents the model for a beginner user,
while Ŷ e encodes the most appropriate decision for each cue. We have decided
to include all possible options as part of the model for beginner user. This means
that we expect that participants will try to select randomly any admissible brain-
actuated command for a particular situation. This model reflects the low knowl-
edge level concerning the two main navigation aspects, namely: choosing the best
path to accomplish the navigation tasks, low turning effort. Beginner users are
usually not concerned with these aspects and their priorities are mostly in avoid-
ing the obstacles as much as far of the obstacle as possible, and in selecting an
admissible command.

5.6.2. Assessment of user performance
Table 11 shows the results of assisted navigation using BCI in a structured

unknown environment. Initially all participants were sorted as beginners. The
Rule-based lens model parameters [42], environmental predictability, Re, human
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Figure 10: Rule-based lens model parameters based on [42]: environmental predictability, Re,
human control, Rs, achievement, ra, for achievement, modeled knowledge, G, and unmodeled
knowledge, C.

control (conformance with human model, see Fig. 10), Rs, achievement, ra, mod-
eled knowledge, G, and unmodeled knowledge, C, were computed according to
the following expressions (see Fig. 10:

Re = ∑
n
i=1 Iei

n
, Iei =

{
1 i f Yei = Ŷ ei,
0 otherwise

}
(10)

Rs = ∑
n
i=1 Isi

n
, Isi =

{
1 i f Y si = Ŷ si,
0 otherwise

}
(11)

ra = ∑
n
i=1 Iri

n
, Iri =

{
1 i f Yei = Y si,
0 otherwise

}
(12)

G = ∑
n
i=1 IGi

n
, IGi =

{
1 i f Ŷ ei = Ŷ si,
0 otherwise

}
(13)

C = ∑
n
i=1 ICi

n
, ICi =

{
1 i f Iei = Isi = 0,
0 otherwise

}
(14)

To analyze the results presented in Table 11, the following classification grades
were taken into consideration for parameters Re, Rs, ra, and G:
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Table 11: Results for assisted navigation using BCI in a structured unknown environment for ten
able-bodied participants and one motor disabled. All participants were initially sorted as begin-
ners. Re stands for environmental predictability, Rs for human control, ra for achievement, G for
modeled knowledge, and C for unmodeled knowledge.

Participant NRep Re Rs ra G C
1 4 100% 78% 62% 40% 0%
2 4 90% 90% 70% 40% 9%
3 4 90% 90% 70% 40% 9%
4 4 80% 100% 100% 40% 20%
5 4 100% 83% 42% 40% 0%
6 3 82% 89% 67% 40% 18%
7 4 89% 75% 62.5% 40% 11%
8 5 100% 81% 45% 40% 0%
9 2 80% 100% 87.5% 40% 20%
10 4 100% 80% 60% 40% 0%
11 4 100% 100% 70% 40% 0%

• Excellent for results between 85% and 100%;

• Very Good for results between 75% and 84%;

• Good for results between 65% and 74%;

• Sufficient for results between 50% and 64%;

• Weak for results between 25% and 49%;

• Poor for results under 25%.

According to this classification we can conclude that concerning the human con-
trol parameter, all participants show a very good or excellent performance. This
parameter, Rs, indicates if the user is acting or not according to the user model. In
practice this means that all participants had a good performance in the selection
of admissible commands for each specific situation. It is worth to mention that
results for parameter Rs are similar to the online BCI results for the parameter
DC presented in Table 6, which gives the hit rate for the selection of admissible
decision commands with BCI. However, if the navigation aspects associated to
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the environment model are also analyzed, results are not so enthusiastic. Param-
eter ra gives more than just the selection of a correct BCI command, it also gives
an evaluation of how well each participant navigates the wheelchair, since this
parameter is the result of comparing user judgment with the environmental crite-
rion that was tailored to minimize turning effort, and optimize the path to reach
a predefined goal. Results show that two participants have an excellent achieve-
ment rate, four participants have a good achievement rate, three participants have
sufficient, and two have a weak achievement rate. The motor disabled partic-
ipant presented a good result, which is above the average. The environmental
predictability Re should be 100%, if the wheelchair’s navigation system worked
as expected. According to Table 11 this is not always the case. Sometimes, in
a multiple-direction situation, the wheelchair did not wait for the user command.
Since each user needs a certain amount of time to issue a BCI command (param-
eter T T ), if the multiple-direction situation occurred during this period, and if
an admissible, but unintentional, command was accepted, the collaborative con-
troller considered it a valid user’s command. This is the reason why parameter
C indicates, for some obstacle avoidance cases (C 6= 0 in Table 11), a certain de-
gree of unmodeled knowledge, since user and environment model outputs did not
match in those cases. The ANS did not behave as defined by the environmental
model, and the user was not able to provide a command to solve that situation.
This problem was already solved with the use of a delay according to the T T of
each participant. Parameter G shows the low level of modeled knowledge, which
is expected for a beginner user.

In summary, results show that participants are able to move themselves on
RobChair using BCI with relative ease, although most of them present some lim-
itations concerning fundamental navigation aspects, namely: choosing the best
path to accomplish the navigation tasks, and low turning effort. These results
were expected, since all users were experimenting the system for the first time.

6. Conclusions and Future Work

This paper presents an assisted navigation system based on collaborative con-
trol, which uses a P300-based BCI to select steering commands. Since BCI com-
mands are issued sparsely, an assisted navigation architecture based on a two-layer
collaborative controller was designed, and implemented in RobChair (ISR-UC
wheelchair platform). The collaborative control architecture includes a virtual-
constraint layer, and an intent-matching layer. The ANS was successfully tested
with eleven participants, 10 able-bodied and one motor disabled. All participants
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were able to accomplish the requested navigation tasks, and the system showed a
high level of performance in terms of online BCI accuracy and navigation. The
ANS also gave indications of good adaptability to different navigation scenarios.

In the actual stage of the project, BCI commands are not issued in a self-paced
manner by the user. This topic is being researched to allow the user to issue
commands only when he/she desires. Moreover, context dependent BCI is also
being researched, since it can significantly improve the flexibility of the interface.
Adaptation is not carried out in an automatic manner. This means that the human
progress in steering the RW is not automatically incorporated into the collabo-
rative controller. We plan to automatically tune the efficiency rate ra and user
weight parameter ηUA by implementing user assessment online. Currently, the
RW stops when new dynamic obstacles (e.g. pedestrians) appear close to it. As
a future work we plan to improve the local planner to enable cooperative obstacle
avoidance, taking into account the environment perception that includes obsta-
cle positions, humans’ intentions, types of obstacles, data from other robots etc.
Moreover, additional sensor data (e.g. laser in the rear part of the wheelchair) is
required to improve the RW maneuverability in obstacle avoidance. The proposed
localization system also presents some limitations in cluttered environments. Ad-
ditional sensor data is required to obtain a more reliable localization system. Cur-
rently, the map is given to the system and is not updated. The integration of SLAM
strategies is in progress.
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