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Abstract

All that structure from motion algorithms “see” are sets
of 2D points. We show that these impoverished views of
the world can be faked for the purpose of reconstructing
objects in challenging settings, such as from a single im-
age, or from a few ones far apart, by recognizing the object
and getting help from a collection of images of other ob-
jects from the same class. We synthesize virtual views by
computing geodesics on networks connecting objects with
similar viewpoints, and introduce techniques to increase the
speci�city and robustness of factorization-based object re-
construction in this setting. We report accurate object shape
reconstruction from a single image on challenging PASCAL
VOC data, which suggests that the current domain of appli-
cations of rigid structure-from-motion techniques may be
signi�cantly extended.

1. Introduction

Modern structure from motion (SfM) and multiview
stereo approaches [45, 12, 18] are widely used to recover
viewpoint and shape information of objects and scenes in
realistic settings, but require multiple images with overlap-
ping �elds of view. If only a single image of the target ob-
ject is available, or if multiple ones are available but from
viewpoints far apart, these methods are, respectively, inap-
plicable or prone to fail.

Here we aim to extend SfM-style techniques to these
cases by incorporating recognition. Once an object is rec-
ognized into some potentially broad class such as ”cars” or
”aeroplanes”, one can leverage a reusable collection of im-
ages of similar objects to aid reconstruction. This is in the
spirit of recent papers on face reconstruction using auto-
matically learned morphable models [31, 30] but we target
generic categories and use SfM techniques. Our main in-
sight is the following: SfM algorithms inhabit a rudimen-
tary visual world made of 2D points in correspondence and
these are all they “see”. In this visual world, novel views
can be faked more easily than in ours, where light compli-
cates matters. Our idea, illustrated in �g.1 is to synthesize

Figure 1. Our goal is to reconstruct an object from a single im-
age using structure from motion techniques on virtual views ob-
tained by aligning points on a regular grid on the test object
(shown on top) with points on similar grids de�ned on objects in a
reusable collection. Accurate alignment is achieved by computing
geodesics onvirtual view networks, VVN in short, which induce
smooth rotations through the class object collection and simplify
matching. Our approach assumes object classi�cation, localiza-
tion and viewpoint detection as inputs and produces a point cloud
(here shown for different camera azimuths on the left and different
elevations on the right). Better seen on a computer screen with
color and zoom.

virtual (SfM) views of the target object by aligning it with
images of different instances from the same class then em-
ploying robust rigid SfM techniques to reconstruct its visi-
ble surfaces. This idea is compatible with �ndings that hu-
man perception of structure from motion is robust to small
shape deformations of the object [27] and prefers to inter-
pret them as manifestations of a rigid object with slightly
altered shape instead of a non-rigid object [51].

The main technical challenge we face is the need to align
the target object with every different object in a collection,
which may be pictured with arbitrary viewpoint displace-
ments, all the way up to 180 degrees from the viewpoint of
the target object. There is no dense 2D alignment technique
that we know of that is prepared for such large viewpoint
variation, so we propose a new one: instead of attempting
to match the target object with each object in the collection



individually, we predict the pose of the target object and
identify a subset of objects from the collection with simi-
lar poses – the intuition is that these will be easier to align
with. Afterwards we propagate the correspondences to all
other collection objects along geodesics on our newvirtual
view networks.

Standard RANSAC-based SfM approaches are unlikely
to hold in our setting because use images from multiple
objects that may not have exactly the same shape. Non-
rigid SfM [8], developed for reconstruction from video,
has not yet been demonstrated on deformations arising
from intra-class variation for generic classes. We pursue
instead more regularized scaled-orthographic factorization
techniques [49], which optimize fewer parameters, and in-
troduce methodology for a) increasing robustness to the
multitude of noise sources we have by extrapolating syn-
thetic inliers using domain knowledge and b) making the re-
sulting reconstructions more speci�c, by emphasizing col-
lection objects more similar to the target object.

We will review related work in the next section. Sec.3
explains how we build and use virtual view networks to syn-
thesize large sets of new views from one or more images of
a target object to feed to SfM. Sec.4 introduces techniques
for robust SfM from noisy virtual views and sec.5 shows
alignment and reconstruction results. Source code to repro-
duce all results will be made available online1.

2. Related Work

Several recent papers have exploited class-speci�c
knowledge to improve SfM. The goal in one line of work is
to create denser, higher-quality reconstructions [2, 13, 19],
not to regularize SfM from few images and typically re-
quires 3D training data. Closer to our work, Bao and
Savarese proposed to reason jointly over object detections
and point correspondences [3] to better constrain SfM when
there are few scene points shared by different images. Our
approach differs in that it focuses on reconstructing the
shape of individual objects and can reconstruct from a sin-
gle image of the target object.

Our work is also related to 2D alignment approaches2,
that can be divided into two camps, class-speci�c sparse
ones, that try to localize the keypoints available in a training
set [11, 5, 55, 24], and class-agnostic dense ones such as
SIFT�ow [ 36, 42] and related techniques [32] that attempt
to align pairs or, as in the interesting concurrent work by
Zhou et al [56], more general sets of images. Our alignment
method sits in a middle ground as it uses class information
but aligns a uniform grid of points inside each object that
is much denser (several hundreds of points in practice) than

1Videos with all our reconstructions can be accessed online:
http://goo.gl/8Xzy3m .

2There are also several papers studying alignment using 3D models
[48, 40, 33].

the typical sets of training keypoints comprising 10 to 20
points per class.

Approaches building networks of objects have gained
popularity in vision in the last few years [38] and have been
recently proposed for 3D reconstruction from a single im-
age [47] but using a collection of 3D CAD models, whereas
we use annotated images. Other approaches requiring some
form of 3D training data have been proposed for generic
[4, 28] and class-speci�c [23, 10] object and scene recon-
struction [25, 43, 15, 35, 29].

3. Virtual View Networks

As in popular class-speci�c sparse alignment setups
[11, 5, 55, 24], we assume that a collection of training im-
agesf I
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for each image� , where some of them may be missing
due to occlusion. We bootstrap scaled orthographic cam-
eras, represented by rotation matricesf R
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g from
the keypoints for all images using the method from Vicente
et al. [52] 3. We also assume for simplicity that all ob-
jects in a collection are segmented and that at test time the
localization problem has been solved and we have a seg-
mentation of the test object, which could be obtained using
a state-of-the-art semantic segmentation algorithm [9, 21]
or cosegmentation [41] if multiple test images are avail-
able4. We use a �xed stride for feature extraction, result-
ing in a regular grid of 2D locations for matching in each
image X
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g , inside each object segmentation. The partic-
ular descriptors used will be described in the experimental
section.

SfM algorithms operate on a set of point tracks, which
were traditionally obtained by tracking local features in
video frames and later also from unstructured image col-
lections [45]. Here we aim to compute one track for each
feature in the target object by matching it to corresponding
features in ”virtual views” borrowed from every object in
the training collection, a hard problem because local appear-
ance changes dramatically with viewpoint variation. We
convert this hard wide-baseline problem into many easier
small-baseline ones by de�ning a distance between feature
points that considers a network over the whole collection
of objects. Let networkG =

f
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g and edges derived by matching points
in objects having similar pose. We dock the image of the
test object to the network by matching it to a few objects

3Cameras for non-rigid classes are computed from a representative sub-
set of keypoints in a rigid part such as the torso, in animal classes.

4This is a stronger assumption but it allows us to focus entirely on re-
construction without having to dabble with the intrincacies of segmenta-
tion. In the long run the two problems are likely to be best handled in
conjunction.



Figure 2. Instead of matching a test object to each training ob-
ject directly, which may be dif�cult due to viewpoint variation, we
match through a network connecting training objects with similar
viewpoint. A test object is docked to the network by matching it to
a few network objects with similar viewpoint (1 0 in practice), then
it is aligned with all other objects based on geodesic distances in
the network. Points connected by an edge are shown with similar
color.

also chosen based on pose, which is assumed to be com-
puted using a pose detector for the test object, and compute
geodesics (shortest paths) between each point in the target
object and all points in the collection, which can be done
ef�ciently [ 17] using Dijkstra's algorithmM times, one for
each feature in the target object. This network distance can
then be used as a more meaningful alternative to standard
euclidean distance based on appearance features, for match-
ing the test object to all training objects (using for instance
nearest neighbor matching). The overall idea is illustrated
in �g. 2.

3.1. Network Construction

We match separately each object in the collection to a
�xed number of nearest neighbors in pose space (3 � in prac-
tice), measured using the riemannian metric on the manifold
of rotation matricesj jl og ( R
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denotes the Frobenius norm of
the matrix.Drifting is a major concern in any tracking ap-
proach and is especially hard to deal with automatically in
our case, over different objects. We counter drifting by reg-
ularizing feature matching using symmetric warping priors
derived from the manually annotated keypoints. Let� be a
weighting parameter. We de�ne the cost of matching points
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2 , here instantiated as thin plate splines which are popular
for modeling various types of shapes in vision and can be
�t in closed form [6, 7]. We de�ne the warping cost as:
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. We use two warping costs
for symmetry, one in each direction, as we found this to lead
to more accurate alignment in practice.

Given matching costs between all pairs of points in
two neighboring objects, we add a directed edge to the
network from each nodeu to each nodev satisfying

a r m�n

�

E ( u; v )
.

3.2. Docking to the Network

We do not use thin plate splines for computing match-
ing costs when docking test instances to the network be-
cause this would require keypoints that are unavailable at
test time. Cost functions similar to those used in optical
�ow [ 36] would be valid alternatives, but incur some com-
putational cost. We opted instead to simply replace the thin
plate splines in eq.1 by af�ne interpolantsh
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�t to map between the4 corners of the bounding boxes
of the target object and a docking object, resulting in an
anisotropic scaling. This makes sense because it biases cor-
responding points to be in the same relative location within
a bounding box, a good prior since we are docking objects
with similar viewpoint. Note that a single spatial term is
suf�cient in this case, because the mapping is symmetric.
Matching proceeds as when constructing the network, but
we suppress multiple edges connecting to the same point
in a docking object and keep only the one with minimum
weight, to enable the speed-up to be presented next.

3.3. Fast Alignment at Test Time

It is usually desirable to push as the burden of compu-
tation to an of�ine stage and to have fast performance at
test time. This is also feasible with our method, assum-
ing nearest neighbor matching is used and hence we only
need to identify points in training objects having minimum
geodesics to points in test objects (e.g. retrieving distances
to all points in each training object is unnecessary) by lever-
aging the recursive properties of shortest paths. We pre-
compute the nearest neighbor matchings using network dis-
tances between all pairs of objects in the network and use
these to construct a new network where all shortest paths
between points in any two objects can be identi�ed by sim-
ply selecting the outgoing edges having minimum weight, a
property we will call being point-to-point.

At test time there is an additional set of edges between
test object points and docking object points and the network
ceases being point-to-point. Assuming there is at most a
single edge from a test object point to each network node in



docking objects, however, this edge can be pushed forward
and summed to all outgoing edges from nodes in docking
objects making the network again point-to-point. Geodesics
to all points in all objects can then be found by selecting the
minimum geodesic from any of its docking points. Using
this linear-time operation we manage to align a test object to
a collection of roughly1 0 0 0 objects having3 0 0; 0 0 0 points
in around half a second on a modern desktop computer, in-
stead of in more than a minute using Dijkstra's algorithm.

4. Reconstruction

Reconstruction faces three challenges in our setting: in-
tegrating sparse, far apart views of the target object, cop-
ing with noise in virtual views synthesized from training
objects and producing a shape that is speci�c to the target
object while pooling shape evidence from all objects in the
training collection. We use all network images to recon-
struct each test instance, and deal with noise by assuming
that all generated virtual views are of a same rigid object
undergoing rigid motion under scaled-orthographic projec-
tion, which has the positive effect of allowing us to estimate
fewer parameters than in non-rigid reconstruction or for-
mulations assuming perspective projection and to adopt the
well-studied Tomasi-Kanade factorization framework [49].
We employ the robust Marques and Costeira algorithm [39]
which can handle missing data.

Sparse reconstruction from many views of an object is
an almost solved problem [22, 45, 18]. Here we focus on
reconstruction from few views, in particular from a single
image plus its mirrored version, exploiting bilateral sym-
metry possessed by most object classes (e.g. cars, aero-
planes). Directly matching original and mirrored views is
generally infeasible, e.g. a car seen from the right side
shares few points with one seen from the left side. We pro-
posenetwork-based factorizationto handle these issues. To
cope with outliers we introduce a technique calledsynthetic
inlier extrapolationand, we also propose two strategies for
making the reconstruction more speci�c to the shape of the
target object,resamplingandxy-snapping. We will �rst de-
scribe synthetic inlier extrapolation in the next subsection,
after summarizing our overall reconstruction algorithm at
test time as follows:

4.1. Synthetic Inlier Extrapolation

Even though factorization has few parameters compared
to approaches based on bundle adjustment, they can still be
negatively affected by outliers. There is prior work on han-
dling known gaussian noise distributions [1, 26] and outliers
[54, 14] within factorization, but these approaches may not
be trivial to adapt so they can deal with missing data. Here
we propose instead to reduce the in�uence of outliers by
swampingthe data with synthetic inliers generated using
domain knowledge, namely we sample a constant number

Algorithm 1 Novel Object Reconstruction using VVN
V IRTUAL V IEW GENERATION

for each image i of test objectdo
Predict poseP

i

Extract dense local featuresdi

Dock with VVN using P

i , di

Compute distances to network points as in sec.3.3
Align (match) instances to generate virtual views

end for

OBJECTRECONSTRUCTION

Compute test object similarity with VVN objects (sec.
4.3)
Form observation matrix with virtual views and syn-
thetic inliers, with resampling (sec.4.2)
Factorization
XY-Snapping (sec.4.3)

Figure 3. The effect of reconstructing points from an image (blue)
and its mirrored version (red) with and without extrapolated syn-
thetic inliers (in green). Reconstructed points for a motorbike, in-
cluding extrapolated inliers, are shown on the top row, seen from
side and above. The bottom row shows the computed shapes using
extrapolated inliers (left) and not using extrapolated inliers (right)
from above. The shape becomes wider and noisier without extrap-
olated inliers.

(1 0 in practice) of equally spaced points along 2D lines con-
necting all pairs of ground truth keypoints in the training im-
ages. Such points de�ne correct correspondences between
different images (as much as they can, ignoring object shape
variation) under scaled orthographic projection.

4.2. NetworkCentered Factorization

Classic rigid factorization builds an observation matrix
having two rows for each ofN frames in an input video



sequence and one column for each ofK tracked points:

W =

2

6

6

6

6

6

4

x

1

1

� � � x

1

�

y

1

1

� � � y

1

�

...
x

N

1

� � � x

N

�

y

N

1

� � � y

N

�

3

7

7

7

7

7

5

; (3)

then compute a� � K shapeS as well as rotation matri-
ces, translation vectors, and scale parameter for each image
from this matrix. In our case, each column will contain the
coordinates of one point in the target object and the coor-
dinates of those points in network objects that are aligned
to it. Our observation matrix has a more speci�c structure
as well, shown in �g. 4, motivated by our reliance on the
virtual view network as an alignment hub which multiple
target images can be docked to, hence the name network-
centered factorization. We create one set of distinct points
for each image of the target object, because we do not know
a priori if points are shared by multiple views, and �ll in
tracks only between points in target images and images in
the network (e.g. we do not match the target images di-
rectly), then set the rest of the matrix as missing data for the
factorization algorithm to �ll in. The extrapolated synthetic
inliers are also added as separate points which are available
for the training images but not for the test images, where
they are also set as missing data. We use these points just
as an additional source of regularization and ignore their re-
construction afterwards and this may be better understood
by consulting �g. 3.

4.3. Building up Target Speci�city

We use two strategies for increasing the speci�city of the
reconstruction towards the target object: resampling and xy-
snapping.

Resampling. Factorization algorithms compute low-rank
matrix approximations and these can be weighted so that
some of the observations are given more importance. So-
phisticated algorithms [46] for this task have been devel-
oped but not yet demonstrated on structure from motion.
Here we propose instead to boost the importance of the tar-
get images and a few nearest neighbors from the training
set (based on appearance), by simply resampling their rows
in the observation matrix. This is equivalent to �nding the
low-rank factorization that minimizes a weighted euclidean
loss with the rows corresponding to the important instances
having higher weights.

xy-Snapping.The points from the target object are the only
ones we can trust blindly and which should be considered
correct. We enforce this as post-processing by snapping the
points of the target object back to their original coordinates
in a reference image after reconstruction. If we are recon-

Figure 4. The blockwise pattern of missing data in the observation
matrix (inside the bold lines) for our network-centered factoriza-
tion approach, here instantiated in the case where two images of
the object are docked to the network – if more images are avail-
able they can be used in the same way. The SfM algorithm �lls
in the missing data so we retrieve the reconstructed points for all
images from the �rst block-row shown in this table and ignore the
reconstructed points of synthetic inliers, which are only used as
regularization.

structing also using a mirrored image, we can compute cor-
respondences across the symmetry axis trivially by tracking
where points move to during mirroring, and then just trans-
lating them in the image plane by the same offset as the
points in the original image.

5. Experiments

Our focus is on alignment and reconstruction so we will
assume that target objects have been localized and seg-
mented as discussed in the introduction. We will evaluate
2D alignment and reconstruction separately, in each of the
following subsections. We will study the impact of the ac-
curacy of pose prediction on 2D alignment and will assume
viewpoint has been correctly detected in the reconstruction
section. All experiments used PASCAL VOC [16], where
there are segmentations and around� 0 keypoints available
for all objects in each class [20]. The same setup and the
same9

; 0
8 � fully visible objects were used as in [52], but

we split them into
8

0% training data and� 0% test data and
built virtual view networks on the training images and their
mirrored versions, and evaluated alignment performance on
test data without using keypoints. We discarded classes
”dining table”, ”bottle” and ”potted plant” in the reconstruc-
tion section because their keypoints are marked in a view-
dependent way (e.g. bottles have keypoints marked on their
silhouettes, so the induced cameras are always frontal and
direct depth recovery requires additional cues).



5.1. 2D Alignment

We resized the image of each object to be1 5 0 pixels
tall and computed a regular grid of features taken by con-
catenating the fourth and �fth convolutional layers of the
AlexNet convolutional network [34], resulting in 640 di-
mensional feature vectors at each grid location. We ob-
tained a stride of 8 pixels by offsetting the image appropri-
ately and passing it through AlexNet multiple times, then
carefully assembling back the multiple resulting grids (sim-
ilar to [44]). We also evaluated SIFT features, computed
with a stride of 2 pixels and all feature extraction was per-
formed with the background pixels set to black5. Each ob-
ject's �gure-ground segmentation was also used for ignor-
ing grid points in the background during matching.

Our full proposed approach, VVN, aligns a test object to
each training object using nearest neighbor matching on a
distance function de�ned by geodesics on a network con-
necting all grid points on all training examples. While there
are many class-speci�c techniques for localizing a set of
keypoints available in training data, we are not aware of
techniques of that kind that are able to align arbitrary grids
of points. We opted then to compare with techniques that
can align grids even though they do not use class-speci�c
knowledge: nearest neighbor matching using the euclidean
distance and SIFT�ow [36], using either SIFT or the same
deep features we employ. We evaluate alignment by match-
ing each test image to all training images and checking how
the ground truth test keypoints match to the training image
keypoints. We average the following per-pair matching er-
ror:

L ( C ) =

1

B

X

u

jj c
u

� m
u

j j ; (4)

where� iterates over the grid points closest to each ground
truth keypoint � on the test image,C is the set of corre-
sponding pointsc
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; :: : ; c
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on a training image according to
the matching, andm

u

is the position of ground truth key-
point � on the training image. We average the errors over
all images in all2 0 PASCAL classes.

Different Features and Segmentation.We �rst compared
SIFT and deep feature matching using nearest neighbor
with the euclidean distance, and evaluated how important
it is to have segmentation for this task. Deep features do
better in general and the matching errors are slightly worse
without segmentation, especially when matching with SIFT
features - the deep features seem better prepared in the pres-
ence of background clutter which is promising but we will
assume segmentation for the rest of the paper. For a com-
plementary, more focused study on these matters see [37].

5We convert images to be gray-valued and compress the pixel value
range to be between 30 and 255 before zeroing out the object background,
in order to preserve contrast along the boundaries of dark objects
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Figure 5. Mean error in eq.4 when matching points in two objects
from the same class using nearest neighbor, as a function of the
viewpoint difference between the objects. Deep features allow for
more accurate alignment, and this is more evident when segmen-
tation is not available.

Results are shown in �g.5.

Euclidean and Network Distance. We compare our pro-
posed nearest neighbor matching using the network distance
to two baselines, nearest neighbor with the euclidean dis-
tance and SIFT�ow. All methods used images with the
background masked and the correspondences constrained to
be inside the segmentation. In this experiment we assume
knowledge of ground truth cameras for selecting the ele-
ments in the network to dock the test object with, which we
will also assume in the reconstruction section. The results
are shown in �g. 6 and demonstrate that given an accurate
pose estimate for the test object, the network distance leads
to more accurate alignment up to the maximum 180 degrees
viewpoint difference. SIFT�ow leads to large gains over
nearest neighbor using SIFT features and euclidean distance
but is less robust to viewpoint variation.

Pose Prediction and Alignment. Our �nal and main ex-
periment in this subsection evaluates VVN alignment with
automatic pose prediction. We used predictors for the 12
rigid categories in PASCAL VOC from Tulsiani and Ma-
lik [ 50], which are �netuned for pose using annotations
from PASCAL3D+ [53], including the additional train-
ing examples from Imagenet. Our results were obtained
with an early AlexNet-based version of the models. Us-
ing more advanced convolutional network architectures [50]
should boost performance further. The alignment results are
shown, for the 12 rigid categories, in �g.7 and demonstrate
that the improvements over nearest neighbor with the eu-
clidean distance still hold with automatic pose prediction.
We also measured accuracy when using the best among the
2 and 4 top-scoring predicted poses and found this to bring
large improvement, which suggests pose reranking as an in-
teresting direction for future work. We show sample align-
ments for our method and sift�ow on the same grid of deep
features in �g.8.
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Figure 6. Mean error when matching points in two segmented ob-
jects from the same class using nearest neighbor with euclidean
distance and SIFT�ow, compared to nearest neighbor and our pro-
posed network distance, as a function of the viewpoint difference
between the objects. SIFT�ow improves considerably over near-
est neighbor matching using euclidean distance but is not robust to
large viewpoint variation. Results are good even using a network
built without features, using just the spatial terms.
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Figure 7. Mean error when matching points in two segmented ob-
jects from the same class using nearest neighbor with euclidean
distance and our proposed network distance, as a function of the
viewpoint difference between the objects. The network distance
leads to more accurate alignment across all viewpoint differences.
The same deep features are used in all cases here and we consider
only rigid categories, for which there is pose prediction training
data from Imagenet. See text for details.

5.2. Reconstruction

We reconstructed PASCAL VOC objects in the test set
of each class, producing fuller 3D reconstructions from a
single view by taking advantage of bilateral symmetry as
discussed in sec.4. We used the same parameters for
all classes, except xy-snapping which helped noticeably in
most cases but degraded subtle aeroplane wings and bicy-
cle handles so we disabled it on these two classes - the only
class-speci�c option we introduced. We resampled the tar-
get image and its mirrored versioni ji k times the number
of training examples, and theirl nearest neighbors from the
training seti ji m times the total number of training examples
for the class (see sec.4.3). Nearest neighbors were com-

Figure 8. Example alignments using our proposed network-
based approach, VVN, with automatic pose prediction (�rst two
columns) and SIFT�ow (last two columns), on the same grid of
deep features and assuming correct �gure-ground segmentation.
Corresponding points are colored the same. VVN exploits class-
speci�c knowledge and pose prediction to obtain resillience to
viewpoint variation. See the text for additional details and the sup-
plementary material for images showing other alignments.

puted from those training examples in then
i

to o
i

degree
range of viewpoint differences to the pose of the test exam-
ple, selected based on euclidean distance between descrip-
tors obtained using second-order pooling [9] on the AlexNet
layer 5 features. The idea was to discard the spatial infor-
mation in the layer 5 grid to better cope with viewpoint vari-
ation.

Reconstructions for all considered classes are shown in
�g. 9, assuming ground truth object segmentation and view-
points from [52]. Inlier extrapolation helped visibly in
many cases, especially for the tv/monitors class which com-
pletely failed without it, becoming curved shapes not unlike
Dali clocks. Highly accurate shapes are obtained for most
classes, the clearest exception being horses, seemingly due
to noise in the cameras used. See the caption for additional
comments. There is no existing dataset for evaluating this
task, also because there are few, if any, methods developed
for it, so we simply put all our reconstructions on youtube
for anyone to evaluatehttp://goo.gl/8Xzy3m . The
method with closest capabilities is perhapscarvi [52],
which produces full meshes but uses only silhouette infor-
mation in a visual hull framework, e.g. image information
is ignored and correspondences are not used, so it cannot
deal with concavities. We will include side-by-side recon-
structions in supplementary material.



Figure 9. Example reconstructions produced by VVN on 15 PASCAL VOCcategories. The �rst column below each image shows shapes
from increasing camera azimuths, the second from different elevations as in �g. 1. We do not show two classes due to lack of space:
cows, which we shown in �g.1 and sheep, which are reconstructed with quality similar to cats and dogs. Alltest set reconstructions can
be better visualized online athttp://goo.gl/8Xzy3m and a selection is available in the supplementary material. Reconstruction is
quite successful for most classes, including most animal categories except horses, that are mostly �at and consistently get a long, tilted
neck. Boat is not very good either, perhaps because due to extreme intra-class variation and aeroplane and birds wings are challenging to
capture accurately when seen from the side. The person class is not aided much by bilateral symmetry, except for side views, and their
reconstructions feel less 3D than for most other classes.

6. Conclusions

We have introduced a framework for shape reconstruc-
tion from a single image of a target object, using structure
from motion on virtual views computed from a collection
of training images of other objects from the same class.
At the core of our approach is a method for 2D alignment
that builds a network over the image collection in order to
achieve robustness across wide viewpoint variation. We

have also developed techniques to increase the robustness
and speci�city of factorization-based rigid structure from
motion using virtual views and obtained stable and accurate
reconstructions of challenging objects with diverse shapes.
The main challenge now is to relax the need for keypoints
or to con�ne it to a few seed classes, which may be feasi-
ble using more advanced matching techniques [56] and fea-
tures. The ability to reconstruct from one image opens new
avenues for both structure from motion and recognition.
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