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Abstract: The success of mobile robots relies on the ability
to extract from the environment additional information beyond
simple spatial relations. In particular, mobile robots need to
have semantic information about the entities in the environment
such as the type or the name of places or objects. This work
addresses the problem of classifying places (room, corridor or
doorway) using mobile robots equipped with a laser range scan-
ner. This paper compares the results of several AdaBoost algo-
rithms (Viola-Jones AdaBoost, Gentle AdaBoost, Modest Ad-
aBoost and Generalized AdaBoost for the place categorization)
to train a set of classifiers and discusses these solutions. Since
the problem is multi-class and these AdaBoosts provide only
binary outputs, the AdaBoosts are arranged into Probabilistic
Decision Lists (PDL), where each AdaBoost of the list gives a
confidence value of each class. Then, Probabilistic Relaxation
Labeling (PRL) is performed to smooth the classification re-
sults. Moreover, heuristics for removing incorrect regions are
proposed to reduce the classification error. Experimental re-
sults suggest that PDL can be extended to several binary classi-
fiers and show that PRL improves significantly the classification
rates of the classifiers.
Keywords: intelligence; learning; pattern recognition; mobile
robot; semantic place labeling.

I. Introduction

Mobile robots must be able to interact and extract informa-
tion from their environments. Tasks can be performed by
being able to recover useful spatial descriptions of its sur-
roundings using sensors and by utilizing these information
in appropriate short-term and long-term planning and deci-
sion making activities [1, 2, 3].
Robot-built maps have been used for tasks like path plan-
ning, navigation and localization [4]. The large majority of
the maps are limited in describing the environment as occu-
pied or unoccupied areas, or with other spatial and/or metric
information. However, they neglect descriptions of environ-
ment aspects, such as, its navigability or the nature of the
activity that typically occurs there. Semantic mapping con-
sists of using mobile robots to built maps that incorporate not
only metric occupancy but also other important descriptions
of the environment [5].
Semantic information can be used to describe about the func-

tionalities of objects and environments, or to offer additional
information to the navigation and localization systems [6].
Additionally, semantic information is crucial to the ability of
the robot to interact with humans using some set of terms
and concepts [7]. The process of applying a semantic term to
some division of the environment is known as semantic place
labeling. In this case, semantic information is used to clas-
sify places in the environment in categories, such as, room,
doorway, corridor and hallway [8].
Besides the quality of sensor information, the success of se-
mantic place labeling relies on the classification system used
to categorize places. Some approaches to address this prob-
lem have been proposed in the literature. Buschka and Saf-
fiotti [9] propose a local technique uses range data to de-
tect places during navigation. Logistic Regression for indoor
scenarios using a multi-class classifier is investigated by Shi
and Kodagoda [10]. Moreover, Mozos et al. [11] proposes
the Generalized AdaBoost [12] for the place categorization
based on the laser range data.
AdaBoost has been a powerful algorithm for solving classifi-
cation problems. AdaBoost is based on the idea of combining
a set of classifiers (weak hypotheses) to form a stronger clas-
sifier. AdaBoost was introduced by Freund and Schapire [13]
and this algorithm is commonly referenced as Classic Ad-
aBoost. Schapire and Singer [14] proposed some improve-
ments to the Classic AdaBoost, resulting in a new approach
called Generalized AdaBoost. The main contributions of the
Generalized AdaBoost are the inclusion of confidence-rated
predictions for each weak hypothesis and a parameter that
controls the influence of each weak hypothesis.
Other important contribution for the AdaBoost algorithms is
the Viola-Jones AdaBoost, proposed by Viola and Jones [12].
The Viola-Jones AdaBoost ensures that each weak hypothe-
sis depends on only single feature, reducing the number of
available features and focusing on a small set of critical fea-
tures. Since the Viola-Jones AdaBoost uses the Classic Ad-
aBoost’s structure, Mozos et al. [15] proposed a General-
ized AdaBoost for the place categorization using the Gener-
alized AdaBoost’s structure and weak hypotheses depending
on only a single feature (as the Viola-Jones AdaBoost).
Furthermore, experimental results suggest that Gentle Ad-
aBoost [16] and Modest AdaBoost [17] outperform other
classifiers [18], such as, Support Vector Machines [19] and
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Neural Networks [20]. Empirical studies indicate that Gentle
AdaBoost has similar performance when compared to other
AdaBoosts, however it often outperforms them in terms of
stability. On the other hand, the Modest AdaBoost has good
generalization capability when compared to the other Ad-
aBoosts.
This paper addresses the problem of classifying places us-
ing a mobile robot equipped with a laser range scanner. The
environments are categorized as room, corridor or doorway.
This work explores the use of the Viola-Jones AdaBoost,
the Gentle AdaBoost and the Modest AdaBoost as models
and then it compares these models with the Generalized Ad-
aBoost for place categorization. Since the problem is multi-
class and these AdaBoosts provide only binary outputs, the
AdaBoosts are arranged into the Probabilistic Decision Lists
(PDL), where each AdaBoost of the list gives a confidence
value of each class. After classification by the PDL, Prob-
abilistic Relaxation Labeling (PRL) is performed to smooth
the classifications. The results indicate significant improve-
ments on the Gentle AdaBoost and the Modest AdaBoost
when the PRL is applied. Moreover, heuristics for remov-
ing incorrect regions are proposed to reduce the error on test
data, thus improving generalization. The paper presents ex-
periments that use two data sets which correspond to the
Building 52 and the Building 79 at the University of Freiburg
[8]. Experimental results suggest that PDL can be extended
to several binary classifiers and show that PRL improves sig-
nificantly the classification rates of the classifiers.
The paper is organized as follows. Section II reports the de-
scription of the features acquired from the laser sensors for
semantic place labeling. Section III introduces a review of
the AdaBoost algorithms. In Section IV, the problem of de-
signing the PDL is addressed. Section V reviews concepts
about the PRL. Section VI proposes a set of heuristics for
improving the classification rate. Section VII reports experi-
mental results of the AdaBoost using the PDL, the PRL and
the heuristics. Finally, Section VIII contains concluding re-
marks.

II. Features for the Place Semantic Labeling

This work proposes an approach that allows a mobile robot
to build a semantic map from sensor data and then use this in-
formation for place labeling. The aim is to classify the robot
position based on the current scan obtained from the range
sensor. The experiments use two data sets which correspond
to Building 52 and Building 79 at the University of Freiburg
[8].
It is assumed that the mobile robot is equipped with a laser
range scanner that covers the 360◦ field of view around
the robot. Each observation z = {b0, . . . , bM−1} con-
tains a set of beams bi and each beam bi consists of a tu-
ple (ρi, di), where ρi is the angle of the beam relative to
the robot and di is the length of the beam. The training
data set is given by E = {(zi, yi)|yi ∈ Y }, where Y =
{room, corridor, doorway} is the set of possible classes of
the places.
The data set is composed of two sets of features that are cal-
culated for each observation. The first set is calculated us-
ing the raw beam in z. Table 1 shows a list of the single-
valued features obtained from raw beams and composing the

Table 1: Features for the place categorization using raw
beams - Set B.

Feature Description

B.1 The average difference between the length of consec-
utive beams.

B.2 The standard deviation of the difference between the
length of consecutive beams.

B.3 Same as feature B.1, but considering different max-
range values.

B.4 Same as feature B.2, but considering different max-
range values.

B.5 The average beam length.
B.6 The standard deviation of the beam length.
B.7 Number of gaps in the scan. Two consecutive beams

build a gap if their difference is
greater than a given threshold. Different features are
used for different threshold values.

B.8 Number of beams lying on lines that are extracted
from the range scan.

B.9 Euclidean distance between two points correspond-
ing to two consecutive global minima.

B.10 Angular distance between two points corresponding
to two consecutive global minima.

B.11 Average of the relation between the length of two
consecutive beams.

B.12 Standard deviation of the relation between the length
of two consecutive beams.

B.13 Average of normalized beam length.
B.14 Standard deviation of normalized beam length.
B.15 Number of relative gaps.
B.16 Kurtosis.

set B. The second set of features, P , is obtained from a
polygonal approximation P (z) of the area covered by z. The
vertices of P (z) correspond to the coordinates of the end-
points of each beam bi of z relative to the mobile robot:
P (z) = {(dicosρi, disinρi)|i = 0, . . . ,M − 1}. The list
of the features corresponding to the set P is presented in Ta-
ble 2. This work uses the features extracted from sets B and
P [8]. Table 3 lists and defines the features that are used in
this paper.

III. AdaBoost Algorithms

The AdaBoost algorithm has been a very successful tech-
nique for solving two-class classification problems. The
main idea is to combine a set of weak classification func-
tions to form a stronger classifier, H. The classifiers are
called weak classification functions because it is not expected
that they have the best classification functions to classify the
training data well. Weak learner commonly denotes a generic
weak learning algorithm. On each round t (t = 1, . . . , T ) the
weak learner searches over a set of possible weak classifica-
tion functions and then selects a weak classification function
based on the minimization of the classification error. Here,
this selected weak classification function is called as weak
hypothesis, ht.
After each round, the samples are re-weighted in order to em-
phasize those which were incorrectly classified by the previ-
ous weak hypothesis. The distribution of the weights D in-
dicates the importance of the samples. The final strong clas-
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Table 2: Features for the place categorization using polygo-
nal approximation - Set P .

Feature Description

P.1 Area of P (z).
P.2 Perimeter of P (z).
P.3 Area of P (z) divided by Perimeter of P (z).
P.4 Mean distance between the centroid and the shape

boundary.
P.5 Standard deviation of the distances between the cen-

troid and the shape boundary.
P.6 Similarity invariant descriptors based in the Fourier

transformation. It is used the first 200 descriptors.
P.7 Major axis Ma of the ellipse that approximates P (z)

using the first two Fourier coefficients.
P.8 Minor axis Mi of the ellipse that approximates P (z)

using the first two Fourier coefficients.
P.9 Ma/Mi.
P.10 Seven invariants calculated from the central moments

of P (z).
P.11 Normalized feature of compactness of P (z).
P.12 Normalized feature of eccentricity of P (z).
P.13 Form factor of P (z).
P.14 Circularity of P (z).
P.15 Normalized circularity of P (z).
P.16 Average normalized distance between the centroid

and the shape boundary.
P.17 Standard deviation of the normalized distance be-

tween the centroid and the shape boundary.

Table 3: Features used in this work and extracted from the
Sets B and P .

Feature Description

x1 feature B.1
x2 feature B.2
x3 feature B.3
x4 feature P.1
x5 feature P.2
x6 feature P.3
x7 feature B.5
x8 feature B.6
x9 feature P.4
x10 feature P.5
x11, . . . , x30 feature B.7 with thresholds 0.5 [m] to

10.0 [m] (0.5 [m] steps)
x31, . . . , x129 feature P.6 with Fourier coefficients 2 to 100
x130 feature P.7
x131 feature P.8
x132 feature P.9
x133 feature B.11
x134 feature B.12
x135 feature B.13
x136 feature B.14
x137 feature P.16
x138 feature P.17
x139, . . . , x148 feature B.15 with thresholds 0.1 [m] to

1.0 [m] (0.1 [m] steps)
x149 feature P.15
x150 feature B.16

sifier H is formed by a weighted combination of the weak
hypotheses.

Algorithm 1 Viola-Jones AdaBoost.

1. Given samples (xi, yi), i = 1, . . . , N , where yi = 0 for the
negative samples and yi = 1 for the positive samples, respec-
tively; And a set of features fj , j = 1, . . . ,M , so that for
each sample i there is a value of fj given by fj(i);

2. Initialize a distribution as D1(i) = 1
2m

for yi = 0 and
D1(i) = 1

2l
for yi = 1, where m and l are the number of

negative and positive samples, respectively;

3. Set t← 1;

4. Repeat

(a) Normalize the distribution so that
∑N

i=1 Dt(i) = 1;

(b) For each feature j, train a classifier hj which is re-
stricted to using a single feature. Evaluate the er-
ror of each classifier hj based on the Dt: εt =∑N

i=1 Dt(i)|hj(xi)− yi|;
(c) Choose the classifier ht with the lowest error εt;

(d) Set βt = εt/(1− εt);

(e) Update the distribution as:

Dt+1(i) = Dt(i)β
1−|ht(xi)−yi|
t ;

(f) Set t← t+ 1;

until t = T ;

5. Construct the final strong classifier as:

H(x) =

{
1, if

∑T
t=1(log 1

βt
)ht(x) ≥ 1

2

∑T
t=1log 1

βt
,

0, otherwise.

The AdaBoost was firstly introduced by Freund and Schapire
[13] through the Classic AdaBoost algorithm. Afterwards,
Schapire and Singer [14] proposed some improvements to
Classic AdaBoost, resulting in a new algorithm called Gen-
eralized AdaBoost. The main difference is that the General-
ized AdaBoost considers that the weak hypothesis can pro-
duce output real-valued or confidence-rated predictions. In
other words, given an input xi, if ht(xi) is close to or far
from zero, it is considered as a low or right confidence pre-
diction. Another differing aspect is the inclusion of param-
eters αt that control the influence of the weak hypotheses in
the final output. The main effect of αt is to decrease or in-
crease the weights of the training samples classified correctly
or incorrectly by the ht.

A. Viola-Jones AdaBoost and Generalized AdaBoost for the
Place Categorization

The traditional AdaBoosts are procedures for selecting a
small set of good weak hypotheses. However, such weak hy-
pothesis often do not have significant variety. To compensate
this problem, Viola and Jones [12] proposed an approach for
constructing a classifier by selecting a small number of fea-
tures using the Classic AdaBoost Algorithm [13]. During the
learning procedure a large majority of the available features
are excluded, focusing on a small set of critical features. In
other works, the weak learner restricts each weak hypothesis
to depend on only a single feature.
Algorithm 1 details the Viola-Jones AdaBoost. Consider-
ing a binary classification problem where the aim is to dis-
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criminate positive and negative samples, the Viola-Jones Ad-
aBoost takes as input a set of samples (x1, y1), . . . , (xN , yN ),
where each sample xi belongs to some domain space X and
yi belongs to the label set Y = {0, 1}. On each iteration t, a
distribution Dt is computed by normalizing the weights.
The weak learner algorithm is employed to select a single
feature which best separates the positive and negative sam-
ples. In this process, the weak learner finds the optimal
threshold classification function so that the minimum number
of samples are misclassified. Considering a set of features fj ,
j = 1, . . . ,M , the weak hypothesis depends on only a single
feature fj . On each round t, a weak hypothesis hj consists
of a feature fj , a threshold θt and a parity pj (either −1 or 1)
indicating the direction of the inequality sign:

hj(x) =
{

1, if pjfj(x) < pjθj ,
0, otherwise. (1)

The weak learner algorithm finds the optimal values of θj and
pj such that the number of misclassified training samples is
minimized as:

(pj , θj) = argmin
(pi,θi)

N∑
i=1

Dt(i)|hj(xi)− yi|. (2)

At the end of each round t, the distribution Dt is updated
in order to increase the importance of samples which were
incorrectly classified by the previous selected weak hypoth-
esis. The final strong classifier is a linear combination of the
T weak hypotheses where the weights are inversely propor-
tional to the training errors. The Viola-Jones’ classifier can
be viewed as single node decision trees, where these struc-
tures are also called decision stumps in the machine learning
literature.
The Viola-Jones AdaBoost uses the Classic AdaBoost’ struc-
ture. Therefore, the Viola-Jones AdaBoost does not consider
the improvements presented by the Generalized AdaBoost in
relation to the Classic AdaBoost. To include the effective-
ness of both the Viola-Jones AdaBoost and the Generalized
AdaBoost, Mozos [21] presented an AdaBoost called Gener-
alized AdaBoost for the place categorization problem using
the weak learning algorithm of the Viola-Jones AdaBoost, as
specified in Algorithm 2.
Considering a sequence of input samples
(x1, y1), . . . , (xN , yN ), where xi belongs to some do-
main space X and yi belongs to the label set Y = {−1,+1};
and yi = +1 indicates a positive sample xi and yi = −1
indicates a negative sample xi. Similarly to the other
AdaBoosts, the distribution Dt indicates the importance
(weights) of each sample. On each round t, the distribution
is normalized and then a weak classifier is selected according
to the distribution Dt.
Similarly to the Viola-Jonas AdaBoost, for each feature fj , a
weak classifier of the following form is selected:

hj(x) =
{

+1, if pjfj(x) < pjθj ,
−1, otherwise. (3)

Equation (3) differs from Equation (1) in the output for a
negative classification. The weak learner algorithm finds the
optimal values of θt and pj so as to maximize |rt| (see Al-
gorithm 2). Then the distribution Dt+1 is updated and the

Algorithm 2 Generalized AdaBoost for the Place Catego-
rization.

1. Given samples (xi, yi), i = 1, . . . , N , where yi = −1 for the
negative samples and yi = +1 for the positive samples; And
a set of features fj , j = 1, . . . ,M , so that for each sample i
there is a value of fj given by fj(i);

2. Initialize a distribution as D1(i) = 1
2m

for yi = −1 and
D1(i) = 1

2l
for yi = +1, where m and l are the number of

negative and positive samples, respectively;

3. Set t← 1;

4. Repeat

(a) Normalize the distribution so that
∑N

i=1 Dt(i) = 1;

(b) For each feature fj , j = 1, . . . ,M , train a weak learner
and select a weak hypothesis hj using the distribution
Dt;

(c) For each weak hypothesis hj , compute:

rj =
∑N

i=1 Dt(i)yihj(xi), with hj(xi) ∈ {−1,+1};

(d) Choose a weak hypothesis hj that maximizes |rj | and
set (ht, rt) = (hj , rj);

(e) Update the distribution as:

Dt+1(i) = Dt(i)exp(−αtyiht(xi)), where

αt =
1
2

ln
(

1+rt
1−rt

)
;

(f) Set t← t+ 1;

until t = T ;

5. Construct the final strong classifier as:

H(x) = sign(F (x)), where F (x) =
∑T

t=1 αtht(x).

weight of a weak hypothesis αt is calculated. After T rounds,
the final classifier is composed by a weighted combination
of the chosen weak hypotheses. In the following experi-
ments, Generalized AdaBoost corresponds to the AdaBoost
proposed by Mozos [21].

B. Gentle AdaBoost and Modest AdaBoost

This work introduces the Gentle AdaBoost [16] and the Mod-
est AdaBoost [17] algorithms for place categorization. Re-
sults indicate that these classifiers perform better in image
classification than other classifiers based on Support Vector
Machines and Neural Networks [18].
Gentle AdaBoost optimizes the performance of the final clas-
sifier using Newton stepping for minimizing the criterion
E [exp(−yH(x)], where E represents the expectation. The
algorithm updates a weak hypothesis using class probabili-
ties as:

ht(x) = PDt(y = +1|x)− PDt(y = −1|x). (4)

Empirical evidence suggests that Gentle AdaBoost has simi-
lar classification performance when compared with other Ad-
aBoosts, such as, Real AdaBoost and LogitBoost, but it often
outperforms them in terms of stability [16]. The Gentle Ad-
aBoost is outlined in Algorithm 3, where the weak learner is
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Algorithm 3 Gentle AdaBoost.

1. Given samples (xi, yi), i = 1, . . . , N , where yi = −1 for
negative samples and yi = +1 for positive samples;

2. Initialize a distribution as D1(i) =
1
N

, i = 1, . . . , N ;

3. Set t← 1 andH(x)← 0;

4. Repeat

(a) Train a weak hypothesis ht(x) using distribution Dt(i)
by weighted least squares;

(b) UpdateH(x)← H(x) + ht(x);

(c) Update the distribution as:

Dt+1(i) = Dt(i)exp(−yiht(xi));

(d) Normalize the distribution so that:∑N
i=1 Dt+1(i) = 1;

(e) Set t← t+ 1;

until t = T ;

5. Construct the final classifier as:

H(x) = sign(F (x)), where F (x) =
∑T

t=1 ht(x).

fitted by weighted least squares as:

ht(x) = argmin
h

(
N∑
i=1

Dt(i) · (yi − h(xi))2
)
. (5)

Modest AdaBoost has less generalization error and higher
training errors when compared to the other AdaBoosts. Ex-
periments show that Modest AdaBoost outperforms Gentle
AdaBoost in terms of generalization error, but reduces train-
ing error much slower, sometimes not reaching zero [17]. A
description of Modest AdaBoost is shown in Algorithm 4.
The only requirement for a weak hypothesis ht is that for any
of its output values, the algorithm should be able to estimate
probability PDt(y = 1 ∩ ht(x)).
At each round t, distribution Dt assigns high weights to train-
ing samples misclassified in earlier stages. On the contrary,
the inverse distribution D̄t gives higher weights to samples
correctly classified in earlier rounds. The initial weights are
set as D1(i) =

1
N . The new distribution Dt+1 is calculated

as:

Dt+1(i) =
Dt(i)exp(−yigt(xi))

Zt
, (6)

where Zt is a normalization coefficient. Zt and Z̄t are chosen
so that:

N∑
i=1

D̄t(i) =

N∑
i=1

Dt(i) = 1. (7)

A weak learner is fitted in Step 4a by weighted least squares
according to the Equation 5.
Expressions P+1

t (x) = PDt(y = +1∩ht(x)) and P−1
t (x) =

PDt(y = −1 ∩ ht(x)) compute how good the current
weak hypothesis is predicting the class labels. Expressions
P̄+1
t (x) = PD̄t

(y = +1 ∩ ht(x)) and P̄−1
t (x) = PD̄t

(y =
−1 ∩ ht(x)) estimate how good the current weak hypothe-
sis is working on the data which has been correctly classi-
fied by previous steps. So when Algorithm 4 uses gt(x) =

Algorithm 4 Modest AdaBoost.

1. Given samples (xi, yi), i = 1, . . . , N , where yi = −1 for
negative samples and yi = +1 for positive samples;

2. Initialize a distribution as D1(i) =
1
N

, i = 1, . . . , N ;

3. Set t← 1;

4. Repeat

(a) Train a weak hypothesis ht(x) using distribution Dt(i)
by weighted least squares;

(b) Compute the inverted distribution D̄t(i) = (1 −
Dt(i))Z̄t;

(c) Compute:

i. P+1
t (x) = PDt(y = +1 ∩ ht(x));

ii. P̄+1
t (x) = PD̄t

(y = +1 ∩ ht(x));
iii. P−1

t (x) = PDt(y = −1 ∩ ht(x));
iv. P̄−1

t (x) = PD̄t
(y = −1 ∩ ht(x));

(d) Set:

gt(x) = (P+1
t (1− P̄+1

t )− P−1
t (1− P̄−1

t ))(x);

(e) Update the distribution:

Dt+1(i) =
Dt(i)exp(−yigt(xi))

Zt
;

(f) Set t← t+ 1;

until t = T and gt(x) ̸= 0;

5. Construct the final classifier as:

H(x) = sign(F (x)), where F (x) =
∑T

t=1 gt(x).

(P+1
t (1− P̄+1

t )− P−1
t (1− P̄−1

t ))(x) as an update for cur-
rent step, it decreases the weak hypothesis contribution, if
it works “too good” on data that has already been correctly
classified with high margin. A feature of the Modest Ad-
aBoost is that 1 − P̄ y

t , y ∈ {−1,+1} can actually become
zero, so then update will not occur. This provides a natural
stopping criterion.
Despite the original Gentle AdaBoost and Modest AdaBoost
consider weighted least squares as weak learner algorithm,
in the experiments are investigated the use of stumps. A
decision stump makes a prediction based on the value of a
just one single input, as the Viola-Jones AdaBoost. Decision
stumps have many advantages, such as, simple to understand
and interpret; and performs well with large amount of data in
a short time.

IV. Multi-class Classification Using a Binary
AdaBoost into a Probabilistic Decision List
(PDL)

The AdaBoost algorithms presented in Section III have been
designed for binary classification problems. However, in this
work, it is necessary to handle multiple classes for place cat-
egorization. To cover this issue, Mozos et al. [15] shows that
it is possible to design an AdaBoost arranged into a Decision
List (DL) for multi-class problems, where each AdaBoost of
the DL determines if a sample belongs to one specific class.
The aim is to train each AdaBoost using samples of its class
as positives and the other samples as negatives. Consider a
DL that is defined by a sequence of K classes k = 1, . . . ,K,
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K-1AdaBoost

 1 - C1

 C
1

AdaBoost
1

p(1)

x
+

 1 - CK - 1
+

+  C
K - 1
+

p(K - 1)

p(K)

Figure. 1: Probabilistic decision list using binary Ad-
aBoosts.

and by K − 1 AdaBoosts. An AdaBoost uses a binary hy-
pothesis hk : X → Y = {0, 1} to classify a sample x. Each
hypothesis hk determines if a sample x belongs to the cor-
responding class k. If an AdaBoost gives output 1, then the
sample is assigned to class k. On the contrary, the sample x is
passed to the next AdaBoost into the list until it is attributed
to a class.
This idea can be extended to a PDL, where each AdaBoost
gives a confidence value C+

k for its class [21], as shown in
Figure 1. The sample is passed to the next AdaBoost, but
with a negative classification confidence value of 1 − C+,
where:

C+ = P (y = +1|x) = eF (x)

e−F (x) + eF (x)
, (8)

C− = P (y = −1|x) = e−F (x)

e−F (x) + eF (x)
, and (9)

C+ = P (y = +1|x) = 1− C−. (10)

The complete output of a sample i can be defined as a his-
togram Pi, where each bin pi(k) of Pi stores the probability
of a class k:

pi(k) = C+
k

k−1∏
j=1

(1− C+
j ), (11)

where
∑K

k=1 pi(k) = 1 and the confidence value CK of the
last bin pi(K) is equal to CK = 1 according to the PDL
structure.
Another important issue of the DL is the order in which the
AdaBoosts are arranged, because the individual classifiers
may have different performances. The experiments aim to
find the optimal order of the AdaBoosts into the PDL.

V. Probabilistic Relaxation Labeling

Relaxation labeling was first proposed by Rosenfeld et al.
[22]. The method employs contextual information to clas-
sify a set of interdependent objects by allowing interactions
among the possible classifications of the related objects. Re-
laxation labeling has been applied to many areas of the com-
puter vision [23] and for smoothing the final classification of
the semantic maps [15]. In this last case, the label that is at-
tributed to each cell of the map depends on the labels in its
neighborhood.
This work applies Probabilistic Relaxation Labeling (PRL)
for smoothing the classification of the PDL as suggested by
Mozos et al. [15] The aim is to classify the labels of the un-
occupied cells of the maps. Let us consider a labeling prob-
lem with a set of B cells C = {c1, . . . , cB}, and K labels
Y = {y1, . . . , yK}. The labeling is defined by a function

that maps each element of C into an element of Y . Each cell
ci is related to a probabilistic distribution given by the his-
togram Pi (as shown in Section IV), where each bin pi(k)
of the histogram stores the probability that the cell ci has the
label k.
Let Ne(ci) be the set of cells that influence the labeling pro-
cess of cell ci by PRL. Here Ne(ci) is defined to be the
neighborhood of ci, which consists of the cells cj ̸= ci
that are connected to ci. Here the type of connectivity be-
tween a cell ci with coordinates (x, y) and its neighbors is
8-connectivity. Thus, each cell in the interior of the state-
space has 8 neighboring cells.
For each pair of cells (ci, cj), dij denotes the influence on ci
from cj , D = {dij |cj ∈ Ne(ci)},

∑Qi

j=1 dij = 1, and Qi

is the number of neighbors of ci. The compatibility between
the label k of cell ci and the label k′ of cell cj is given by
rij(k, k

′) ∈ [−1, 1], satisfying the condition:

rij(k, k
′) =

 1
1−pi(k)

(
1− pi(k)

pij(k|k′)

)
, if pi(k) < pij(k|k′),

pij(k|k′)
pi(k)

− 1, otherwise,
(12)

and R = {rij(k, k′)|cj ∈ N(ci)}. High values of rij(k, k′)
correspond to compatibility and low values to incompatibil-
ity. The term pij(k|k′) is the conditional probability that cell
ci has label k given that cell cj ∈ Ne(ci) has label k′. This
paper calculates pij(k|k′) by:

pij(k|k′) =
pij(k ∩ k′)

pj(k′)
, (13)

where pij(k ∩ k′) is the joint probability, i.e. the probability
of labels k and k′ occurring simultaneously; and pj(k

′) is the
probability that cell cj has label k′. The compatibility coeffi-
cients rij(k, k′), and pi(k) and pij(k|k′) maintain the same
values during the PRL process. They are calculated using the
training set. For each cell ci, there is a set of initial proba-
bilities given by P

(0)
i = {p(0)i (k)|k = 1, . . . ,K}, satisfying∑K

k=1 p
(0)
i (k) = 1. These probabilities are given by the PDL

of AdaBoosts.
PRL computes the histogram Pi assigned to each cell ci iter-
atively until the labeling method converges or stabilizes. The
updated probability of having label k on ci at the (t + 1)-th
iteration is:

p
(t+1)
i (k) =

p
(t)
i (k)

[
1 + q

(t)
i (k)

]
∑K

k′=1 p
(t)
i (k′)

[
1 + q

(t)
i (k′)

] , (14)

where q
(t)
i (k) =

N∑
j=1

dij

(
K∑

k′=1

rij(k, k
′)p

(t)
j (k′)

)
. (15)

The key issue of the PRL process is to define how many it-
erations are needed. In this work, PRL is performed T times
and the iteration t with the lowest classification error is taken
as the solution for the PRL process. The weights dij are set
with value 1

Qi
, i.e. all the cells in the neighborhood of ci have

same importance.
In the occupancy grid map process, we may be dealing with
occupied cells (i.e. cells defined as wall) in the neighbor-
hood of a free cell ci. In this case, in the PRL process wall
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must be included in the set of labels and the wall probabil-
ities must be defined. The initial probability p

(0)
i (wall) of

a cell ci with label wall is set as 1; and other initial proba-
bilities i.e. p(0)i (room), p(0)i (corridor) and p

(0)
i (doorway)

are set as 0. For a free cell ci (i.e. room, corridor or door-
way), the initial probabilities p

(0)
i (room), p

(0)
i (corridor)

and p
(0)
i (doorway) correspond to those given by the PDL,

and p
(0)
i (wall) is set as 0.

VI. Heuristics for Removing Incorrect Regions

Some heuristics are necessary for removing incorrect regions
after the relaxation labeling process. The aim is to increase
the classification rate of the maps [21].
Connected component (or region) labeling references to
the task of grouping the connected pixels with the same
label in an image, where each region is labeled based
on a given method. Connected components are ex-
tracted using 8-connected cells with same class y ∈
{room, corridor, doorway} [24]. The label of a region is
the same as the label of its pixels. Moreover, for each re-
gion, its connection (i.e. border), area and number of cells
are extracted. The heuristics proposed for removing incor-
rect regions are defined as follows:

1. Remove regions of type room or corridor whose num-
ber of cells is lower than a given threshold which is set
to 400 in this paper. For each removed region, its cells
are merged into a new cumulative region which also in-
cludes all neighboring regions of type w, where w is the
most frequent type of pixel in the border of the removed
region;

2. Remove regions of type doorway that are connected to
only one label. For each removed region, its cells are
merged into a new cumulative region which also in-
cludes all neighboring regions. (Note: each region of
type doorway connected to both room and corridor is
kept even if its number of cells is less than a threshold).

VII. Experiment Results

Below the experiments use the data sets available on Óscar
Martínez Mozos’s website1. They correspond to the Build-
ing 52 and Building 79 at the University of Freiburg. Both
data sets have 150 features, as described in Table 3, and three
classes that represent the places of the Buildings (room, cor-
ridor and doorway). The data sets are divided into training
data set and testing data set, as shown in Figures 2 and 3 .
The aim of the experiments is to demonstrate the improve-
ments obtained by the PDL of AdaBoosts when the de-
scribed PRL process and the proposed heuristics are per-
formed. The tested AdaBoosts include the Viola-Jones Ad-
aBoost, the Generalized AdaBoost, the Gentle AdaBoost and
the Modest AdaBoost.
The Viola-Jones AdaBoost and the Generalized AdaBoost
were implemented according to Algorithms 1 and 2, respec-
tively. In this case, for each weak learner hj based on a sin-
gle feature fj , a set of thresholds θt is generated in a linearly

1http://www.informatik.uni-freiburg.de/
~omartine/

(a) (b)

Figure. 2: Map of the building 52 - (a) training data set; (b)
testing data set; – room, – corridor,– doorway.

(a) (b)

Figure. 3: Map of the building 79 - (a) training data set; (b)
testing data set; – room, – corridor,– doorway.

spaced vector form; where the vector contains 200 points lin-
early spaced between and including min(fj) and max(fj).
The Gentle AdaBoost and the Modest AdaBoost were imple-
mented using the GML AdaBoost Toolbox2. This Toolbox
uses the Classification and Regression Tree (CART) as the
weak learner, instead of weighted least squares mentioned in
Algorithms 3 and 4. The CART decision tree is a rule-based
method with leaves representing the classification result and
nodes representing some predicate. The CART searches for
all possible variables and all possible values in order to find
the best split [25]. In the following experiments, the depth
of the tree is equal to 3 and all the AdaBoosts use 100 weak
learners.

A. Determining the Order of the AdaBoosts into the Proba-
bilistic Decision List

In Section IV it was noted that the performance of the PDL
is influenced by the order of the AdaBoosts in the list. The
goal is to select the sequence of AdaBoosts in the PDL so as
to minimize the classification error. A PDL is defined by k
classes and k − 1 AdaBoosts. As the classification problem
of both the Buildings is three-class (i.e. room, corridor and
doorway), the number of the AdaBoosts in the PDL is two.
Suppose that the first AdaBoost of the list, AdaBoost1, is
trained using class c1 as positive and classes c2 and c3 as
negative; And the second AdaBoost of the list, AdaBoost2,
is trained using class c2 as positive and class c3 as nega-
tive (or the class c3 as positive and the class c2 negative).
Thus, there are three possible arrangements (or orders) of the
classes and AdaBoosts is three, as listed in the Table 4. The
order selection problem consists of assigning classes c1, c2,
and c3 without repetition from among the classes room, cor-
ridor or doorway. In the experiments presented below, the
shown PDL for each type of AdaBoost (i.e. the Viola-Jones
AdaBoost, the Generalized AdaBoost, the Gentle AdaBoost

2http://graphics.cs.msu.ru/ru/science/research/
machinelearning/adaboosttoolbox
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Table 4: Possible orders of the AdaBoosts into the PDL using
the building 52 and the building 79 data sets.

Order class c1 class c2 class c3

1 room corridor doorway
2 corridor room doorway
3 doorway room corridor

and the Modest AdaBoost) has the best order.

B. Experiments Using the Building 52 and the Building 79
Data Sets

The methodology applied in the experiments can be divided
into three steps. In the first step, a PDL of AdaBoosts with
the best order is built, where the AdaBoosts are trained us-
ing the training data set. Then, the PDL is used to classify
the cells of the testing map; and it outputs the histogram Pi

of each cell ci. In the second step, the classifications are
smoothed using the PRL process presented in Section V.
This method receives as inputs the histograms Pi, the condi-
tional probabilities pij(k|k′), the initial probabilities p(0)i (k)
and the maximum number of iterations T (set as 50); and it
outputs a testing map with a smoothed distribution of classi-
fication. In the third step, some incorrectly classified regions
are re-classified using the heuristics described in Section VI.
Table 5 shows the experimental results obtained on Build-
ing 52 and Building 79 using the PDL of AdaBoosts. The
column Ord. specifies the best order of the AdaBoosts ac-
cording to Table 4. The classification rates measure the per-
centage of samples correctly classified, where train% is the
rate on the training data set and test% is the rate on the testing
data set. AdaBoost1, and AdaBoost2 are the first and second
AdaBoosts of the PDL, respectively; PDL shows the classifi-
cation rates using a PDL with the AdaBoost1 and AdaBoost2;
PRL reports the classification rate after having applied proba-
bilistic relaxation labeling using the best number of iterations
t; Heur. shows the classification rate after having performed
the proposed heuristics on the test map.
The classification rates indicate that the Gentle AdaBoost has
the best performance for the AdaBoost1 and the AdaBoost2
in the training data set. In the testing data set for the Ad-
aBoost1 and the AdaBoost2, the Generalized AdaBoost has
worse classification rates when compared to the other Ad-
aBoosts. The best classification rate with a PDL in the test-
ing data is obtained to the Gentle AdaBoost in the case of
Building 52 and by Modest AdaBoost in the case of Build-
ing 79. When the relaxation labeling and the heuristics are
applied, the Generalized AdaBoost significantly improves its
performance.

C. Maps of the Building 52 and the Building 79

This Subsection presents the final maps using the classifica-
tion outputs for the methodologies described above.
Figures 4 and 5 show the maps obtained for Building 52 and
Building 79 at the University of Freiburg, respectively. As
displayed, the environments are divided as rooms, corridors
and doorways. After applying the PDL of AdaBoosts to clas-
sify the places, some noises can be seen in the Figures. These

noises are mainly due to cells misclassified as doorways, for
example, as shown in the Figure 4d.
When the relaxation labeling is applied, a reduction of noise
can be easily observed. In the other cases, for example in
Figure 4k, it is noticed the plausible arising of cells with the
doorway label. However, even applying the relaxation label-
ing, some incorrect regions are presented by the maps, as can
be seen clearly in Figure 4e. Later these regions are elimi-
nated using the heuristics, as shown in Figure 4f.
In general, the major problem is to classify correctly the
doorways. The Generalized AdaBoost has the best perfor-
mance on the doorways when compared to the other Ad-
aBoosts. For Building 79, the Viola-Jones AdaBoost has a
performance similar to the Generalized AdaBoost. The Mod-
est AdaBoost fails in the map of Building 79. However, for
the map of Building 52, the relaxation labeling strongly im-
proves the classification rate of the doorways. This idea can
be also extended to other learning algorithms.

D. Comparison with the Literature Results

Different AdaBoosts integrated with PDL for semantic place
labeling in indoor environments are proposed. The tests in-
dicate that the best AdaBoosts for place categorization are
the Generalized AdaBoost and the Viola-Jones AdaBoost,
where the final classification rate is 98.90% for Building
52 and 99.16% for Building 79. Mozos [21] also presents
the PDL of Generalized AdaBoost, relaxation labeling, and
heuristics for removing incorrect regions. Their final results
are slightly inferior when compared to the results presented
here, where their classification rate are 98.66% for Building
52 and 98.95% for Building 79. Here, the better results are
attributed to the choice of the iteration t with lowest clas-
sification error on the iterations T as solution of the PRL
process.

VIII. Conclusions

This paper compares binary AdaBoosts integrated with PDL
for solving multi-class problems. The aim is to classify
places in indoor environments using a mobile robot equipped
with a laser range scanner covering 360◦ field of view. To in-
crease the classification rate, probabilistic relaxation labeling
and some heuristics are applied. The experiments are based
on the data sets acquired from both the Building 52 and the
Building 79 at the University of Freiburg. In these build-
ings, the environments are divided into places of three types:
room, door and corridor.
The investigated AdaBoosts are the Viola-Jones AdaBoost,
the Generalized AdaBoost, the Gentle AdaBoost and the
Modest AdaBoost. The experimental results have shown that
PDL of Generalized AdaBoost has inferior classification rate
when compared to PDLs of other types of AdaBoosts. How-
ever, in Building 52, the Generalized AdaBoost outperforms
the other AdaBoosts when relaxation labeling and heuristics
are performed; And, in Building 79, the Viola-Jones Ad-
aBoost has the best performance.
In Building 52, the tests have shown that the optimal PDL is
the one composed of Generalized AdaBoosts, where the final
classification rate in the test map is 98.90%; And the experi-
mental results on Building 79 have shown that the best PDL
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(a) PDL Classification (b) Relaxation Labeling (c) Heuristics

(d) PDL Classification (e) Relaxation Labeling (f) Heuristics

(g) PDL Classification (h) Relaxation Labeling (i) Heuristics

(j) PDL Classification (k) Relaxation Labeling (l) Heuristics

Figure. 4: Test map of the building 52 using PDL of: (a)-(c) Viola-Jones AdaBoost; (d)-(f) Generalized AdaBoost; (g)-(i)
Gentle AdaBoost; (j)-(l) Modest AdaBoost; – room, – corridor,– doorway.

Table 5: Experimental results using the AdaBoosts into the probabilistic decision list.

The Building 52 at the University of Freiburg

AdaBoost Order AdaBoost1 AdaBoost2 PDL PRL Heuristic

Algorithm train% test% train% test% train% test% t test% test%

Viola-Jones 3 98.42 98.16 99.94 99.66 98.36 97.84 26 98.12 98.23
Generalized 2 99.61 99.35 95.60 96.67 95.88 96.56 48 98.27 98.90

Gentle 3 99.79 98.08 99.81 99.88 99.79 97.97 1 98.01 98.29
Modest 2 99.70 99.58 97.73 97.72 97.79 97.70 41 98.26 98.37

The Building 79 at the University of Freiburg

AdaBoost Order AdaBoost1 AdaBoost2 PDL PRL Heuristic

Algorithm train% test% train% test% train% test% t test% test%

Viola-Jones 1 98.59 99.13 97.98 98.10 98.10 98.71 15 99.06 99.16
Generalized 1 98.56 98.59 96.53 97.63 97.63 98.10 50 99.06 99.13

Gentle 2 99.99 99.45 99.53 98.12 99.57 98.12 5 98.72 98.93
Modest 2 99.13 99.39 98.18 99.32 97.80 98.87 4 98.93 99.07
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(a) PDL Classification (b) Relaxation Labeling (c) Heuristics

(d) PDL Classification (e) Relaxation Labeling (f) Heuristics

(g) PDL Classification (h) Relaxation Labeling (i) Heuristics

(j) PDL Classification (k) Relaxation Labeling (l) Heuristics

Figure. 5: Test map of the building 79 using PDL of: (a)-(c) Viola-Jones AdaBoost; (d)-(f) Generalized AdaBoost; (g)-(i)
Gentle AdaBoost; (j)-(l) Modest AdaBoost; – room, – corridor,– doorway.

is also the one composed by Viola-Jones AdaBoosts, where
the classification rate of the test map was 99.16%. The re-
sults suggested that PDL can be extended to several binary
classifiers and show that PRL improves significantly the clas-
sification rates of the classifiers.
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