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—{ Overview ¥

= Motivation : - Kernel density estimators (KDE) have been successful to model on Euclidean sample spaces the
nonparametric nature of complex physical processes (e.g. time varying , non-static backgrounds) .
- Nonparametrically reformulate the existing tensor-based GMM algorithms.

- The idea is to leave the data to show the underlying structure, instead of imposing one.

=|ssue : - The tensor space (Symetric Positive Definite matrices) is a Riemannian manifold.

= Applying a nonparametric approach outside Euclidean spaces is not trivial and requires careful use of
differential geometry to deal with the Riemannian structure and curvature of the manifold.

= Approach : - Founded on the mathematically rigorous KDE paradigm on general Riemannian manifolds we define
a KDE specifically to operate on the tensor manifold.
- The tensor manifold is endowed with two Riemannian metrics :

Affine-Invariant | Log-Euclidean

—| Differential Geometry }
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—{ Affine-Invariant Riemannian Metric ,l

= An Affine-Invariant Riemannian metric can be deduced on the tensor manifold in terms of the Fisher information matrix.

1
9ij = 9(Ei, Ej) = (Ei, Bj)p = ;“‘(Pfl E;P7'E;) =mmp Affine-Invariant metric for the tensor manifold derived from the Fisher matrix.

%lr(lug"(P’%QP’%)) mmm)  Geodesic distance induced by the Affine-Invariant metric, derived from the Fisher matrix.

= Considering the normal coordinate system around P and the Ricci in this system and let y be the normal coordinates of Q :
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= The Riemannian curvature for the tensor manifold, derived from the Fisher matrix, and the classical Levi-Civita affine connection :
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= A n-manifold M is a topological space locally similar to an Euclidean space.
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= A Riemannian manifold is a differentiable manifold M endowed with a Riemannian metric g.
8/0x = (1, ...,

gi,j(ilf) =<0, aj >p == the Riemannian metric is defined by a continuos collection of inner products on the tangent spaces.

Gp(z) = [gij(2)]p

Vi, j, kil =1,...,n
8n) =) basis of the tangent space, given a chart with a local coordinate system.

the metric can be expressed in that basis by a (n x n) symmetric, bilinear and positive-definite
form called local representation of the Riemannian metric.

—[ Log-Euclidean Riemannian Metric }

= The Log-Euclidean metric induces a space with a null curvature, while the theoretical properties are preserved.
D(P.Q) = U’(UU‘A(Q) - 10g(P))2) ===) The geodesic distance induced by the Log-Euclidean metric, is extremely simplified.

= Endowed with the Log-Euclidean metric the tensor space is isomorphic, diffeomorphic and isometric to the associated Euclidean
space of symmetric matrices.
= Endowed with the Log-Euclidean metric, the tensor manifold is a flat Riemannian space (sectional curvature is null everywhere).

When the Riemannian space is flat the volume density function is unity everywhere.

—{ Kernel Density Estimation on Riemannian Manifolds}

= The idea is to build an analogue of a kernel on M by using a positive function of the geodesic distance on M, which is then
normalized by the volume density function to take into account the curvature.

The integral on a Riemannian manifold, depends on the point at which the kernel it is centered, e.g. depends on the local
geometry of M in a neighborhood of the observation.

IS 1 1 (D(Z,Z)
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It is possible to ensure the integral is the same irrespective of where it is centered and make sure that the density function on M
integrates to one by using the volume density function.
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If Q belongs to a normal neighborhood of P, then 6r(Q) is the density of the pullback of the volume measure on M to TpM with
respect to the Lebesgue measure on TpM via the inverse exponential-map at point P .
It gives an indication of the curvature of the Riemannian space.

This is the same as the square-root of the determinant of the metric-tensor : = Op (Q) — (

Ge(y)))

The kernel estimator on Riemannian manifolds is consistent with standard kernel estimators on R and it converges at the same
rate as the Euclidean kernel estimator.

The isometry implies that the determinant of the metric tensor is unity everywhere. ( V |GP (y) |) =1
—[ Experimental Results }

Sequence 1 - HighWay |

THalwayl | 5-Campus
Methods TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR
GMM [r. g b] 5 2025 [ 5523 [ 23.10 [ 5540 2495 | 50.10 [ 2530 4850 | 34.48 | 5
GMM [LIx. Iy] 17.58 | 6045 | 2080 | 61.05 2235 | 55.05 | 2190 5430 | 31.05
KDE [r, g b] 16.85 | 62.70 | 19.95 E 0 | 5745 1 2140 55.60 | 30.13 | 5
KDE L Ix.Iy) 1510 | 68.55 | 1690 | 69.03 | 20.85 | 64.73 | 1885  60.10 | 27.65
GMM [Tensor] - E 1900 | 7290 | 1420 | 7024 | 1705 | 67.95 | 1518 G421 | 2459
GMM [Tensorl -AL | 8390 | 07.95 | 83.25 | 07.38 | 81.70 | 09.35 | 8227 | 1025 | 74.94 | 14.01
GMM [Tensor] - LE 83.00 | 08.21 | 82.10 | 07.92 | 80.96  09.94 | 82.93 | 1096 72.82 | 1493
KDEnt [Tensorl -E_| 7410 | 10.36 | 76.30 | 10.63 | 7435 | 1046 1103 | 69.04 | 1508
KDEdnt [Tensor] - AT | 96.25 | 0102 | 9435 | 01.74 | 95.65  00.95 S | 0LI2 87.90 | 0552 | 87.
KDE-nt [Tensor|-LE_| 95.64 | 0117 | 94.23 | 01.96 | 9475 01.08 30195 87.14 | 0571 | 86
KDE Bt [Temsor] AT | 90.05 | 04.10 | 8945 | 0451 | 89.95 | 05.01 0595 8142 | 10.76
KDEExt [Tensor] - LE | 95.64 | 0117 | 94.23 | 01.96 | 9475 01.08 0195 | 87.14 | 0571
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