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ABSTRACT

This paper addresses to the problem of aligning images in unseen
faces. The Constrained Local Models (CLM) are popular methods
that combine a set of local landmark detectors whose locations are
constrained to lie in a subspace spanned by a linear shape model. The
CLM fitting is usually based on a two step approach: locally search,
using the detectors, producing response maps (likelihood) followed
by a global optimization strategy that jointly maximize all detections
at once. In this paper, we mainly focus on the first stage: improving
the detectors reliability. Usually the local landmarks detectors are
far from perfect. Most often are designed to be fast, having a small
support region and are learnt from limited data. As consequence,
they will suffer from detection ambiguities. Here we propose to
improve the detectors performance by considering multiple detec-
tion per landmark. In particular, we propose a joint learning of the
detectors by clustering of their training data. Afterwards, the mul-
tiple likelihoods are combined using a nonlinear fusion approach.
The performance evaluation shows that our (extended) approach fur-
ther increases the fitting performance of the CLM formulation, when
compared with recent state-of-the-art methods.

Index Terms— Face Alignment, Constrained Local Models.

1. INTRODUCTION

Facial alignment, also known as facial registration, is a fundamental
problem in computer vision with applications in several tasks such
as tracking, recognition, pose estimation, video compression, etc. A
widely used approach consists on seeking the parameters of a linear
model (a Point Distribution Model - PDM) that best represents the
face in a target image. Traditionally, these deformable fitting meth-
ods can be divided in two major categories: the generative (holis-
tic) and/or discriminative (patch-based) approaches. The generative
paradigm describe the appearance of a face using all its image pixels,
typically using an eigen-based representation. The Active Appear-
ance Models (AAM) [1, 2, 3, 4] are probably the most popular gener-
ative method, achieving an impressive registration quality. However,
this representation generalizes poorly beyond unseen data, when the
target individuals are not included in the training dataset.

Presently, there has been a growing interest on discriminative-
based methods, such as the Constrained Local Models (CLM) [5, 6,
7, 8], as it avoids several of the drawbacks of generative methods
by improving the generic face representation. In this paradigm, both
appearance and shape are combined by constraining a set of local
feature detectors to lie within the subspace spanned by the PDM.
In general, all instantiations of CLM are composed by a two phase
fitting strategy. The first phase generates a response map for each
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landmark (a likelihood map) using the local detectors. The sec-
ond phase consists in a global optimization strategy that estimates
the PDM parameters that jointly maximizes all the response maps at
once. Most optimization strategies aim to approximate the responses
maps by simple parametric forms (Weighted Peak Responses [5],
Gaussians Responses [8, 9], Mixture of Gaussians [10]) or non-
parametrically by a Kernel Density Estimator (KDE) [11, 12]. Re-
cently, a new paradigm emerged aiming to solve the global optimiza-
tion [9, 13, 14]. This new strategy suggests to formulate the global
alignment as a Bayesian inference problem. The patch responses are
embedded into a Bayesian framework, where the posterior distribu-
tion is inferred in a maximum a posteriori sense (MAP) [9, 13, 14].

The main focus of this paper relates to the first phase of CLM
fitting, i.e. the likelihood generation using local landmark detectors.
Traditionally, these detectors are design to be simple and to operate
as fast as possible. Most times they are build from limited data and
often have small local support, therefore resulting in ambiguous de-
tection, i.e. they are unable to discriminate correct from incorrect
locations. We aim to overcome this limitation by including multiple
sets of local detectors, per landmark, further improving the reliabil-
ity of the detector, and consequently, in the overall alignment. This
belief was also pursuit in [15] and [16]. The main difference with re-
spect to our work is that we seamlessly integrate multiple detection
within the CLM formulation without a specially designed global op-
timization and with a very simple fusion technique of response maps.
In particular, we propose to learn the multiple detectors by cluster-
ing the training data patches examples, obtaining highly specialized
filters in a small range of appearance variation. Afterwards, the mul-
tiple responses are then combined using a nonlinear fusion approach
resulting a single response map that includes all the detections. Fol-
lowing this stage, highly optimized state-of-the-art global strategies,
such as [11] or [14], can be used. Our likelihood model, includes the
mixture of all ’view-based’ specialized detectors for a given land-
mark, effectively dealing with large appearance changes caused by
the natural rigid (head pose) and nonrigid motion of a face.

The remaining of the paper is organized as follows: section 2
briefly explains the basics in CLM design, section 3 describes the
multiple detection cluster and learning approach. Section 4 presents
the evaluation results and finally, section 5, concludes the paper.

2. BACKGROUND

2.1. Linear Shape Model

The shape s of a Point Distribution Model (PDM) [17] with v land-
marks is represented by a vector with the 2D vertex locations of a
mesh s = (x1, y1, . . . , xv, yv)T . Briefly, the PDM describes a shape
by the linear model

s = S (s0 + Φb, q) (1)

where s0 is the mean shape (the base mesh), Φ is the shape subspace
matrix holding n eigenvectors (or the modes of deformation that re-



tain a given amount of variance, e.g. 95%), b is a vector of shape pa-
rameters and S(., q) linearly represents a similarity transformation
[2] function of the q = [s cos(θ)− 1, s sin(θ), tx, ty]T parameters
(s, θ, tx, ty are the scale, rotation and translations, respectively).

2.2. Local Detectors

The appearance model of an CLM consists of an ensemble of v local
detectors [18, 11, 13]. The correlation of the ith landmark detector,
evaluated at the pixel location xi = (xi, yi), is given by

Di(I(xi)) = hTi I(xi) (2)

where hi is a linear detector and I(xi) is a surroundingL×L support
region (image patch, denoted by Ωxi ). Next, the detector score must
be converted into a probability value. The simplest solution is to use
a logistic function. Defining ai to be a binary variable that denotes
correct landmark alignment, the probability of pixel zi ∈ Ωxi being
aligned is given by

pi(zi) = p(ai = 1|Di, I(zi)) =
1

1 + e−aiβ1Di(I(zi))+β0
(3)

where β1 and β0 are the regression coefficient and intercept, respec-
tively. In the previous, pi(zi), is just used as a condensed represen-
tation of the response map. Note that a proper probability is used,
always non-negative and p(ai = 1|I(zi)) + p(ai = −1|I(zi)) = 1.

2.3. CLM Fitting - A Bayesian Approach

In a Bayesian setting [13, 9], the optimal shape parameters b∗ are
given by the Bayes’ theorem, where we seek to maximize the fol-
lowing posterior probability

b∗ = arg max
b
p(b|y) ∝ p(y|b)p(b) (4)

with y being a 2v vector that represents the observed shape (mea-
surement), p(y|b) is the likelihood term (that comes from the re-
sponse maps) and p(b) is the prior term that defines the knowl-
edge of the model (the PDM). Conditional independence between
landmarks is usually assumed, by sampling each landmark indepen-
dently, hence the overall likelihood becomes the individual contribu-
tion for each landmark as p(y|b) ≈

Qv
i=1 p(yi|b).

2.4. The Likelihood Term

In general, the likelihood term follow the Gaussian form

p(y|b) ∝ exp

„
−1

2
(y− (s0 + Φb))TΣ−1

y (y− (s0 + Φb))

«
(5)

where Σy is the uncertainty of the spacial localization of the land-
marks (being a 2v × 2v block diagonal covariance matrix due to
the conditional independence assumed). Most of the CLM fitting
approaches differ from each other by the way that the shape mea-
surement y and its uncertainty Σy are obtained from the response
maps. In fact, these methods can be considered as local optimization
strategies and the most used are the Active Shape Models (ASM)
[5], the Convex Quadratic Fitting (CQF) [8] and more recently the
Subspace Constrained Mean-Shifts (SCMS) [11]. The last approx-
imates the response maps by a non-parametric representation using
a Kernel Density Estimator (KDE) [19]. Maximizing over the KDE

Fig. 1. The CLM combine an ensemble of local landmark detectors
(one per landmark) whose locations are regularized by a linear shape
model. Our approach, aims to further increase the likelihood model,
using multiple detectors for the same landmark. The image shows
the detectors and their individual responses as well as the overall
combined response map, for the highlighted landmarks, respectively.

is typically achieved by the mean-shift algorithm [20]. In a bit more
detail, the ith landmark observation is given by

yKDE(τ+1)
i ←

P
zi∈Ωyc

i

zi pi(zi)N (yKDE(τ)
i |zi, σ2

hj
I2)P

zi∈Ωyc
i

pi(zi)N (yKDE(τ)
i |zi, σ2

hj
I2)

(6)

where I2 is a two-dimensional identity matrix, σ2
hj

represents the
decreasing bandwidth schedule, yci is the centered location of the
search region the superscript (τ) accounts for the mean-shift it-
erations. The KDE uncertainty error consists on computing the
weighted covariance of the form

ΣKDE
yi

=
1

d− 1

X
zi∈Ωyc

i

pi(zi)(zi − yKDE
i )(zi − yKDE

i )T . (7)

2.5. The Prior Term

By definition [21], the shape parameters b, follow a multivariate
Gaussian distribution b ∝ N (b|0,Λ), with Λ = diag(λ1, . . . , λn),
where λi denotes the PCA eigenvalue of the ith mode of deforma-
tion. The prior term is then defined as p(b) ∝ N (b|µb,Σb) where
µb = 0 and Σb = Λ. The pose parameters (similarity) are modeled
using a non-informative (uniform) prior.

2.6. Global MAP Solution

When the likelihood and the prior terms are both Gaussian distri-
butions, the Bayes’ theorem for Gaussian variables [22] states that
the posterior is also a Gaussian distribution. This straightforward
inference was consider in [9]. Later, in Discriminative Bayesian Ac-
tive Shape Models (DBASM) [13], this approach was extended to
include second order estimates for the shape and pose parameters
(i.e. the covariance of the parameters). The global alignment was
formulated in terms of a Linear Dynamic System (LDS). The LDS
recursively computes a Gaussian posterior probability using incom-
ing (also Gaussian) measurements and a linear model process. The
state and measurement equations can be written as

bk = Inbk−1 + q (8)
y− s0 = Φbk + r (9)



where is assumed that previous shape estimated parameters bk−1

are connected to the current parameters bk by an identity relation
In with noise (subscript k represents the iteration number). q ∼
N (0,Σb) is the additive dynamic noise, (y − s0) is the observed
shape deviation from the base mesh (related to the shape parameters
by the linear relation Φ in eq.1) and r is the additive measurement
noise following r ∼ N (0,Σy). The LDS inference accounts with an
adaptive prior, where the posterior distribution follow

p(bk|yk, . . . , y0) ∝ N (bk|µF
k,Σ

F
k) (10)

with the mean µF
k and covariance ΣF

k given by the well-known
Kalman Filter equations [13, 23]. The LDS equations are iteratively
reused, along with the response maps evaluated at the new updated
locations, until convergence.

3. ENHANCING LOCAL DETECTORS

The appearance model of most CLM approaches [5, 18, 10, 11] con-
sists of a single detector for each of the landmarks. Usually these
detectors are learnt, in a training stage, by a linear classifier built
from aligned (positive) and misaligned (negative) grey level patch
examples [6, 8]. They are mainly chosen by their efficient evalua-
tion of the response maps. However they typically have a limited
representation power (detection ambiguities). Recently, the Mini-
mum Output Sum of Squared Error (MOSSE) [24] filters have been
successfully used in the CLM framework. Sharing the same efficient
evaluation and built only with aligned data, they have been proven
to perform better in face alignment tasks (see section 4.2 from [13]).

As previously mentioned, we propose to enhance the discrimi-
native power of the appearance model. This could be done by in-
cluding a set of multiple local detectors per landmark (i.e. multiple
likelihood sources), further increasing the specificity in the detec-
tion. Under a Bayesian setting, multiple shape observations (mea-
surements) can be considered by just updating the posterior distribu-
tion N (bk|µF

k,Σ
F
k) using multiple times the LDS correction steps

[23]. Although this is a valid and interesting approach, it has a ma-
jor drawback. The fusion of several detections consists of sequential
Gaussian corrections. If one of the detectors is weak, producing
wrong or very noisy estimates, the final solution is therefore very
poor as all detections contribute equally. In fact, when at least one of
the detectors is ’bad’ the fitting performance will be far worse than
simpler CLM formulations based on single detectors.

Here we consider a different approach. We still use multiple de-
tectors per landmark, all based in MOSSE filters, but they are learnt
from aligned patch examples which are previously grouped by clus-
ters. The goal is to specialize each detector in a small, more fo-
cused, range of visual appearance variation. This is accomplished in
a training stage where a combined clustering and detector learning
step is used. Afterwards, at test time, all multiple response maps are
combined into a single response using a nonlinear approach, making
it possible to use standard, highly optimized, global optimization
strategies (SCMS [11] or DBASM [13]). The following sections de-
scribe the basic detector, the combined clustering and detector learn-
ing technique and the nonlinear fusion of multiple response maps.

3.1. Local Detector - MOSSE Filter

The MOSSE filter, recently proposed in [24], finds the filter H (in the
Fourier domain) that minimizes the SSD between the actual output
and the desired output of the correlation across a set of N training
images, by minH∗

PN
j=1 (F{I(xj)} �H∗ −Gj)

2. The ∗ symbol

represents the complex conjugate, I(xj) is the jth training exam-
ple and G is the desired correlation output (usually a 2D Gaussian).
Solving for the filter H∗ yields the closed form solution

H∗ =

PN
j=1 Gj �F{I(xj)}∗PN

j=1 F{I(xj)} � F{I(xj)}∗ + ε
(11)

where ε is a regularization parameter. The MOSSE filter maps all
aligned training patch examples to an output, G, centered at the fea-
ture location, producing highly stable correlation filters. The linear
detector for the ith landmark, in eq.2, is given by hi = F−1{H∗i }.

3.2. Learning Multiple Local Detectors

Defining {h(m)
i } to be a set of M local detectors (m = 1, ...,M )

dedicated to the ith landmark, the goal of the combined clustering
and detector learning stage is to find the group of patch examples
(I(xj)) to be assigned to each specialized detector {h(m)

i }, by max-
imizing the overall correlation with the selected examples. We seek
to find the detectors set that maximize the following expression:

arg max
h(m)

i

NX
j=1

MX
m=1

I(xj) ∗ h(m)
i . (12)

The optimization in (12) is solved iteratively using a two step ap-
proach. Starting from a initial estimate for the clustering (e.g. k-
means), M detectors are build with the initial cluster assigned sam-
ples (using F−1{eq.11}). Then, for each patch example I(xj), test
with which filter h(m)

i the correlation is the highest and move the
sample j to its cluster m. Rebuild all detectors with the newly
updated examples and repeat this process until no more samples
change. The algorithm 1 summarizes the overall method.

for Landmark i = 1 to v do1
Define the number of desired detectors M (or clusters)2
Get an initial estimate of the clustering by k-means3
repeat4

Build h(m)
i using current estimate of the labels (j) (eq.11)5

if max{h(m)
i S

`
I(xj), qj

´
} then6

Move label (j) to cluster (m)7
end8

until Labels (j) do not change anymore ;9

return the specialized set of detectors h(m)
i10

end11

Algorithm 1: Learning the multiple detectors by clustering
the training examples (converges in less than 10 iterations).

3.3. Combining Multiple Detections

Representing the multiple response maps by pi(zi)(m), these are all
combined using the maximum norm (or L-infinity norm), defined as
maximum (of the absolute) values of its components, as

pi(zi)∞ = max
zi

{pi(zi)(1), . . . , pi(zi)(M)}. (13)

Note that each response map pi(zi)(m) ≥ 0 as it represents the prob-
ability of each candidate pixel zi is aligned, according to eq.3. This
nonlinear metric preserves the modes of all response maps, it is ro-
bust to poor detections and it is also very fast to compute. Figure 1
shows both the specialized filters (M = 3), the individual response
maps and the their combined robust fusion pi(zi)∞.
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(a) IMM [25] database
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(b) XM2VTS [26] database
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(c) BioID [27] database

0.06 0.08 0.1 0.12 0.14
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance Error Metric (Inter−Ocular Normalized)

P
ro

po
rt

io
n 

of
 Im

ag
es

LFW Database Fitting Performance

 

 

AVG
CQF
SCMS
DBASM−KDE
mlCLM (M=2)
mlCLM (M=3)
mlCLM (M=4)
mlCLM (M=6)

(d) LFW [28] database

Reference em = 0.1 (vertical line) IMM (240 images) XM2VTS (2360 images) BioID (1521 images) LFW (13233 images)
CQF [8] 65.7 61.6 34.3 44.2
SCMS [11] 75.6 (0) 80.5 (0) 59.6 (0) 60.3 (0)
DBASM-KDE [13] 80.1 (+4.4) 81.5 (+1.0) 62.9 (+3.4) 63.0 (+2.8)
mlCLM (M=2) (our method) 82.2 (+6.6) 82.0 (+1.5) 62.6 (+3.0) 64.8 (+4.5)
mlCLM (M=3) (our method) 82.5 (+6.9) 82.4 (+1.9) 66.0 (+6.4) 66.1 (+5.8)
mlCLM (M=4) (our method) 82.9 (+7.3) 82.7 (+2.2) 67.2 (+7.7) 68.5 (+8.2)
mlCLM (M=6) (our method) 86.1 (+10.5) 85.6 (+5.1) 68.3 (+8.7) 69.0 (+8.7)

Fig. 2. Fitting performance curves. The table holds quantitative values taken by setting a fixed error amount (em = 0.1, i.e. the vertical line
in the graphics). Each table entry show how many percentage of images converge with less (or equal) error than the reference.

4. EVALUATION RESULTS

The performance evaluation was conducted in several standard
databases, namely the IMM [25] (240 images taken from 40 people
annotated with 58 landmarks), the BioID [27] (1521 images from
23 subjects with 20 landmarks), the XM2VTS [26] (2360 frontal
images of 295 subjects with 68 landmarks) and the Labeled Faces
in the Wild (LFW) [28] (13233 images and 12 landmarks). Both
XM2VTS and BioID mainly focuses on variations in identity. Nev-
ertheless, they exhibit large diversity in appearance due to facial hair,
glasses, ethnicity and other subtle changes. The IMM is the smallest
database, however it presents a large variation in head pose, illumi-
nation, and spontaneous facial expressions along several individuals.
Unlike the previous, the LFW database is an extremely challeng-
ing database, completely taken in wild. Their images are captured
under uncontrolled natural conditions presenting changes in pose,
illumination, facial expression, occlusion, etc. Both the shape model
(v = 58 landmarks) and the detectors (MOSSE filters) have been
built using training images taken from the IMM [25] combined with
images collected at our institution. Several sets of multiple detectors
(per landmark) where evaluated using M = 2, 3, 4 and 6 clusters
using the approach in section 3.2. Each has size of 31 × 31 and it
were used to scan a local region of 25 × 25. The desired MOSSE
correlation output (G) was set to be a 2D Gaussian centered at the
each landmark with 3 pixels of standard deviation.

Our method refereed as multiple likelihood-CLM (mlCLM), us-
ing M = 2, 3, 4 and 6 sets of detectors, was evaluated against the
DBASM-KDE [13], which is equivalent to mlCLM with M = 1.
The CQF [8] and the SCMS [11] were included as baseline. Note
that mlCLM uses the same global optimization than DBASM (sec-
tion 2.6) differing only in the likelihood model. All methods share
the same shape model, the initial shape parameters start from zero
(mean shape), the pose parameters were initialized by a face detec-

tor (’AVG’ in the evaluation charts) and the model was fitted until
convergence up to a maximum of 20 iterations.

The Figure 2 shows the fitting performance curves for all the
evaluated methods in the four different datasets. These curves,
that were widely adopted in [6, 7, 8, 11, 13], are cumulative dis-
tribution functions that show the percentage of faces that achieved
a given error amount (shown at the horizontal axis). Following
common practice [6, 7], the error metric is given by the mean er-
ror per landmark as fraction of the inter-ocular distance, deyes, as
em(s) = 1

v deyes

Pv
i ‖si − sgt

i ‖ where sgt
i is the location of ith land-

mark in the shape ground truth annotation. The table presented in
the same figure shows quantitative values taken from sampling the
curves setting a fixed error metric amount (em = 0.1, shown as a
vertical line in the graphics). As expected, the results show that CQF
and SCMS are all outperformed by DBASM-KDE, which is known
to be an enhanced global optimization strategy [13]. The main
evaluation, in practice, evaluates the effect of using more than one
set of detectors per landmark. The results show that using of more
sets of filters tend to improve the overall fitting accuracy (more than
M = 6 only provide marginal improvement) but at the additional
computational cost of more evaluations (the complexity scales lin-
early with M ). Still, parallel processing could be used, as response
maps are all independent (conditional independence assumed).

5. CONCLUSIONS

This work presents a novel CLM fitting approach that seamlessly
is able to include multiple likelihood sources (several detectors per
landmark), further improving the fitting performance. Each set of
detectors is built with training data constrained by a clustering stage.
Finally, the multiple responses are then combined using a nonlinear
fusion approach and globally optimized by a state-of-the-art strategy.
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