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Abstract

This paper proposes a learning algorithm for single-

hidden layer feedforward neural networks (SLFN) called

genetically optimized extreme learning machine (GO-

ELM). In the GO-ELM, the structure and the parameters

of the SLFN are optimized by a genetic algorithm (GA).

The output weights, like in the batch ELM, are obtained by

a least squares algorithm, but using Tikhonov’s regular-

ization in order to improve the SLFN performance in the

presence of noisy data. The GA is used to tune the set of

input variables, the hidden-layer configuration and bias,

the input weights and the Tikhonov’s regularization fac-

tor. The proposed method was applied and compared with

four other methods over five benchmark problems avail-

able in a public repository. Besides it was applied in the

estimation of the temperature at the burning zone of a real

cement kiln plant.

1 Introduction

Multilayer feedforward neural networks (FFNN) have

been used as universal approximators [10, 13] for sys-

tem identification. However, in industrial applications,

linear models are often preferred due to faster train-

ing in comparison with multilayer FFNN trained with

gradient-descent algorithms [17]. In order to overcome

the slow construction of FFNN models, a new method

called extreme learning machine (ELM) is proposed in

[15]. This method is a new batch learning algorithm

for single-hidden layer FFNN (SLFN) where the input

weights (weights of connections between the input vari-

ables and neurons in the hidden-layer) and the bias of neu-

rons in the hidden-layer are randomly assigned. The out-

put weights (weights of connections between the neurons

in the hidden-layer and the output neuron) are obtained

using the Moore–Penrose (MP) generalized inverse, con-

sidering that the activation function of the output neuron

is linear.

Since in ELM the output weights are computed based

on the random input weights and bias of the hidden

nodes, there may exist a set of non-optimal or unneces-

sary input weights and bias of the hidden nodes. Further-

more, the ELM tends to require more hidden neurons than

conventional tuning-based learning algorithms (based on

backpropagation of the error or other learning methods

where the output weights are not obtained by least squares

method) in some applications, which can negatively affect

SLFN performance in unknown testing data [15]. Also,

fitting problems can be encountered in the presence of the

irrelevant or correlated input variables [17].

The search and optimization properties of genetic al-

gorithms (GAs) make them suitable for model design (ar-

chitecture and weights) [3], more specifically in SLFNs

(for an extended review, see [6, 25]). In [16] an im-

proved GA is used to optimize the structure (connections

layout) and the parameters (connection weights and bi-

ases) of a SLFN with switches. The switches are unit step

functions that make possible the removal of each connec-

tion. Using a real encoding scheme, and new crossover

and mutation techniques, this improved GA obtains bet-

ter results in comparison with traditional GAs. The struc-

ture and the parameters of the same kind of SLFN with

switches are also tuned in [22], in this case using a hy-

brid Taguchi GA. This approach is similar to a traditional

GA but a Taguchi method [23] is used for the crossover

process. The use of this method implies the construction

of a (n + 1) × n two-level orthogonal matrix, where n

is the number of variables for the optimization process.

However, the construction of this orthogonal matrix is not

simple. There are some standard orthogonal matrices but

they can be only used when n is small. In large networks,

n is large and therefore this method is not a good practical

approach. In these methodologies, the weights between

the hidden-layer and the output layer are optimized by the

GA. Using the ELM approach, the output weights (con-

sidering an output neuron with linear activation function)

could be calculated from the solution of least squares that

minimizes the sum of squares of the error between the de-

sired and estimated output of the SLFN. Using the Moore-

Penrose generalized inverse to obtain the least squares

solution, the output weights could be quickly obtained,



reducing the convergence time of the GA. Furthermore,

as the number of variables of the optimization process is

lower, the search space to be explored by the GA narrows.

This approach was used in [24] where a GA is used to

select the connections, and tune the parameters between

the input layer and the hidden layer, and a least squares

algorithm is applied to tune the parameters between the

hidden layer and the output layer. However, in this type

of approach it is difficult to deal with the tendency to re-

quire more hidden nodes than conventional tuning-based

algorithms, as well as the problem caused by the presence

of irrelevant variables is difficult to solve. Using a switch

for each connection, a hidden-neuron or an input variable

can be discarded only if all connection switches associ-

ated with this hidden-neuron or input variable are dis-

abled. Furthermore, this methodology does not tune the

neurons activation function, and with noisy data the use of

least squares without regularization will make the model

displaying a poor generalization capability [5]. In this

paper, a novel learning algorithm for SLFNs called ge-

netically optimized extreme learning machine (GO-ELM)

is proposed. In GO-ELM, a GA is used to optimize the

weights of connections between the input layer and the

hidden-layer, the bias of neurons of the hidden-layer, the

set of input variables, and the hidden-layer configuration

(number of neurons and activation function of each neu-

ron). Using auxiliary binary selection variables, the irrel-

evant variables can be removed, thus decreasing the net-

work size and overcoming the reduction of performance of

the ELM in the presence of irrelevant variables. The op-

timization of the hidden-layer allows the selection of the

optimal number of neurons in this layer and the activation

function of each neuron, trying to overcome the propen-

sity of ELM for requiring more hidden nodes than con-

ventional tuning-based learning algorithms. Like in orig-

inal ELM, the output weights are obtained using the least

squares algorithm. However, as the use of least squares in

noisy data causes model overfitting, the Tikhonov’s regu-

larization [12] is used to obtain a robust least squares so-

lution. To prove the effectiveness of the proposed method,

it was applied in five benchmark problems available in a

public repository and compared with four methodologies.

An example of application of GO-ELM in the estimation

of the burning zone temperature in a real cement kiln plant

is also presented.

The paper is organized as follows. The SLFN archi-

tecture is overviewed in Section 2. Section 3 gives a

brief review of the batch ELM and GA. The optimization

approach for ELM is presented in Section 4. Section 5

presents experimental results. An example of application

of the proposed approach is presented in Section 6. Fi-

nally, concluding remarks are drawn in Section 7.

2 Adjustable Single Hidden-Layer Feedfor-

ward Network Architecture

The neural network considered in this paper is a SLFN
with adjustable architecture as shown in Fig. 1, which can
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Figure 1: Single hidden-layer feedforward network with ad-

justable architecture.

be mathematically represented by:

y = g

(

bO +
h
∑

j=1

wjOvj

)

, (1)

vj = fj

(

bj +
n
∑

i=1

wijsixi

)

. (2)

n and h are the number of input variables and the number

of the hidden layer neurons, respectively; vj is the output

of the hidden-layer neuron j; xi, i = 1, . . . , n, are the in-
put variables; wij is the weight of the connection between

the input variable i and the neuron j of the hidden layer;

wjO is the weight of the connection between neuron j of

the hidden layer and the output neuron; bj is the bias of the

hidden layer neuron j, j = 1, . . . , h, and bO is the bias of

the output neuron; fj(·) and g(·) represent the activation
function of the neuron j of the hidden layer and the acti-

vation function of the output neuron, respectively. si is a

binary variable used in the selection of the input variables

during the design of the SLFN.

Using the binary variable si, i = 1, . . . , n, each input

variable can be considered or not. However, the use of

variables si is not the single tool to optimize the structure

of the SLFN in GO-ELM. The configuration of the hidden

layer can be adjusted in order to minimize the output error

of the model. The activation function fj(·), j = 1, . . . , h,
of each hidden node can be either zero, if this neuron is

unnecessary, or any (predefined) activation function. Un-

like in error backpropagation methods, in GO-ELM the

activation functions do not have to be differentiable and

therefore any activation function can be considered.

3 Preliminaries

In this section, the ELM and the GA are briefly re-

viewed.



3.1 Extreme Learning Machine

The batch ELM was proposed in [15]. In [14] it is

proved that a SLFN with randomly chosen weights be-

tween the input layer and the hidden layer and adequately

chosen output weights are universal approximators with

any bounded non-linear piecewise continuous functions.
Considering that N samples are available, that the out-

put bias is zero, and that the output neuron has a linear
activation function, (1) and (2) can be rewritten as:

y =
(

wO
T
V

)T

, (3)

where y = [y(1), . . . , y(N)]T is the vector of outputs of

the SLFN,wO = [w1O, . . . , whO]
T is the vector of output

weights, and V is the matrix of the outputs of the hidden
neurons (1) given by:

V =







v1(1) v1(2) . . . v1(N)
...

...
. . .

...

vh(1) vh(2) . . . vh(N)






, (4)

with si = 1, i = 1, . . . , n.
Considering that the input weights and bias matrixW,

W =











b1 b2 . . . bh
w11 w12 . . . w1h

...
...

. . .
...

wn1 wn2 . . . wnh











, (5)

is randomly assigned, the output weights vectorwO is es-
timated as:

ŵO = V
†
yd, (6)

where V† is the Moore-Penrose generalized inverse

of the hidden-layer output matrix V, and yd =
[yd(1), . . . , yd(N)]T is the desired output.

Considering that V ∈ R
N×h with N ≥ h and

rank(V) = h, the Moore-Penrose generalized inverse of
V can be given by:

V
† = (VT

V)−1
V

T . (7)

Substituting (7) into (6), the estimation of wO can be
obtained by the following least-squares solution:

ŵO = (VT
V)−1

V
T
yd. (8)

3.2 Genetic Algorithms

The basic principles of GA were introduced by Hol-

land [11]. GA are search and optimization methods that

have been used to solve complex problems effectively

[18, 21, 2]. The principle of GA is the simulation of the

natural processes of evolution applying the Darwin’s the-

ory of natural selection. In a GA the possible solutions

are encoded into chromosomes (individuals) and the fittest

ones are more susceptible to be selected for reproduction,

producing offspring with characteristics of both parents.

The GA used in this paper is devoted to mixed integer

optimization problems [8]. In [8] the authors proposed

a methodology that allows solving optimization problems

where the decision variables can be a combination of real,

integer, and binary variables.

The detailed description of this method is given in this

section.

3.2.1 Variable Coding and Initial Population

In order to minimize cost functions involving real, integer,

and binary variables, all variables are mapped into contin-

uous variables and a real encoding technique is applied.

In the real encoding representation, each chromosome has

the same length as the vector of decision variables and

each element of the chromosome is encoded as a floating

point number within the interval [0,1].
The initial population P is usually chosen randomly

with uniform distribution and can be represented by:

P = {p
1
,p

2
, . . . ,pm}, (9)

where
pk =

[

pk1
, pk2

, . . . , pkq

]T
. (10)

pkl
is the variable l, l = 1, 2, . . . , q, of chromosome k,

k = 1, 2, . . . ,m, with 0 ≤ pkl
≤ 1. m and q are the

population size and the number of variables to be tuned,

respectively.

3.2.2 Evaluation

Each chromosome represents one possible solution to the
optimization problem. Therefore, each chromosome can
be evaluated using a fitness function that is specific to the
problem being solved. As all variables are mapped into
continuous values between 0 and 1, before obtaining the
fitness of each individual these values need to be converted
into the actual variable values according to the domain of
the problem and the corresponding true variable types. If
the true value of the l-th variable (l = 1, 2, . . . , v) of indi-
vidual k (k = 1, 2, . . . ,m) is real, it is given by:

zkl
= (zmax

l − zmin
l )pkl

+ zmin
l , (11)

where zmin
l and zmax

l represent the true variable bounds

(zmin
l ≤ zkl

≤ zmax
l ). If it is a integer value:

zkl
= rounddown

(

(zmax
l − zmin

l + 1)pkl

)

+ zmin
l , (12)

where rounddown(·) is a function that rounds to the
greatest integer than is lower than or equal to its argument.
If the true value is binary, it is given by:

zkl
= round

(

pkl

)

, (13)

where round(·) is a function that rounds to the nearest

integer.
After the conversion of variables, the fitness of each in-

dividual can be obtained. The fitness function to evaluate
a chromosome in the population can be written as:

fitness = ψ(pk) ∈ R, (14)

where the fitness function ψ(·) is specific to the problem

to be solved.

3.2.3 Genetic Operators

Based upon their fitness values, a set of individuals is se-

lected to survive to the next generation while the remain-

ing are discarded. The surviving individuals become the



mating pool and the discarded chromosomes are replaced

by new offspring. To select the parents from the mating

pool, tournament selection was used [9]. For each par-

ent, five individuals from the mating pool are randomly

picked and the individual with best fitness is selected to

be the parent. For each pair of parents two new individu-

als (offspring) are generated by crossover and mutation.

The crossover operation consists in producing off-

spring from the selected parents. Uniform crossover is

used because it generally provides a larger exploration of

the cost surface than other crossover operators [9]. In

uniform crossover, first a random binary mask with the

same length of the individuals is created. Then, each off-

spring receives values of variables from the first or sec-

ond parent depending on whether the value of the mask

bit is zero or one: the offspring 1/(2), receives the val-

ues from parent 1/(2) if the respective mask bit is one

and receives the values from parent 2/(1) if the respec-

tive mask bit is zero. Consider the following example:

Parent 1 = p
11

p
12

p
13

p
14
,

Parent 2 = p
21

p
22

p
23

p
24
,

Mask = 1 0 0 1

Offspring 1 = p
11

p
22

p
23

p
14
,

Offspring 2 = p
21

p
12

p
13

p
24
.

After crossover, the mutation operator is used to main-

tain the diversity of the population and to prevent the al-

gorithm from being trapped in local minima.
For each new offspring a random number r is gener-

ated and if r < rm, where rm is the mutation probabil-
ity, this offspring is mutated. The mutation used is a two
step operator. First, a random element of the individual is
replaced by an uniform random value within the interval

[0,1]. Being pk =
[

pk1
, pk2

, pk3
, pk4

]T
the offspring, if

the second element was selected to be replaced, the mu-
tated chromosome is given by:

p
1

k =
[

pk1
, p′k2

, pk3
, pk4

]T
, (15)

where p′k2
is a new random value within the interval [0,1].

In a second step, a random adjustment factor is added
to the chromosome. The adjustment factor comes from
multiplying each element l within the previously mutated
chromosome p1

k by a random number (−1 ≤ βkl
≤ 1)

and multiplying the resulting chromosome by a mutation
factor (0 ≤ ηk ≤ 1) so that:

p
c
k = ηk

[

βk1
pk1

, βk2
p′k2

, βk3
pk3

, βk4
pk4

]T
. (16)

Finally, the mutated chromosome is given by:

p
2

k = rem
(

p
1

k + p
c
k

)

, (17)

where rem is the remainder of each variable after the di-

vision by one.

4 Genetically Optimized Extreme Learning

Machine

In GO-ELM, the weights of the output connections are

obtained using the same ELM methodology presented in

Section 3.1, however with a change.

The objective of the least squares method is to obtain
the best output weights by solving the following problem:

min(‖y − yd‖2), (18)

where || · ||
2
is the Euclidean norm. The minimum-norm

solution to this problem is given by (8).

The use of least squares can be considered a two-stage

minimization problem involving: the determination of the

solutions to (18), and the determination of the solution

with minimum norm among solutions obtained in the pre-

vious stage.
The use of Tikhonov’s regularization [12] allows the

transformation of this two-stage problem into a single-
stage minimization problem defined by:

min(‖y − yd‖2 + α‖wO‖2), (19)

where α > 0 is a regularization parameter.
The solution to this problem is given by [12]:

wO = (VT
V + αI)−1

V
T
yd, (20)

where I is the h× h identity matrix.

If V is ill-conditioned, problem (19) should be pre-

ferred over problem (18) because the solution is numer-

ically more stable [1]. Furthermore, using the Tikhonov’s

regularization, the robustness of the least squares solution

against noise is improved.

As previously mentioned, the ELM tends to require

more hidden nodes than conventional tuning-based algo-

rithms. Furthermore, the presence of irrelevant variables

in the training data set causes a decrease in the perfor-

mance. To overcome these problems, in the proposed

methodology the optimization of the set of input variables,

the number and activation function of the neurons in the

hidden layer, the connections weights between the inputs

and the neurons of the hidden layer, the bias of the hidden

layer neurons, and the regularization parameter α is made

by GO-ELM. To perform this optimization, the approach

presented in Section 3.2 is used.
The optimization of the SLFN is performed so as to

maximize the following fitness function:

fitness =
1

1 + Ermse(y,yd)
, (21)

where

Ermse(y,yd) =

√

√

√

√

1

N

N
∑

k=1

[y(k)− yd(k)]
2

(22)

is the root mean square error (RMSE) between the desired

(real) output and the estimated values of the output. To im-

prove the generalization performance, the estimation error

Ermse(y,yd) is obtained in a validation data set that has

no overlap with the training data set.
In the optimization process, each chromosome pk, k =

1, . . . ,m of the population P will be constituted by:

pk = [w11, . . . , wnh, b1, . . . , bh,

s1, . . . , sn, s
λ
1 , . . . , s

λ
h, α]

T ; (23)

k = 1, . . . ,m,



Table 1: Publicly available benchmark data sets description.

Data set N n

Automobile MPG 392 6

Cancer 194 32

Servo 167 4

Boston Housing 506 13

Price 160 15

where sλj ∈ {0, 1, 2}, j = 1, . . . , h, is an integer variable

that defines the activation function fj of each neuron j of
the hidden-layer as follows:

fj(υ) =







0, if sλj = 0,
1/(1 + exp(−υ)), if sλj = 1,
υ, if sλj = 2.

(24)

The use of parameters sλj makes it possible the adjustment

of the number of neurons (if sλj = 0 the neuron is not con-
sidered), and the activation function of each neuron (sig-

moid or linear function). In this work only these two types

of activation function have been used; however, any type

of activation function can be considered. In applications

where the set of input variables is known (without irrele-

vant or redundant variables) the elements s1, . . . , sn can

be removed from the chromosome or can be forced to one

during the optimization process.

As previously mentioned, all decision variables are

mapped into real variables within the interval [0,1]. So

before evaluating the fitness of each individual, all vari-

ables need to be converted into their true value. The vari-

ables si, i = 1, . . . , n, are binary variables and thus are

converted using (13). The variables sλj , j = 1, . . . , h,
are integer variables and thus are converted using (12),

considering that the lower and upper bounds are 0 and 2,

respectively. The input weights wij and bias bj are con-

verted using (11), considering that the lower and upper

bounds are -1 and 1. Finally, the regularization parame-

ter is also converted using (11), considering the lower and

upper bounds are 0 and 100.

5 Results

This section presents experimental results in five

benchmark data sets available in [7]. Table 1 presents the

number of samples N and the number of input variables

of these benchmark data sets.

The data was divided as follows: the first half was used

for training, and the second half was used for testing. All

the input and output variables have been normalized to the

range [-1,1].

The proposed method is compared with (i) the original

batch ELM [15], (ii) the method proposed in [16] (IGA-

SLFN), (iii) the self-adaptive evolutionary ELM (SaE-

ELM) [4], and (iv) SLFN trained using the Levenberg-

Marquardt algorithm (LM-SLFN). All these simulations

have been made in Matlab environment running on a PC

with 3.40GHz CPU with 4 cores and 8GB RAM. In ELM,

IGA-SLFN, SaE-ELM, and LN-SLFN the number of neu-

rons in the hidden-layer was gradually increased and the

one with the best results in testing set is presented. In

GO-ELM, as it has the capability to optimize the struc-

ture, it was considered that the initial number of neurons

in the hidden-layer was 30. The performance of the meth-

ods is evaluated using mean and standard deviation of

RMSE between the estimated and desired outputs in 20

trials. In the proposed method GO-ELM, SaE-ELM, and

LM-SLFN, 30 % of the training data set was randomly

picked and was used as validation data set. In GO-ELM

and SaE-ELM, the population size was 80 individuals and

the maximum number of generations was 100. In IGA-

SLFN, it was considered that the population size was 80

individuals and the maximum number of generations was

500. In GO-ELM, the mutation probability was 10% and

the mating pool was constituted by the best 40% of the

individuals. These parameters were tuned by means of

experimentation.

Table 2 presents the average of the 20 trials of the five

methods in all data sets and the number of neurons in the

hidden-layer used to obtain these results. In the proposed

method GO-ELM, as the hidden-layer configuration is op-

timized, the mean of the number of hidden neurons is pre-

sented. For all data sets, the best RMSE is shown in bold

face in Table 2. Statistical paired t-test using RMSE is

also conducted for all data sets. Specifically, paired t-test

between GO-ELM and each one of the other methods is

conducted. In this test it is considered that the null hy-

pothesis is that the mean RMSE of the two tested methods

is the same, and that the significance level is 0.05 for all

experiments. The symbols “(+)” and “(−)” are used to in-

dicate the win or loss situation of GO-ELM over the other

tested method.

From the analysis of the results it can be verified that

GO-ELM consistently performs at least as well as, if not

better than, all benchmark methods in four of the five

benchmark data sets (Automobile MPG, Cancer, Housing

and Price data sets) and in two of them (Cancer and Hous-

ing) shows also the lowest standard deviation of RMSE.

In the Servo data set, the fitting performance of SaE-ELM

and batch ELM is statistically better that GO-ELM. The

training time used by GO-ELM is longer than in IGA-

SLFN, LM-SLFN, and ELM due to the optimization of

SLFN. However, as in GO-ELM the number of neurons is

not defined by trial-and-error, being only necessary to ini-

tialize the methodology with a big number of neurons, the

long training time can compensated. The lowest training

time was obtained by the ELM, as expected.

Fig. 2 presents the GA convergence curves of GO-

ELM in the Price data set. From the analysis of the figure,

it can be seen that the convergence of the GA is fast and

therefore the training time of the GO-ELM can be short-

ened if necessary; however, this can cause a reduction of

the GO-ELM performance.

Table 3 shows the relative frequency of the presence

of each input variable in the input variable set after each



Table 2: Results of the application of the five methods in the benchmark data sets using the RMSE as the performance measure.

Data set Method
Mean Testing Training Hidden

p-value
RMSE Time (s) Neurons

Automobile MPG GO-ELM 0.2603 3.4492 13.45 -

IGA-SLFN 0.3691 1.0937 30 0.00(+)

SaE-ELM 0.2660 35.9230 21 0.72

LM-SLFN 0.3571 0.7075 16 0.00(+)

ELM 0.2624 0.0015 16 0.88

Cancer GO-ELM 0.5635 5.0675 15.25 -

IGA-SLFN 0.6027 1.6171 15 0.00(+)

SaE-ELM 0.5903 7.7140 16 0.00(+)

LM-SLFN 0.7582 1.1675 16 0.00(+)

ELM 0.5980 0.0020 15 0.00(+)

Servo GO-ELM 0.2671 4.2768 19.45 -

IGA-SLFN 0.3464 0.8364 18 0.00(+)

SaE-ELM 0.2315 29.7725 17 0.00(−)

LM-SLFN 0.2830 0.5545 15 0.28

ELM 0.2397 0.0050 26 0.00(−)

Housing GO-ELM 0.3576 3.8974 18.70 -

IGA-SLFN 0.3962 1.0993 19 0.00(+)

SaE-ELM 0.5297 8.1410 15 0.00(+)

LM-SLFN 0.5383 1.1540 16 0.00(+)

ELM 0.4434 0.0015 11 0.00(+)

Price GO-ELM 0.1838 3.4219 10.40 -

IGA-SLFN 0.2213 1.1082 19 0.01(+)

SaE-ELM 0.2970 7.3430 15 0.00(+)

LM-SLFN 0.4858 1.0280 16 0.00(+)

ELM 0.2115 0.0005 13 0.01(+)
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Figure 2: Convergence of GA in Price data set (trial with best

final fitness and mean performances of the 20 trials).

trial by GO-ELM in the Automobile MPG, Servo, Boston

Housing, and Price data sets. From the analysis of the

table it is clear that in these data sets some input variables

were selected with much more frequency than others and

therefore it can be concluded that some irrelevant input

variables exist. Due to the large number of input variables,

the results of GO-ELM with respect to the most selected

input variables is not presented, but in average a set with

11.4 input variables was obtained.

6 Application Example: Estimation of the

Burning Zone Temperature in a Cement

Kiln Plant

Inside a rotary cement kiln, temperatures in the range

of 1200-1700◦C heat a mixture of limestone, shale, clay,

sand, and smaller quantities of other substances, result-

ing in small black nodules called clinkers. Outside the

kiln these clinkers are cooled and grounded to produce ce-

ment [20]. The control of the temperature inside the kiln

is crucial: insufficiently high maximum temperatures in

the kiln result in incompletely reacted products and poor-

quality cement, while excessive maximum temperatures

waste energy and propitiate the formation of NOx pollu-

tant compounds that have several environmental impacts

[19].

As the contact temperature measurement is impossible,

this is made using a pyrometer. However, due to the flying

dust within the kiln system that blocks the sensor after

some time in operation, it has to be removed and cleaned

by an operator, which can take a long time. It is therefore

desirable to develop a model that is able to replace the

pyrometer that measures the burning zone temperature.

In this section, a data set1 from a real cement kiln plant

was used. The data set refers to 194 monitorized vari-

1Provided by “Acontrol - Automação e Controle Industrial, Lda”,



Table 3: Relative frequency of selection of input variables by GO-ELM over the 20 trials of each of the Automobile MPG, Servo,

Boston Housing, and Price data sets. A value of 1 indicates the variable was selected 20 times.

Data set x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15
Automobile MPG 0.05 1.00 0.15 0.95 0.55 1.00 - - - - - - - - -

Servo 0.30 1.00 1.00 1.00 - - - - - - - - - - -

Boston Housing 0.40 0.55 0.20 0.05 0.90 1.00 0.65 1.00 0.30 0.95 1.00 0.45 1.00 - -

Price 0.15 0.90 1.00 0.15 0.15 0.30 0.95 0.05 0 0.05 0.75 0.80 0.05 0.30 0.35
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Figure 3: Measured and estimated burning zone temperatures

using the GO-ELM in training set.

ables, recorded with a sampling interval of T = 1 [min],

during over a month period leading to 43469 entries. The

monitored variables refer to several system variables, re-

garding temperatures, pressures, concentrations, manual

and laboratorial entries, and several other variables asso-

ciated with the cement production process, from the pre-

heater (cyclone) tower until the chimney and cement mill.

From the initial set, the variables that are online measured

and which contain pertinent process information were se-

lected, resulting in a data set with 79 variables (78 inputs

and one output). As the dataset was obtained from a real

process, the data was passed through a first order Butter-

worth low-pass filter with 0.02 [Hz] band width in order

to eliminate the noise from the signal.

The first half of the data set was used to obtain the

model using the GO-ELM method and the second half

was used for testing. 30% of the training data set was ran-

domly picked and was used as validation data set. All the

input and output variables have been normalized (scaled)

to the range of [-1,1]. It was considered that the maxi-

mum number of neurons in the hidden-layer was 50, the

population size was 80 individuals, the maximum number

of generations was 100, and the mutation probability was

10%.

Figures 3 and 4 present the burning zone temperatures

measured by the pyrometer and the unscaled tempera-

tures estimated by the SLFN trained using the GO-ELM

method in the training and testing sets, respectively. As

can be seen, the model learned the behavior of the process

from the training set and has the capability to estimate

well the temperature in the burning zone for over more

Coimbra, Portugal.
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Figure 4: Measured and estimated burning zone temperatures

using the GO-ELM in testing set.

than two weeks. The SLFN obtained by the GO-ELM

method was composed by 40 input variables and a hidden-

layer with 35 neurons (19 with sigmoidal activation func-

tion and 16 with linear activation function). From the ob-

tained results it can be concluded that an SLFN trained

using the GO-ELM method can be used to replace the py-

rometer sensor in the measurement of the burning zone

temperatures.

7 Conclusion

A novel learning algorithm for SLFNs called geneti-

cally optimized extreme learning machine is presented. In

order to solve the tendency of ELM to require more neu-

rons in the hidden-layer than conventional tuning-based

learning algorithms and the reduction of performance ex-

hibited by ELM in the presence of irrelevant input vari-

ables, the proposed method uses a GA to optimize the

structure and the parameters of the SLFN. Like in the

original ELM, the output weights are obtained using the

least squares algorithm, but with Tikhonov’s regulariza-

tion. The regularization penalizes the solution with larger

norms and allows an improvement in the SLFN general-

ization capability, improving the performance in the test

data.

To validate and demonstrate the performance and ef-

fectiveness of the proposed method, it was applied on five

benchmark data sets available in a public repository. The

performance of the proposed method was at least statisti-

cally equal, if not better, than the performance of IGA-

SLFN, SaE-ELM, LM-SLFN, and ELM in four of the

five data sets. The results also show that in the proposed



method the number of neurons in the hidden-layer does

not need to be selected by trial-and-error and the relevant

input variables can be automatically selected, reducing the

network size and improving the generalization capability.

The GO-ELM method was also successfully applied

to the estimation of the burning zone temperature using

a data set from a real cement kiln plant. The SLFN with

GO-ELM had the capability to replace with accuracy the

pyrometer sensor over more than two weeks data.

In future work different methods like differential evo-

lution or simulated annealing as well as their hybridization

with GA will be tested in the optimization of the structure

and parameters of the SLFN.
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