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Free-Form Region Description with
Second-Order Pooling

João Carreira, Rui Caseiro, Jorge Batista and Cristian Sminchisescu

Abstract —Semantic segmentation and object detection are nowadays dominated by methods operating on regions obtained as a result
of a bottom-up grouping process (segmentation) but use feature extractors developed for recognition on �xed-form (e.g . rectangular)
patches, with full images as a special case. This is most likely suboptimal. In this paper we focus on feature extraction and description
over free-form regions and study the relationship with their �xed-form counterparts. Our main contributions are novel p ooling techniques
that capture the second-order statistics of local descriptors inside such free-form regions. We introduce second-order generalizations
of average and max-pooling that together with appropriate non-linearities, derived from the mathematical structure of their embedding
space, lead to state-of-the-art recognition performance in semantic segmentation experiments without any type of local feature coding.
In contrast, we show that codebook-based local feature coding is more important when feature extraction is constrained to operate
over regions that include both foreground and large portions of the background, as typical in image classi�cation setti ngs, whereas
for high-accuracy localization setups, second-order pooling over free-form regions produces results superior to those of the winning
systems in the contemporary semantic segmentation challenges, with models that are much faster in both training and testing.

Index Terms —Recognition, image descriptors, second-order statistics, segmentation, regression, pooling, differential geometry.
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1 INTRODUCTION

SEMANTIC segmentation in challenging contemporary
benchmarks (e.g. PASCAL VOC [1]) has been domi-

nated by segmentation-based techniques that compute
multiple holistic free-form region hypotheses, which
were recently demonstrated to well approximate the
spatial support of entire objects [2], [3], [4]. However, for
description, most methods use a combination of features
designed for image classi�cation, e.g. bags of words
and their associated spatial pyramids. The leading object
detection approaches nowadays also operate on regions
[5], but ignore their shape and directly use bounding
boxes for feature extraction, instead. As comparatively
little research has gone into studying which features and
pooling methods perform best on free-form regions, it is
still unclear how to tailor feature extraction architectur es
to this representation. In fact, most of the vast literature
on feature extraction in real images has considered the
setting of image classi�cation, which computes a de-
scriptor over the entire image as an intermediate step.

The task of image classi�cation differs from object
localization based on regions in several aspects, most im-
portantly because there is a much lower signal-to-noise
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ratio: entire images typically contain many objects and
scene structures, and even when a single one is present,
larger percentages of features from the background need
to be handled compared to an approximate object seg-
mentation. Additionally, regions implicitly provide a
characteristic scale that is important in calibrating the
spatial support for feature extraction. Finally, localiza tion
lends itself to ranking and not just classi�cation, making
it possible to more precisely distinguish between holistic
region hypotheses with different degree of alignment
with the ground truth objects.

Many successful approaches to recognition can be
seen as implementing a standard processing pipeline:
(1) dense local feature extraction, (2) feature coding, (3)
spatial pooling of coded local features to construct a
descriptor, and (4) presenting the resulting descriptor
to a classi�er. Bag of words [6], spatial pyramids [7]
and orientation histograms [8] can all be seen as in-
stantiations of steps (1)-(3) of this paradigm [9], [10].
Convolutional networks [11] employ multiple learned
coding (convolutional) and pooling layers instead of a
hand-crafted dense local feature extraction stage, but
share otherwise these same modules.

The role of pooling is to produce a global description
of an image region – a single descriptor that summarizes
the local features inside the region and is amenable as
input to a standard classi�er, as illustrated in �g. 1. Most
current pooling techniques compute �rst-order statis-
tics [9]. The two most common examples are average-
pooling and max-pooling [9], which compute, respec-
tively, the average and the maximum over individual
dimensions of the coded features. These methods were
shown to perform well in practice when combined with
appropriate codebook-based coding strategies. For ex-
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ample, in standard bag-of-words methods [6], average-
pooling is usually applied in conjunction with a zero-
order coding process such as hard quantization, which
projects each local feature onto its nearest neighbor in
a codebook. Max-pooling is most popular in association
with convolutional networks [11].

Since free-form regions have superior object signal-to-
noise ratio compared to �xed-form representations used
in image classi�cation, a natural idea is to pro�le fea-
ture extraction towards investing resources into directly
modeling the statistics of the local features inside the
region. We operationalize this idea by exploring pooling
methods that collect second-order information of local
features inside free-form regions, modeled as symmetric
matrices. Our technical contributions can be summarized
as proposing the following:

1) Second-order feature pooling methods leveraging
recent advances in computational differential ge-
ometry [12]. In particular we take advantage of
the Riemannian structure of the space of symmetric
positive de�nite matrices to summarize sets of local
features inside a free-form region, while preserving
information about their pairwise correlations. Fea-
ture maps adapted to the mathematical structure
of the space of symmetric positive de�nite matri-
ces are also derived, providing ef�cient implicit
comparison metrics in association with linear clas-
si�ers. The proposed pooling procedures perform
well without any coding stage and in conjunction
with linear classi�ers, allowing for great scalability
in the number of features and in the number of
examples.

2) New methodologies to ef�ciently perform second-
order pooling over a large number of regions by
caching pooling outputs on shared areas of multi-
ple overlapping free-form regions.

3) Local feature enrichment processes for second-
order pooling on free-form regions. We augment
standard local descriptors such as SIFT [13] with
both raw image information and the relative loca-
tion and scale of local features within the spatial
support of the region.

Source code implementing the techniques is publicly
available on our websites.

Overview. The next section reviews related work. The
formulation is given in x2, where we introduce second-
order region descriptors and their associated feature
maps. x3 describes the local descriptor enrichment pro-
cess as well as the different base local descriptors used.
x4 proposes an approach to speed-up the pooling com-
putation over overlapping regions. The experiments in
x5 focus on region classi�cation and the relationship with
image classi�cation, whereas x6 explores the proposed
methodology for semantic segmentation. General con-
siderations, as well as conclusions and suggestions for
future work appear in x7.
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Fig. 1. Overview of the computational pipeline for de-
scribing free-form regions. Local feature extraction, here
illustrated with SIFT features (the methodology is gener-
ally applicable with any base descriptor), is followed by a
pooling stage that summarizes the local features inside
an automatically extracted region (shown in green) into a
single vector that can be fed to regular linear classi�ers.
In this work, we introduce descriptors computed based on
second-order pooling operations that capture the pairwise
correlations of local features inside free-form regions, as
well metrics to compare them in a principled way.

1.1 Related Work

Recognition of free-form regions is intimately related to
the recognition of shapes, a problem extensively studied
in the literature. One can identify two broad paradigms
in shape recognition, that differ in the way local features
are handled: using correspondences or based on local
feature aggregation. There is also relevant recent work in
semantic segmentation, which often revolves around the
classi�cation of free-form regions obtained using bottom-
up segmentation.

1.1.1 Recognition using Correspondences

Several popular shape recognition approaches attempt
to minimize appearance and shape deformation while
matching local features of stored exemplars with those
of a test region. Two in�uential approaches use shock
graphs [14] and deformable template matching [15].
These techniques are non-parametric (have no learning
stage) and successful in scenarios where objects are
manually pre-segmented (e.g. the MPEG-7 dataset [16])
or have uniform backgrounds. In this paper we focus on
recognition of shapes that are computed automatically
and may be affected by noise.

Parametric learning-based approaches have also been
proposed for recognition based on local features. Some
methods search for a subset of local features that best
match object parts, either within generative [17] or
discriminative [18] frameworks. These techniques are
powerful, but their computational complexity increases
rapidly with the number of object parts. Other ap-
proaches use classi�ers directly on descriptors computed
from multiple local features, by de�ning appropriate
non-linear set or distribution-based kernels [19], [20],
[21], [22]. Such techniques however do not scale well
in the number of training examples.
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1.1.2 Local Descriptor Aggregation

Currently, there is signi�cant interest in methods that
aggregate and summarize the features inside a region, by
using a combination of feature coding and pooling tech-
niques. These methods carry the promise to scale well in
the number of local features used, and by using linear
classi�ers, they could also scale favorably in the number
of training examples [23], [24]. Recent overviews appear
in [9], [25]. While most pooling techniques compute �rst-
order statistics, various higher-order statistics, datin g
back to the early days of computer vision, have been
proposed to describe regions. For example the rotation-
invariant set of central moments with order up to 4
proposed by Hu [26] has been a popular shape descriptor
for the past 50 years. More recently, second-order central
moments (covariance matrices) constructed over a larger
number of low-level image features have been used with
boosting [27]. Our work pursues slightly different types
of second-order statistics, more closely related to those
used in �rst-order pooling. We also focus on features that
have larger spatial support and are popular for object
categorization, e.g. SIFT, use a different, ef�cient, tangent
space projection derived from the mathematical structure
of the space of symmetric matrices we construct [12], [28]
and importantly, focus on the case of free-form regions
instead of rectangular patches.

Related to our approach is also the one proposed
by Nakayama et al. [29] which represents sets of lo-
cal features by their mean and covariance matrix then
linearizes a parametrization of these quantities using
a whitening matrix estimated off-line. Our proposed
tangent space mapping is formally motivated, mathe-
matically coupled with the second-order representation
used, does not require any off-line estimation stage and
achieves superior performance as demonstrated in the
experimental section. The Fisher Vector representation
[30] and its variants [31] also use second-order statis-
tics for recognition. Our method sharply differs in the
implicit second-order feature map (Log-Euclidean vs.
Fisher information matrix) and in the absence of an un-
supervised learning stage (e.g. codebook construction):
raw local feature descriptors are pooled directly in a
process that considers each region in isolation – the
distribution of image descriptors in the training set is
therefore not modeled in our case.

1.1.3 Recognition and Segmentation

Much previous semantic segmentation work focused on
datasets such as MSRC [32], that revolve around back-
ground categories like `grass' or `sky'. These categories
are largely shapeless at the level of granularity typically
photographed (and analyzed) in computer vision, and
can often be distinguished based on local texture in-
formation alone. In such cases, direct classi�cation on
densely extracted regular patches or descriptors based
on superpixels can achieve good results, and many
approaches exist. Notably Shotton et al. [32] select from

a large set of contextual features within a boosting
framework and more recently Farabet et al. [33] train a
convolutional network on a multi-scale image pyramid.

The bag of words is a popular superpixel descriptor,
often used in conjunction with exponentiated- � 2 [34] or
intersection [35] kernels. Superpixel descriptors that ar e
better adapted to linear classi�ers have also been pro-
posed recently [36]. Often, bags of words are combined
with color and texton histograms, as well as different
types of hand designed features, e.g. [37], [38], [39]. Some
of these approaches can achieve competitive results on
the PASCAL VOC dataset by complementing local clas-
si�cation with strong bounding box object detectors or
image classi�ers [40], [35], [41].

2 SECOND-ORDER POOLING

We assume to be given a collection of M local fea-
tures D = ( X; F; S ), characterized by descriptors X =
(x1; : : : ; xM ), x 2 Rn , extracted over square patches
centered at image locations F = ( f1; : : : ; fM ), f 2 R2,
with pixel width S = ( si ; : : : ; sM ), s 2 N. Furthermore,
we assume that a set of K free-form image regions
R = ( R1; : : : ; RK ) is available (e.g. obtained using
bottom-up segmentation), each consisting of a set of
pixel coordinates. A local feature di is inside a region
Rj whenever f i 2 Rj , then FR j = f f jf 2 Rj g and jFR j j
is the number of local features inside Rj . See �g. 1 for
an illustration of such dense local feature extraction for
a single image region.

We pool local features to form global region descrip-
tors P = ( p1; : : : ; pK ), p 2 Rq, using second-order
analogues of the most common �rst-order pooling op-
erators. In particular, we focus on multiplicative second-
order interactions (e.g. outer products), together with
either the average or the max operators. We de�ne
second-order average-pooling(2AvgP) as the matrix:

Gavg (Rj ) =
1

jFR j j

X

i :( f i 2 R j )

xi � x>
i ; (1)

and second-order max-pooling(2MaxP), as the matrix:

Gmax (Rj ) = max
i :( f i 2 R j )

xi � x>
i : (2)

where the max operation is performed over corre-
sponding elements in the matrices resulting from the
outer products of local descriptors.

We are interested in using classi�ers that offer training
times that are linear in the number of training examples
[23]. The path we pursue is not to make such classi�ers
more powerful by employing a kernel, but instead to
transform the data (pooled second-order statistics) using
explicit embeddings, adapted to the mathematical struc-
ture of the space, that make it amenable to comparisons
based on standard inner products. We consider two
embeddings, a tangent space mapping applicable only
for Gavg , and element-wise power normalization.
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We form the �nal global region descriptor vector p j
by concatenating the elements of the upper triangle
of G(Rj ), because it is symmetric. The embeddings
employed preserve not only symmetry but also dimen-
sionality. The dimensionality q of p j is therefore n 2 + n

2 .
For example, our global region descriptors obtained by
pooling 128-dimensional raw local SIFT descriptors have
8:256 dimensions.

2.1 Tangent Space Mapping

Linear classi�ers such as support vector machines (SVM)
optimize the geometric (Euclidean) margin between a
separating hyperplane and sets of positive and nega-
tive examples. The n � n matrices Gmax and Gavg are
both symmetric matrices(Sn ), but second-order average-
pooling leads to matrices with additional symmetric pos-
itive de�nite (S+

n ) structure. While symmetric matrices
lie in an Euclidean space, the space of S+

n forms a
Riemannian manifold [42]. A manifold is a topological
space that is locally homeomorphicto an Euclidean space
and a Riemannian manifold is a differentiable manifold
M endowed with a Riemannian metric.

We seek to de�ne a mapping that projects the data
from the manifold to an Euclidean space, by transform-
ing each small region corresponding to a neighborhood
on the manifold to an open set in an Euclidean space,
similarly to coordinate charts. The exponential map(expP )
and logarithmic map(logP ) can be used to de�ne suitable
coordinates, which requires choosing an appropriate tan-
gent space TP M on which to map the data (P 2 M ).
In general, the exponential map is onto but only one-to-
one in a neighborhood of a point P 2 M . The inverse
mapping ( logP ) is uniquely de�ned only around a small
neighborhood of the point. This means that it is not
usually possible to embed the entire manifold in an
Euclidean space by de�ning global coordinates, hence
the geometry of the �attened space does not re�ect the
global geometry of the data points. This is the case with
the commonly used Af�ne-Invariant metric [43]. The
manifold of S+

n endowed with this metric can only be
approximated locally, by de�ning a point P 2 S+

n and
mapping the data to the corresponding tangent space
(Sn ).

Here we employ the Log-Euclidean metric [12], which
does not have this limitation. As observed in [12] the
simple matrix exponential ( exp) is a diffeomorphismfrom
the Euclidean space of symmetric matrices (Sn ) to the
space of S+

n . The important point is that a matrix loga-
rithm P 2 S+

n is unique, well de�ned and is a symmetric
matrix u = log( P) 2 Sn whereas the matrix exponential
P = exp( u) of any symmetric matrix u 2 Sn yields a
matrix P 2 S+

n . The Log-Euclidean framework employs
the simple matrix logarithm as a mapping, resulting in a
space of S+

n that is isomorphic(the algebraic structure of
the vector space is conserved),diffeomorphicand isometric
(distances are conserved) to the associated Euclidean
space of symmetric matrices. The matrix logarithm can

� �

Fig. 2. Effect of matrix logarithm on one example Gavg

matrix computed from SIFT features inside a ground truth
airplane region in a PASCAL VOC image. On the left we
show the original matrix, on the right the matrix obtained
after the logarithm computation. Top images show 2D
visualizations with a saturated value range between 0
(black) and 0.2 (white). Bottom image shows full range
of values in a depth view.

be viewed as the logarithm map with base point set at
the identity matrix I n . We apply this operator on the
second-order statistics Gavg (but not on Gmax , which is
not in S+

n in general [44]) of each region Rj :

G log
avg (Rj ) = log ( Gavg (Rj )) ; (3)

We compute the logarithm using the very stable Schur-
Parlett algorithm [45] which involves between n3 and n4

operations depending on the distribution of eigenvalues
of the input matrices 1. The effect of the logarithm on
one example Gavg matrix computed from SIFT features is
shown in �g. 2. In our experiments, we observed compu-
tation times of less than 0:004seconds (i7-3.20GHz CPU)
for matrices of size 128 x 128 corresponding to regions
where SIFT features were extracted, which is similar to
the computational cost using diagonalization instead of
Schur-Parlett.

2.2 Power Normalization

Linear classi�ers have been observed to work better
when applied on non-sparse features. The power nor-
malization, introduced by Perronnin et al [30] to improve
Fisher vectors reduces sparsity by increasing small fea-
ture values and it also saturates high ones. It can be
interpreted as an explicit feature map for a variation of
the Hellinger kernel supporting negative values [46]. The
features obtained using second-order pooling on stan-
dard local features are also approximately sparse with
most dimensions having very small magnitudes and a
few having very large ones (see �g. 3 for feature value

1. This is the default algorithm for matrix logarithm computatio n in
MATLAB.
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Fig. 3. Frequency of different feature values after pooling
SIFT descriptors with and without power normalization.
Power normalization increases the magnitude of features
close to zero and saturates large values, a property
known to improve performance with linear classi�ers.

statistics obtained using second-order average pooling
with the tangent space mapping, on object segmenta-
tions from the PASCAL VOC segmentation training set).
This suggests that power normalization could also be
appropriate in our case and will be con�rmed in the
experimental section.

The procedure consists of a simple rescaling of each
individual feature value p by sign (p) � jpjh , with h
between 0 and 1. We found h = 0 :75 to work well in
practice and used that value throughout the experiments
in order to normalize our descriptors. This normalization
is applied after the tangent space mapping with Gavg

and directly for the descriptor derived from Gmax .

3 LOCAL FEATURE ENRICHMENT

As part of our high-level strategy of leveraging the su-
perior signal-to-noise ratio of free-form regions, instea d
of encoding local features using large codebooks that are
commonly used together with �rst-order pooling meth-
ods, we rely on enhancing local features inside a region
with additional color variation and contextual spatial
information. In this way, we aim to capture additional
relevant correlations in our second-order pooling stage
and support �ner-grained region selection. We enrich the
local descriptors with their relative coordinates within
regions, as well as additional raw image information.
The use of relative coordinates is a simple way of
palliating the lack of global information (e.g. shape)
that is characteristic of feature-extraction approaches that
aggregate local descriptors.

Let the width of the bounding box of region Rj be
denoted by wj , its height by hj and the coordinates
of its upper left corner be [bjx ; bjy ]. We encode the
position of di within Rj by the 4 dimensional vector
[ f ix � bjx

w j
; f ix � bjx

h j
; f iy � bjy

w j
; f iy � bjy

h j
]. Similarly, we de�ne a 2

dimensional feature that encodes the relative scale of di

within Rj : � � [ si
w j

; si
h j

], where � is a normalization factor
that scales the values roughly between 0 and 1. We also
augment each local descriptor xi with RGB, HSV and
LAB color values of the pixel at the center of the patch
f i = [ f ix ; f iy ] scaled to the range [0; 1], for a total of 9
extra dimensions.

Prior work. Enriching local features with spatial and
color information has been previously explored for im-
age classi�cation where it encodes a form of scene-
level prior. We instead aim to capture approximate spa-
tial and color variation (and by pooling, their second-
order relations) inside objects. Various papers have pro-
posed enriching SIFT descriptors with xy image coor-
dinates [47], [48] as an alternative to more expensive
spatial pyramids. In concurrent work with our initial
ECCV publication [49], Sanchez et al. [50] propose a 4-
dimensional subset of our spatial enrichment dimensions
but normalize over the entire image (segments were not
considered). There is also ample prior work on color de-
scriptor design: Weijer & Schmid [51] proposed multiple
different color descriptors obtained by histogramming
transformations of color values inside a patch resulting
in between 37 and 121 dimensional vectors. Instead, we
use just the color values of the pixel at the center of
the patch, which produces a different, more compact
extension of SIFT-like local descriptors (only 9 extra
dimensions) that appears effective with our proposed
pooling operators.

3.1 Multiple Local Descriptors

In practice we used the enriched versions of three dif-
ferent local descriptors: SIFT [13], a variation we call
masked SIFT (MSIFT) which suppresses background
clutter while preserving contrast with the foreground,
and local binary patterns (LBP) [52], to generate four
different global region descriptors. The MSIFT local de-
scriptors are computed just like regular SIFT, after a
special preprocessing of the image. The pixel intensities
in the background of the region are set to 0 and the
foreground intensity range is compressed between 50
and 255. Masking suppresses background clutter for
those local descriptors extracted over patches partially
overlapping with the background, whereas compressing
the intensity range preserves contrast along the region
boundary for dark objects. For ef�ciency, we crop the
region bounding box from the image, and resize its
width to a �xed size while preserving the original
bounding box aspect ratio (we found that a width of 75
pixels offered a good trade-off between computational
ef�ciency and spatial coverage in our experiments).

We pool the enriched SIFT local descriptors over the
foreground of each region (eSIFT-F) and separately over
the background (eSIFT-G)2. The normalized coordinates
used with eSIFT-G are computed with respect to the full-
image coordinate frame, making them independent of
the regions, which is more ef�cient, as shown in section
4. We also pool enriched LBP and MSIFT features over
the foreground of the regions (eLBP-F and eMSIFT-F). In
total the enriched SIFT descriptors have 143dimensions,
whereas the local LBP descriptors have 58 dimensions

2. We found that pooling additional types of features over the b ack-
ground increased dimensionality and brought diminishing return s.
Therefore, we limited ourselves to eSIFT-G.
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before, and 73 dimensions after the enrichment proce-
dure just described.

4 EFFICIENT POOLING OVER FREE-FORM RE-
GIONS

If the putative object regions are constrained to certain
shapes (e.g. rectangles with the same aspect ratio, as
used in sliding window methods), detection can some-
times be performed ef�ciently, at a given scale. Depend-
ing on the modeling assumptions of each recognition
architecture (e.g. the type of feature extraction and classi-
�er), techniques such as convolution [8], [18]or integral
images [53] allow searching over thousands of regions
ef�ciently. When the set of regions R is unstructured and
of different scales, these techniques no longer apply.

Here, we propose two ways to speed up the pool-
ing of local features over multiple overlapping free-
form regions. Those components of the local descriptors
that depend on the spatial extent of regions must be
computed independently for each one, Rj , so it will
prove useful to de�ne the decomposition x = [ xrc ; xrd ]
where xrc are those elements ofx that do not depend on
the speci�c region being considered, and xrd are region
speci�c, hence they also depend on Rj . The speed-up
will apply only for pooling xrc , with the remaining ones
still pooled exhaustively.

Caching over Region Intersections. Pooling naively
using both (1) and (2) requires the computation ofP K

j =1 jFR j j outer products and ( k less) sum/max op-
erations, for a set of k regions. In order to reduce the
number of operations, we introduce a two-level, hierar-
chical strategy. The general idea is to cache intermediate
results obtained in areas of the image that are shared
by multiple regions. First we reconstruct the regions in
R by sets of �ne-grained superpixels. Then each region
Rj will require as many sum/max operations as the
number of superpixels it consists of, which can be much
fewer compared to the number of local features inside it.
The number of outer products also becomes independent
of K , only depending on the total number of features
extracted from the image. Regions can be approximately
reconstructed as sets of superpixels by simply selecting,
for each region, those superpixels having a high percent-
age of their area inside the region.

We experimented with several fast algorithms to gen-
erate superpixels, including k-means, greedy merging
of intersections of CPMC regions [54], or owt-UCM
[55]3. We adjusted thresholds to produce around 500
superpixels a number we found to be appropriate to
approximate well regions R, obtained in our experiments
using CPMC [54].

Favorable Region Complements. Average pooling al-
lows for an additional speed-up by using the sum over

3. The latter is not very fast, but in our standard setup it is an in put to
the bottom-up segmentation algorithm CPMC, hence it is precomput ed
for further feature extraction purposes.

the entire image
P

i xrc
i � xrc >

i and taking advantage
of favorable region complements. Given each region
Rj , we determine whether there are more superpixels
inside or outside it. We sum inside Rj if it contains
fewer superpixels, or sum outside Rj and subtract from
the precomputed entire image sum, if there are fewer
superpixels outside Rj . This additional speed-up has a
noticeable impact when pooling over regions with large
spatial support. In our case this is typical for eSIFT-
G features, de�ned on the background of our regions
(segments generated by CPMC).

The last step is to assemble the pooled, cached region-
dependent and region independent components. For
example, for the proposed second-order variant of max-
pooling, the feature matrix is formed as:

Gmax (Rj ) =

"
M rc

j max xrc
i �

�
xrd

i

� >

maxxrc
i �

�
xrd

i

� >
max xrd

i �
�
xrd

i

� >

#

; (4)

where max is performed again over i : (f i 2 Rj ) and
M rc

j denotes the submatrix obtained using the speed-up.
Speci�cally, M rc

j is obtained by identifying the superpix-
els best covering the region j , and performing the corre-
sponding max over their cached matrices. The average-
pooling case is handled similarly, with max replaced by
the sum operation. The proposed speed-up is general
and applies to both �rst and second-order pooling. It has
however more impact in second-order pooling, which
involves costlier matrix operations. When xrc represents
the dominant block of the full descriptor x the speed-
up can be considerable. This is the case for eSIFT-F
described above where 96% of the elements (137 out
of 143) are region-independent, as well as for eSIFT-G
where all elements are region-independent. In contrast,
for eMSIFT-F this has no impact, as all elements are
region-dependent due to masking.

5 REGION CLASSIFICATION

We �rst perform experiments using ground truth ob-
ject segmentations. This allows us to isolate recognition
impact due to segment selection and inference prob-
lems, and simpli�es comparisons in future work. We
use the PASCAL VOC 2012 dataset [1], which contains
12; 031 training and validation images and 1; 456 test
images. Among the 12; 031 training images, 2; 913 have
associated ground truth object regions split evenly into
a segmentation `train-2012' and `val-2012' sets, but we
also used external ground truth object regions available
online [56] for the remaining 9; 118 images, here referred
as `main-2012'. In the next section we will also report
results on VOC 2011, a subset of the VOC 2012 dataset,
in order to compare with results published for previous
methods. Image set `test-2011' has1; 111 images, `train-
2011' has1; 112 and `val-2011' has 1; 111 images.

Experimental details. Local feature extraction was per-
formed densely and at multiple scales, using the open
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source package VLFEAT [57]. SIFT descriptors were
computed with strides of 4 pixels and bin widths of 2,
4, 6 and 8 pixels while masked SIFT descriptors were
computed with strides of 2 pixels and bin widths of 1,
3, 5, and 7 pixels. Histograms of quantized LBP features
were computed over square cells of regular image tessel-
lations having 2, 4, 6, 8, and 10 pixels width. All of our
results were obtained using power normalization ( x2.2).

Evaluation. The most commonly used evaluation proce-
dure for bounding box detection and image classi�cation
in the VOC dataset is average precision, which takes into
account the prediction con�dence and is computed inde-
pendently for each category. Differently, the VOC seman-
tic segmentation task assessment is based on winner-
takes-all: every pixel is assigned a single label and the
con�dence of the predictions is discarded. A single value
that summarizes the performance is obtained by class
averaging. Our evaluation of ground truth region classi-
�cation is tailored to the target application of semantic
segmentation and we use a form of 1-of-C accuracy
averaged over classes, which we will refer to as average
accuracy. Let there be C classes and each ground truth
region Rj have an associated ground truth label l j and
predicted label yj , both in the range [1; : : : ; C]. Let the
set of ground truth regions in class i be K i . The average
accuracy is then measured as:

accavg =
1
C

CX

i

1
jK i j

X

j 2 K i

1(l j = yj ) (5)

Pooling. We begin with a comparison of the differ-
ent pooling operations, �rst and second-order max and
average-pooling over SIFT and enriched SIFT descrip-
tors, and factor the effect of different nonlinearities. As
a relevant baseline we implemented the center tangent
linear kernel of Nakayama et al. [29], a feature map
which parametrizes the mean and covariance of a set of
local features and whitens the resulting feature vector.
We add a diagonal threshold to the whitening matrix
(as indicated in [29]), which we cross-validate in every
experiment.

We train one-vs-all SVM models for the 20 PASCAL
VOC classes using LIBSVM [58], on `train-2012', opti-
mize the SVM-regularization parameter independently
for every case, and test on `val-2012'. Table 1 shows
large gains of second-order average-pooling based on the
Log-Euclidean mapping. The matrices presented to the
matrix log operation have sometimes poor conditioning
and we added a small damping factor on their diagonal
(0:001 in all experiments) for numerical stability. Max-
pooling performs less well but still improves over �rst-
order pooling. The power normalization increases aver-
age accuracy by 1:5 with log(2AvgP) on ground truth
regions and by 2:5 on their superpixel approximations,
while the 15 additional dimensions of eSIFT help very
signi�cantly in all cases, with the 9 color values and
the 6 normalized coordinate values contributing roughly

the same. The approach of [29] outperforms plain 2AvgP
but is inferior to the our complete, consistent descriptor
construction pipeline, that includes the log-Euclidean
mapping (matrix logarithm).

Feature Combination. We now evaluate the combination
of the proposed global region descriptors eSIFT-F, eSIFT-
G, eMSIFT-F and eLBP-F, described inx3 and instanti-
ated using the best pooling method, log(2AvgP). The
contribution of the multiple global regions descriptors
is balanced by normalizing each one to unit L 2 norm.
In table 2 we show that by using these features, referred
to as O2P (as in order 2 pooling) in association with a
linear classi�er, we outperform the feature combination
used by SVR-SEGM [2], the highest-scoring system of
the VOC 2011 Segmentation Challenge. This system uses
4 bag-of-word descriptors and 3 variations of HOG
(all obtained using �rst-order pooling) and relies for
some of its performance on exponentiated-� 2 kernels
that are computationally expensive in both training and
testing. The computational cost of both methods will be
compared in x6.

5.1 Undersegmentation and Image Classi�cation

Much previous research has focused on the develop-
ment of features for image classi�cation [7], [59], [30], a
problem that can be seen as free-form region classi�ca-
tion under extreme under-segmentation. We investigated
how well descriptors perform under various degrees
of under-segmentation, ranging from the ground truth
delineation to the entire image, as depicted in �g. 5.
Under-segmentations were generated by computing an
Euclidean distance transform for each individual object
mask and identifying the maximum distance of any pixel
to this mask, then thresholding. A range of 9 thresholds
was sampled uniformly between 0 and the maximum
distance on a logarithmic scale with base 1.8.

We compare descriptors obtained using second-order
average pooling with standard Fisher vector encoding
[30] of SIFT features, here named SIFT-PCA-FISHER,
which is one of the best performing feature extraction
approaches in the PASCAL VOC image classi�cation
task [25]. We used the implementation available on-
line [25], and adapted it to regions by simply pooling
over local descriptors extracted inside the regions. This
implementation reduces dimensionality of SIFT to 80
dimensions using PCA (which was shown to improve
recognition performance), and uses a mixture model
with 256Gaussians, resulting in 40; 960-dimensional fea-
ture vectors4.

The results are displayed in �g. 4. On clean object
regions our best descriptors obtained with second-order
pooling lead to more accurate 1-of-C recognition (mea-
sured as average accuracy), which may be a relevant
metric for semantic segmentation. As the degree of

4. We were not able to experiment with Fisher vectors on our
enriched features as expectation maximization did not converge i n this
case using the package from [25].
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TABLE 1
Average accuracy using different pooling operations on raw local features, i.e. without a coding stage. The

experiment is performed using the ground truth object regions of 20 categories from the PASCAL VOC 2012
Segmentation validation set, after training on the standard training set. The second value in each cell shows the

results on less precise superpixel-based reconstructions of the ground truth regions. Columns 1MaxP and 1AvgP
show results for �rst-order max and average-pooling, respe ctively. Column 2MaxP shows results for second-order

max-pooling and the two columns before last show results for second-order average-pooling. The last column shows
results obtained when using whitening [29].

1MaxP 1AvgP 2MaxP 2AvgP log(2AvgP) Nakayama [29]
SIFT 14.6/12.6 35.0/26.7 39.3/30.7 50.3/38.8 55.7/46.7 49.0/42.7

eSIFT 27.4/20.7 44.5/32.8 50.9/39.6 56.3/46.4 64.3/56.1 58.1/51.2

TABLE 2
Average accuracy on ground truth regions and their superpixel approximations from images of the VOC 2012

validation set. Models were trained on the training set employing our feature combination here denoted by O2P,
consisting of 4 global region descriptors, eSIFT-F, eSIFT-G, eMSIFT-F and eLBP-F. We compare with features used

by the state-of-the-art semantic segmentation method SVR-SEGM [2], with both a linear classi�er and their
non-linear exponentiated-� 2 kernels. Columns 3-5 show results obtained when removing each descriptor from our

complete combination.

O2P -eSIFT -eMSIFT -eLBP Feats. in [2]
(linear) (linear) (linear) (linear) (linear) (non-linear)

Avg. Accuracy 74.6/63.4 70.5/57.4 68.9/58.9 74.2/62.0 59.4/48.4 66.2/55.0

under-segmentation increases, an upper bound on the
average accuracy emerges, as multiple regions covering
the entire image are assigned the same label. Therefore,
we also report the mean average precision where perfect
performance can always be achieved. Both metrics sug-
gest that SIFT-PCA-FISHER obtains better performance
in extreme under-segmentation cases, when pooling over
a large fraction of the entire image, a setup equivalent
to that of image classi�cation. This seems to indicate
that coding is more important when there is clutter,
which is understandable: when local features are directly
pooled, all local features affect all dimensions of the
�nal output descriptor and noise from large amounts of
clutter may swamp signal from local descriptors inside
objects. Coding routes local features to different output
dimensions through projection onto a codebook and
makes it feasible for some local features inside objects to
appear in the output vector separately from background
features. Our Caltech101 experiment in the next sub-
section further validates this intuition. Since Caltech is
composed mostly of pre-segmented images, with objects
on white backgrounds there is less clutter, and direct
pooling works well.

Caltech 101.The Caltech 101 dataset [60] has been an im-
portant testbed for coding and pooling techniques so far.
Despite its limitations compared to PASCAL VOC, such
as having a single object per image, possessing unnatural
artifacts as well as lacking occlusion, pose and scale
variability, most of the literature on local feature extrac -
tion, coding and pooling has reported results on Caltech
101. This still makes it a useful benchmark. The dataset
contains ground truth segmentations for all objects but
these are rarely used for classi�cation purposes (a few

exceptions include [38], [2]). Instead, most approaches
employ a spatial pyramid [7], a �xed decomposition
of the image into square cells, where max or average-
pooling are employed together with a particular feature
coding method [7], [59], [22]. We compare with these
methods using the raw SIFT descriptors (e.g. no coding)
and our proposed second-order average-pooling on a
spatial pyramid (segments are not used). The resulting
image descriptor is somewhat high-dimensional (173.376
dimensions using SIFT), due to the concatenation of the
global descriptors of each cell in the spatial pyramid,
but because linear classi�ers are used and the number
of training examples is small, learning takes only a few
seconds. We also experimented using SVM with an RBF
kernel but did not �nd any improvement over linear
kernels.

Our proposed pooling leads to the best classi�cation
accuracy among aggregation methods based on a single
feature, when using 30 training examples and the stan-
dard evaluation protocol [19], [7]. It is also competitive
with other top-performing, but signi�cantly slower alter-
natives. The results and additional detail can be found
in table 3.

6 SEMANTIC SEGMENTATION

In order to more thoroughly evaluate recognition per-
formance we have experimented with our best pooling
method on the PASCAL VOC Segmentation dataset,
where ground truth masks are not available at test time.
We use a feedforward sequential inference architecture
similar to that of SVR-SEGM [2]. First we compute a pool
of up to 150 top-ranked object segmentation candidates
for each image, using the publicly available Constrained
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Fig. 4. Analysis of the sensitivity of different free-form region descriptors to under-segmentation. Classi�cation r esults
on the validation set of the VOC 2012 Segmentation benchmark are measured as average accuracy (left) and mean
average precision (right) using bothdescriptors extracted on ground truth regions anddescriptors computed over a set
of outward thresholded distance transforms of the ground truth regions (see �g. 5). The horizontal axis indicates the
average intersection-over-union overlap with ground truth regions (the overlap of a ground truth region with itself is 1).
The results for the lowest overlap are equivalent to image classi�cation, because feature extraction is performed over
the entire image. See the main text for discussion.

Fig. 5. Illustration of synthetic under-segmentations obtained by dilating ground truth regions isotropically over 9
different strides. The strides are selected on a logarithmic scale, calibrated on a per-object basis, in order to cover the
range between the ground truth region and the entire image. Since the �nal under-segmentation corresponds to the
full image, free-form recognition coincides, in that case, with image classi�cation. Lighter color indicates pixels t hat lie
deeper inside nested under-segmentations.

TABLE 3
Classi�cation accuracy on Caltech101 using a single featur e and 30 training examples per class, for various

methods. Regions (segments) are not used in this experiment. Instead, as typical for this dataset (SPM, LLC, EMK),
we pool over a �xed spatial pyramid with 3 levels (1x1, 2x2 and 4x4 regular image partitions). Results are presented

based on SIFT and its augmented version eSIFT, which contains 15 additional dimensions.

Aggregation-based methods Other
SIFT-O2P eSIFT-O2P SPM [7] LLC [59] EMK [22] MP [10] Fisher [25] NAK [29] NBNN [47] GMK [61]

79.2 80.8 64.4 73.4 74.5 77.3 77.8 67.6 73.0 80.3

Parametric Min-Cuts algorithm (CPMC) [54]. We then
extract, for each candidate, the feature combination pre-
viously described, and feed these to linear support vector
regressors (SVR) for each category. The regressors are
trained to predict the highest overlap between each
segment and the objects from each category [2], [62].

Learning. We used all 12,031 available training images
with associated ground truth annotations for learning.
By extracting the CPMC segments for all those images,
we obtain a grand total of around 1.78 million segment

descriptors – the CPMC descriptor set. Additionally we
collected the descriptors corresponding to ground truth
and mirrored ground truth segments, as well as those
CPMC segments that best overlap with each ground
truth object segmentation to form a `positive' descriptor
set. We reduced dimensionality of the descriptor com-
bination from 33,800 dimensions to 12,500 using non-
centered Principal Component Analysis (PCA) [63], then
divided descriptors of the CPMC set into 4 chunks which
individually �t on the 32 GB of available RAM memory.
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Non-centered PCA outperformed standard PCA notice-
ably (about 2% higher VOC segmentation score given a
same number of target dimensions), suggesting that the
relative average magnitudes of the different dimensions
are informative and should not be factored out through
mean subtraction. We computed the PCA basis on the
reduced set of ground truth segments and their mirrored
versions (59,000 examples) in about 20 minutes (i7-
3.20GHz CPU).

We pursued a learning approach similar to those used
in object detection [18], where the training data also
rarely �ts into main memory. We trained an initial model
for each category using the `positive' set and the �rst
chunk of the CPMC descriptor set. We stored all descrip-
tors from the CPMC set that became support vectors and
used the learned model to quickly sift through the next
CPMC descriptor chunk while collecting hard examples,
outside the SVR � -margin. We then retrained the model
using the positive set and the cached hard negative
examples, then iterated until all chunks had been pro-
cessed. We warm-started the training of a new model by
reusing the dual parameters � of all previous examples
and initializing the values of � of new examples to zero.
By doing so, we observed a 1:5-4x training speed-up.

Ef�ciency of Feature Extraction. Using 150 segments
per image, the shape-dependent eMSIFT-F descriptor
took 2 seconds per image to compute. We evaluated
the proposed speed-ups on the other 3 region descrip-
tors, where these are applicable. Naively pooling, from
scratch, over each different region took 11.6 seconds
per image. Caching reduces computational time to just
3s and taking advantage of favorable segment comple-
ments reduces time further to 2.4s, a 4.8x speed-up over
naive pooling. The timings reported in this subsection
were obtained on a desktop PC with 32GB of RAM and
an i7-3.20GHz CPU with 6 cores.

Inference. A simple inference procedure is applied to
compute a full image labeling, statistically biased to-
wards images with relatively few objects, as typical of
PASCAL VOC. The procedure operates by sequentially
selecting the segment and class with the highest score
above a `background' threshold, by sifting through the
existing segments and based on the SVR class model
responses for each segment. This threshold is linearly
increased every time a new segment is selected, which
has the effect that a larger scoring margin is required to
add an extra segment. The selected segments are then
`pasted' onto the image in the increasing order of their
scores. In this way higher scoring segments are overlaid
on top of those with lower scores. The initial threshold is
set automatically so that the average number of selected
segments per image equals the average number of ob-
jects per image in the training set, which is around 2.2,
and the linear increment was set to 0.02. We limited the
maximum number of selected segments for an image to
3. More sophisticated inference procedures could clearly
be plugged in [2], [3], [40], [35], [64], and could make a

signi�cant difference depending on the complexity of the
semantic class structure, analyzed scene, and image data.
While in this work our focus is primarily towards feature
descriptors in tandem with simple linear classi�cation,
the fact still remains that even the simple inference
procedure proposed turned out to be effective in the
PASCAL VOC benchmark.

Results. Results on the test sets of the VOC 2011 and
2012 segmentation benchmarks are reported in table 5.
The proposed methodology obtains the mean score 47:6
on VOC 2011, a10%and 15%improvement, respectively,
over the two winning methods of the 2011 Challenge,
which both used the same non-linear regressors, but
had access to only 2,223 images with ground truth
segmentations and to bounding boxes in the remaining
images during training. In contrast, our models used
segmentation masks for all training images. The results
on the larger VOC 2012 test set is slightly lower at 46:5, a
possible explanation being that newly added test images
are more dif�cult.

Besides the higher recognition performance compared
to the best methods of VOC 2011, our models are con-
siderably faster to train and test, as shown in a side-by-
side comparison in table 4. The reported learning time
of the proposed method includes PCA computation and
feature projection (but not feature extraction, same proto-
col in both cases). After learning, we project the learned
weight vector to the original space, so that at test time no
costly projections are required. We observed that repro-
jecting the learned weight vector did not change recog-
nition accuracy at all. We train and test on the large VOC
dataset orders of magnitude faster than [2] because we
use linear support vector regression, whereas [2] requires
non-linear (exponentiated- � 2) kernels. While learning is
130 times faster with the proposed methodology, the
comparative advantage in prediction time per image is
particularly striking: our proposed methodology is more
than 20,000 times faster. This is understandable, since
a linear predictor computes a single inner product per
segment hypothesis and category, as opposed to the
� 10,000 kernel evaluations in [2], one for each support
vector. The timings re�ect our (standard) experimental
setting where an average of 150 (CPMC) segments are
extracted per image5.

Recent developments. Since our initial conference paper
[49] and the public availability of source code for our
full system during ECCV 2012, several improvements
have been reported that build upon our proposed feature
extraction approach [65], [66], [67], [68]. Semantic segmen-
tation results using our same pipeline including our seg-
ment generation based on CPMC, were reported in the
very recent R-CNN paper [5], where our features were
replaced by those from the AlexNet convolutional neural

5. Note however that these timings do not re�ect the speed-up
of the overall system we experimented with: CPMC takes around 4
minutes per image. Our feature extraction and classi�cation appro ach
is nevertheless general and can be used with any object segmentation
proposals.
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TABLE 4
Ef�ciency of O 2P regressors compared to those of the
best performing method [2] on the PASCAL VOC 2011

Segmentation Challenge.

Feat. Extr. Prediction Learning
Exp-� 2 [2] (7 desc.) 7.8s / img. 87s / img. 59h / class

O2P (4 desc.) 4.4s / img. 0.004s / img. 26m / class

network (CNN) [11], pre-trained on one million images
containing 1.000 Imagenet classes, then �ne-tuned on
PASCAL VOC. Besides the different feature extraction,
our exact pipeline was adopted for generating propos-
als [54], training regressors and sequentially producing
semantic segmentations [49]. The VOC score reported
was 47.9 on VOC 2011, which roughly matches our 47.6,
obtained under signi�cantly reduced training conditions
(just PASCAL as opposed to Imagenet+PASCAL). This
further advocates the value of second-order pooling for
region description and the particular nature of free-
form region description compared to the image and the
rectangular region descriptors used in standard classi-
�cation or detection. AlexNet outperformed previously
dominant non-CNN approaches in the Imagenet image
classi�cation– e.g. Fisher vectors – by around 30% and R-
CNN improved the state-of-the-art in the PASCAL VOC
detectiondataset by 30%.

The ability of CNNs to operate as generic feature
extractors that can be �t to large datasets, then �ne-tuned
on different data is appealing. One research question is
whether there are network architectures better adapted
to free-form region description and shapedescription. A
second-order pooling layer may be a promising comple-
mentary component of such architectures.

6.1 Diagnostic Tests

As a last experiment we performed a set of diagnostic
tests using the same bottom-up segmentation and infer-
ence procedure as in the previous subsection. Differently,
in order to limit potential sources of variability, we did
not use PCA and used a setup where all training data
would �t in memory, by training the linear models on
`train-11' and testing on `val-11'. The goal was to verify
whether the conclusions obtained in the region classi�ca-
tion section would still hold on the wildly noisy �gure-
ground segmentations obtained automatically. Results
shown in table 6 indicate that relative losses incurred
by severing the O2P feature extraction process in dif-
ferent ways are reasonably consistent with �ndings in
the region classi�cation section. O 2P clearly outperforms
Nakayama et al.'s baseline [29], a related feature ex-
traction approach from the literature. Our log-Euclidean
tangent space mapping clearly outperforms the whiten-
ing employed in [29]. This is not entirely surprising as
the mapping is formally motivated and mathematically
consistent with the structure of the space of symmetric
positive de�nite matrices we work with, as presented

TABLE 6
Diagnostic results obtained by training on VOC

`train-2011' and testing on `val-2011'. Results are shown
for severed versions of the O2P descriptors, as well as

for HOG and Fisher encoding, and the method of
Nakayama et al.[29]. The dimensionality of the resulting

region descriptors is given in the �rst column.

#Dimensions VOC score

All-O 2P 33; 589 38:3
All-O 2P wo/ logarithm 33; 589 28:8
All-O 2P wo/ enrichment 26; 479 34:2
All-O 2P wo/ power norm. 33; 589 34:9
eMSIFT-F-O2P 10; 296 31:1
eSIFT-F/G-O2P 20; 592 30:9
eLBP-F-O2P 2; 701 22:8

All-Nakayama et al. [29] 34; 091 32:5
HOG 2; 048 14:1
SIFT-PCA-FISHER 40; 960 31:9

in x2.1. SIFT-PCA-FISHER achieves best results when
using a single local descriptor but has heavy cost in
terms of dimensionality. We also included results using
HOG. To handle free-form regions, the aspect ratio of
the HOG cells is adapted on-the-�y to �t each individual
region bounding box. Image gradients outside the region
were cleared (this led to better performance) and several
different grid con�gurations were tried, with an 8x8 grid
proving best.

7 CONCLUSION

We have introduced a representation framework for
free-form regions, based on second-order information,
that operates on raw features without any codebook-
based local feature coding stage, and demonstrated it
for object category recognition and semantic segmen-
tation. The proposed second-order pooling procedures
are formally motivated and mathematically consistent,
extremely simple to implement, involve only a few
parameters, and offer signi�cant accuracy gains in as-
sociation with linear classi�ers. We additionally present
methods for local descriptor enrichment that improve
performance at only a small increase in the global re-
gion descriptor dimensionality, and propose techniques
to speed-up the pooling process over arbitrary free-
form regions. Experimental results demonstrate that our
methodology outperforms the state-of-the-art on the
PASCAL VOC 2011 semantic segmentation dataset using
regressors that are orders of magnitude faster than those
of the most accurate methods [2]. We have made source
code implementing the models and methods presented
in this paper publicly available online from our websites,
in support for future research in object segmentation,
region description and scene understanding.
Future Work: Many effective second-order pooling oper-
ations may exist, beyond those proposed here. The study
of positive-de�nite matrices seems promising and draws
parallels with kernel methods. The kernel literature may
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TABLE 5
Left: semantic segmentation results on the VOC 2011 test set [69]. The proposed methodology, O2P in the table,

compares favorably to the 2011 challenge co-winners (BONN-FGT[3] and BONN-SVR[2]) while being signi�cantly
faster in training and testing, due to the use of linear instead of non-linear kernel models. It is the most accurate

method on 14 classes, as well as on average. While all methods are trained on the same set of images, our method
(O2P) and Berkeley's [4] use additional external ground truth segmentations provided in [56], which correspond to
comp6. The other results were obtained by participants in comp5 of the VOC 2011 challenge. Right: results on the

VOC 2012 test set, also on comp6.

O2P BERKELEY BONN-FGT BONN-SVR BROOKES NUS-C NUS-S
background 85.3 83.4 83.4 84.9 79.4 77.2 79.8
aeroplane 69.5 46.8 51.7 54.3 36.6 40.5 41.5

bicycle 22.9 18.9 23.7 23.9 18.6 19.0 20.2
bird 43.7 36.6 46.0 39.5 9.2 28.4 30.4
boat 40.5 31.2 33.9 35.3 11.0 27.8 29.1

bottle 45.0 42.7 49.4 42.6 29.8 40.7 47.4
bus 66.7 57.3 66.2 65.4 59.0 56.4 61.2
car 58.9 47.4 56.2 53.5 50.3 45.0 47.7
cat 57.5 44.1 41.7 46.1 25.5 33.1 35.0

chair 11.7 8.1 10.4 15.0 11.8 7.2 8.5
cow 45.0 39.4 41.9 47.4 29.0 37.4 38.3

diningtable 32.7 36.1 29.6 30.1 24.8 17.4 14.5
dog 43.6 36.3 24.4 33.9 16.0 26.8 28.6

horse 58.6 49.5 49.1 48.8 29.1 33.7 36.5
motorbike 57.2 48.3 50.5 54.4 47.9 46.6 47.8

person 52.3 50.7 39.6 46.4 41.9 40.6 42.5
pottedplant 36.1 26.3 19.9 28.8 16.1 23.3 28.5

sheep 50.9 47.2 44.9 51.3 34.0 33.4 37.8
sofa 27.4 22.1 26.1 26.2 11.6 23.9 26.4
train 46.6 42.0 40.0 44.9 43.3 41.2 43.5

tv/monitor 46.2 43.2 41.6 37.2 31.7 38.6 45.8
Mean 47.6 40.8 41.4 43.3 31.3 35.1 37.7

VOC2012 - O2P
84.8
63.7
23.4
44.9
40.8
45.1
58.0
58.9
57.6
12.1
43.8
31.0
44.8
56.2
56.8
52.3
37.1
44.0
29.5
48.6
42.9
46.5

Fig. 6. Examples of our semantic segmentations including failures that re�ect typical recognition issues: false posit ive
detections such as the tv/monitor in the kitchen scene, and false negatives like undetected cat and cows. In some
cases objects are correctly recognized but not very accurately segmented, as visible in the potted plant, motorbike
and train images. Additional visual results are available in the associated O2P code and project page, on our websites.

contain interesting alternatives to the multiplicative fe a-
ture interactions proposed in this paper, e.g. � 2 and
intersection kernels [46], [19], and aggregation operators
other than avg and max. Another exciting direction is to
explore our second-order pooling operators for feature
extraction in deep architectures [11].
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