
A Comparison of Adaptive PID Methodologies Controlling a DC Motor With a
Varying Load

Luís Osório, Jérôme Mendes, Rui Araújo, and Tiago Matias
Institute for Systems and Robotics (ISR-UC), and

Department of Electrical and Computer Engineering (DEEC-UC),
University of Coimbra, Pólo II, PT-3030-290 Coimbra

lbica@isr.uc.pt, jermendes@isr.uc.pt, rui@isr.uc.pt, tmatias@isr.uc.pt

Abstract

This work addresses the problem of controlling un-
known and time varing plants for industrial aplications.
To deal with such problem several Self-Tuning Controllers
with a Proportional Integral and Derivative (PID) struc-
ture have been chosen. The selected controllers are based
on different methodologies, and some use implicit identi�-
cation techniques (Single Neuron and Support Vector Ma-
chine) while the others use explicit identi�cation (Dahlin,
Pole placement, Deadbeat and Ziegler-Nichols) based in
the Least Squares Method. The controllers were tested on
a real DC motor with a varying load. The results have
shown that all the tested methods were able to properly
control an unknown plant with varying dynamics.

1 Introduction

Because of its simplicity and good performance, the
Proportional Integral and Derivative (PID) controller is by
far the most popular feedback controller in the automatic
control �eld. In industrial processes the classical PID con-
troller was employed in about 90% or more of control
loops [2]. Generally, engineers tune the optimal param-
eters of a PID controller to match the operating condition
and such parameters remain �xed during the whole op-
eration [14]. The problem when using �xed parameter
controllers is that most of the processes met in industrial
practice have dynamics that are not modeled or that can
change over time. In such cases, the classical controller
with �xed parameters may became unstable and would be
required to be adequately re-tuned to retain robust con-
trol performance. To overcome this dif�culty, adaptive
algorithms were developed, which extends the area of real
situations in which high quality control can be achieved.

According to Bobalet al. [5] the development of adap-
tive control started in the 1950s with simple analogue
techniques since the computing equipment had not the re-
quired performance to execute the most sophisticated al-
gorithms that were already proven in theory. Later in the
1980s, as the microprocessors became faster and cheaper,
it evolved to discrete-time control and the theory devel-
oped in the early years was �nally be applied. At the
present there is yet much unused potential in mass appli-
cations and there are still opportunities for improvements,

for streamlining in the areas of theory and application, and
for increasing reliability and robustness [3]. The work
of Kolavennuet al. [6] shows that in many real-world
processes where a nonadaptive controller is suf�cient, an
adaptive controller can achieve an even better quality of
control. Other example is given in [12] where the use of
an adaptive controller decreased fuel consumption signif-
icantly.

Adaptive controllers follow three basic approaches:
the Model Reference Adaptive Systems (MRAS), the
Heuristic Approach (HA), and the Self-Tuning Con-
trollers (STC). The MRAS controllers use one or multiple
system models to determine the difference between the
output of the adjustable system and the output of a refer-
ence model, and adjust the parameters of the adjustable
system or generate a suitable input signal [4]. The meth-
ods based on HA do not require determining the optimum
solution of a problem, ignoring whether the solution can
be proven to be correct, provided that it produces a good
result. Such methods are based on expert human experi-
ence [1]. STC are based on the recursive estimation of
the characteristics of the system. Once the system is de-
termined, appropriate methods can be employed to design
an adequate controller [11].

The main objective of this work is to test PID algo-
rithms that can get close to the concept of “plug and play”
(algorithms that do not require information about the plant
to be controlled and must be able to auto-adapt their con-
trol parameters taking in account the variations of the
plant). Controllers based on MRAS require the knowl-
edge of an approximate model of the plant to control, and
HA controllers are experience-based techniques for learn-
ing the control laws, meaning that both these approaches
require previous information about the plant. Thus, only
controllers based in STC will be considered.

Dahlin's PID Controller [8] was selected for its low or-
der, the Pole Placement Controller [13] for having very
low computation, the Deadbeat controller of second and
third orders [7] for having no parameters to be adjusted,
the Ziegler-Nichols controller [14] to verify how an older
controller could be compared to newer ones, the Single
Neuron Controller [11] for beeing a method based based
on biological systems and the Support Vector Machine
controllers [10][9] for beeing based on machine learning.

To compare the performance of the control algorithms
a real experimental setup composed of two coupled DC

motors with varying load, was build and used.
The paper is organized as follows. Section 2 presents

the algorithms used to perform the identi�cation and the
control of the plants. Section 3 is dedicated to the analy-
sis and discussion of the results. Finally, section 4 makes
concluding remarks.

2 STC Methodologies

STC algorithms can be divided in two categories. If the
identi�cation is explicit then controllers that use the trans-
fer function to determine the gains of the controller can
be applied. This means that the identi�cation algorithm
and the controller algorithm can be chosen independently.
On the other hand, implicit controllers do not translate the
plant's dynamics into a transfer function, and that means
that the controller must be created speci�cally to the out-
put of that identi�cation algorithm. The advantage of im-
plicit algorithms is that they require less processor time.

In this paperr (k) represents the input reference and the
tracking error is given bye(k) = r (k) � y(k).

2.1 Explicit Identi�cation for STCs
When using explicit STCs, it is necessary to estimate

the plant's transfer function in real time. If this is per-
formed recursively it allows the model of the plant to
adapt whenever the real plant's dynamics change. In [5]
the LSM identi�cation algorithm with adaptive directional
forgetting (LSMadf) is presented, which uses a forget-
ting factor that is automatically adjusted depending on the
changes of the input and output signals.

The methods based on LSM perform discrete on-line
explicit identi�cation of a plant producing a transfer func-
tion of the form

G(z) =
B (z� 1)
A(z� 1)

=
b1z� 1 + b2z� 2 + ::: + bm z� m

1 + a1z� 1 + a2z� 2 + ::: + an z� n
z� d ;

(1)
wherem; n 2 N are the input and output orders of the
system, respectively, andd 2 N is the time-delay. Thus,

A(z� 1)y(k) = B (z� 1)u(k); (2)

whereu(�) : N ! R andy(�) : N ! R are the process
input and output, respectively.

The estimated output of the identi�ed plant is given by

ŷ(k) = � T (k � 1)� (k) = � â1y(k � 1) � ::: � ân y(k � n)+

+ b̂1u(k � d � 1) + ::: + b̂m u(k � d � m); (3)

where vector� (k � 1) = [â1; :::; ân ; b̂1; :::; b̂m]T contains
the estimate of the process's parameters from the last iter-
ation, and� (k) = [� y(k � 1); :::; � y(k � n); u(k � d �
1); :::; u(k � d � m)]T is the regression vector which con-
tains the input and output information.

� Least Squares Method With Adaptive Directional For-
getting [5]:

The LSMadf is an evolved form of LSM where a forget-
ting factor is used to give less weight to older data, and
this forgetting factor is automatically updated at each iter-
ation. In this method the vector of parameter estimations

is updated at each iteration,k, using equation (4)

� (k) = � (k � 1)+
C(k � 1)� (k)

1 + �
(y(k) � � (k � 1)T � (k)) ;

(4)
where� = � (k)T C(k � 1)� (k), andC(k) is the co-
variance matrix of the regression vector� (k) which is
updated at each iteration,k, using equation (5)

C(k) = C(k � 1) �
C (k � 1)� (k)� (k)T C(k � 1)

" � 1 + �
; (5)

where" = ' (k � 1) � 1� ' (k � 1)
� and ' (k � 1) is the

forgetting factor at iteration(k � 1).
The adaption of' is performed as follows:

' (k) =
1

1 + (1 + �)
n

ln (1 + �) +
h

(� (k)+1) �
1+ � + � � 1

i
�

1+ �

o ;

(6)
where � (k) = ' (k � 1)(� (k � 1) + 1) ,

� = (y (k) � � T (k � 1) � (k)) 2

� (k) , � (k) = ' (k �

1)
h
� (k � 1) + (y (k) � � (k � 1) T � (k)) 2

1+ �

i
, and � is posi-

tive constant.

In LSMadf, the forgetting factor' (k) and the variables
� (k) and � (k) are automatically adjusted, so the initial
values of this variables do not have much impact in the
identi�cation process. In any case, they should be set be-
tween zero and one.

2.2 Control Algorithms for Explicit Identi�cation
A brief overview of the �ve tested STC controllers is

presented in the following items:

� Dahlin PID Controller [8]:
This algorithm is based on a transfer function with the
form of (1) with n = 2 andm = 1 . Thus, the estima-
tion vector is� (k � 1) = [â1; â2; b̂1]T and the regression
vector is� (k) = [� y(k � 1); � y(k � 2); u(k � 1)]T . The
control law of the Dahlin's algorithm is given by

u(k) = K p +
�

e(k) � e(k � 1) +
T0

TI
e(k)+

+
TD

T0
[e(k) � 2e(k � 1) + e(k � 2)]

�
+ u(k � 1);

(7)

whereT0 is the sampling interval, andK p, TI , TD are
the proportional gain, the integral time constant, and the
differential time constant, respectively, which depend of
the model parameters as follows:

K p =
(â15 + 2 â2) Q

b1
; (8)

TI = �
T0

1
â1 +2 â2

+ 1 + TD
T0

; (9)

TD =
T0 â2Q

K P b̂1

; (10)

whereQ = 1 � e� T 0
B andB is a positive constant. In

this algorithm,B is an adjustment factor that speci�es the
dominant time constant of the transfer function according
to changes made to the process output of a closed control
loop. The smaller theB gets, the quicker the step response
of the closed control loop becomes.

� Pole Placement [13]:

This Pole Placement algorithm requires that the user ad-
justs the natural frequency (! n) and damping factor (�)
to control a second order plant withn = 2 andm = 2
which means that this algorithm's estimation vector is
� (k � 1) = [â1; â2; b̂1; b̂2]T and the regression vector
is � (k) = [� y(k � 1); � y(k � 2); u(k � 1); u(k � 2)]T .

The control law is given by

u(k) = q0e(k) + q1e(k � 1) + q2e(k � 2)+

+ (1 �)u(k � 1) + u (k � 2);
(11)

where the coef�cientsq0, q1 andq2 can be calculated by

q0 =
1

b̂1

(d1 + 1 � â1 �); (12)

q1 =
â2

b̂2

� q2

b̂1

b̂2

�
â1

â2
+ 1

!

; (13)

q2 =
s1

r 1
; (14)

where

d1 =

(
� 2e� �! n T0 cos(! n T0

p
1 � � 2); if � � 1;

� 2e� �! n T0 cosh(! n T0

p
� 2 � 1); if � > 1;

(15)

d2 = e� 2�! n T0 ; (16)

r 1 = (b̂1 + b̂2)(â1 b̂1 b̂2 � â2 b̂2
1 � b̂2

2); (17)

s1 = â2 [(b̂1 + b̂2)(â1 b̂2 � â2 b̂1)+

+ b̂2(b̂1d2 � b̂2d1 � b̂2)]; (18)

 = q2
b̂2

â2
; (19)

andT0 is the sampling interval.

� Deadbeat Controller of Second Order (DB2) [7]:

This controller is based on a second order plant withn =
2 andm = 2 which means that this algorithm's estimation
vector is� (k � 1) = [â1; â2; b̂1; b̂2]T and the regression
vector is� (k) = [� y(k � 1); � y(k � 2); u(k � 1); u(k �
2)]T . The control law is given by

u(k) = r 0r (k) � q0y(k) � q1y(k � 1) � p1u(k � 1): (20)

where the controller's coef�cientsq0, q1 andp1 are given
by

2

4
p1

q0

q1

3

5 =

2

4
1 b̂1 0
â1 b2 b̂1

â2 0 b̂2

3

5

� 1 2

4
� â1

� â2

0

3

5 ; (21)

andr 0 = 1=(b̂1 + b̂2).

� Deadbeat Controller of Third Order (DB3) [7]:

For Deadbeat control on a third order system with
n = 3 and m = 3 , the estimation vector is� (k �
1) = [â1; â2; â3; b̂1; b̂2; b̂3]T , and the regression vector is
� (k) = [� y(k� 1); � y(k� 2); � y(k� 3); u(k� 1); u(k�
2); u(k � 3)]T . The control law is given by

u(k) = r 0r (k) � q0y(k) � q1y(k � 1)�

� q2y(k � 2) � p1u(k � 1) � p2u(k � 2);
(22)

where the controller's coef�cientsp1, p2, q0, q1 andq2 are
given by

2

6
6
6
4

p1

p2

q0

q1

q2

3

7
7
7
5

=

2

6
6
6
6
4

1 0 b̂1 0 0
â1 1 b̂2 b̂1 0
â2 â1 b̂3 b̂2 b̂1

â3 â2 0 b̂3 b̂2

0 â3 0 0 b̂3

3

7
7
7
7
5

� 1 2

6
6
6
4

� â1

� â2

� â3

0
0

3

7
7
7
5

; (23)

andr 0 = 1=(b̂1 + b̂2 + b̂3).

� Ziegler-Nichols with Forward Rectangular Discretiza-
tion (ZN) [14]:
The experimental tuning of parameters for a continuous-
time PID controller designed by Ziegler and Nichols 70
years ago is still a good option. The algorithm is based on
a third order system withn = 3 andm = 3 . Thus, the
estimation vector is� (k � 1) = [â1; â2; â3; b̂1; b̂2; b̂3]T
and the regression vector is� (k) = [� y(k � 1); � y(k �
2); � y(k � 3); u(k � 1); u(k � 2); u(k � 3)]T . The control
law is given by

u(k) = q0e(k) + q1e(k � 1) + q2e(k � 2) + u(k � 1); (24)

where the controller's coef�cientsq0, q1 andq2 are given
by

q0 = K P

�
1 +

T0

TI
+

TD

T0

�
; (25)

q1 = � K P

�
1 + 2

TD

T0

�
; (26)

q2 = K P
TD

T0
; (27)

where the proportional gain isK P = 0 :6K Pu , the integral
time constant isTI = 0 :5Tu and the differential time con-
stant isTD = 0 :125Tu . This is a Ziegler-Nichols based
algorithm, thus it is required to determine the ultimate pro-
portional gainK Pu and the ultimate period of oscillations
Tu . Figure 1 explains how these parameters can be calcu-
lated.

2.3 Implicit STC
A brief overview of the three implicit STC controllers

tested is presented in the following items:

� Single Neuron (SN) [11]:
The Single Neuron algorithm here described is a self adap-
tive PID controller that has a simple structure and requires
few computation effort. The control law is given by

u(k) = u(k � 1) + K P x1(k) + K I x2(k) + K D x3(k); (28)

where

x1(k) = e(k); x2(k) = � e(k); x3(k) = � 2e(k): (29)

The proportional gainK P , the integral gainK I , and the
differential gainK D are given by

K P = K w1(k); K I = K w2(k); K D = K w3(k); (30)

where K is a positive scale parameter that can be in-
creased/decreased to adjust the responsiveness of the con-
troller. The coef�cientswi (k) are given by

wi (k) =
wi (k)

P 3
i =1 jwi (k)j

; (31)

Figure 1: Ziegler-Nichols method: algorithm to determine the
ultimate proportional gainK Pu and the ultimate period of oscil-
lationsTu .

and are obtained through normalization of the weight co-
ef�cients

wi (k) = wi (k � 1) + � i Ke(k)x i (k � 1)sgn
�

@y(k)
@i� (k)

�
; (32)

where � i is the learning rate of the weight coef�cient
wi (k), and sgn(�) is a signal function. The current ref-
erence of the single neuroni � (k) is given by

i � (k) = i � (k � 1) + K
3X

i =1

�wi (k)x i (k): (33)

and@y(k)=@i� (k) = (y(k)� y(k� 1))=(i � (k)� i � (k� 1)).

� Least Squares Support Vector Machine [10]:
In the Least Squares Support Vector Machine (LSSVM)
adaptive PID Controller, the PID parameters are adjusted
using the gradient information of LSSVM to perform on-
line implicit identi�cation. The control law of this method
is given by

u(k) = u(k � 1)+ K P xc1(k)+ K I xc2(k)+ K D xc3(k); (34)

where,

xc1(k) = � e(k); xc2(k) = e(k); xc3(k) = � 2e(k): (35)

The proportional gainK P (k+1) , the integral gainK I (k+
1), and the derivative gainK D (k + 1) are given by

K P (k + 1) = K P (k) + � K P (k); (36)

K I (k + 1) = K I (k) + � K I (k); (37)

K D (k + 1) = K D (k) + � K D (k); (38)

where

� K P (k) = �e (k)
@̂y
@u

(k)xc1(k); (39)

� K I (k) = �e (k)
@̂y
@u

(k)xc2(k); (40)

� K D (k) = �e (k)
@̂y
@u

(k)xc3(k); (41)

where0 < � < 1 is the learning rate,

@̂y
@u

(k) =

P k � 1
i = k � L � i (k)(u(k) � x i +1 (k))K (x (k); x (i))

� 2
;

(42)
whereL is the size of the sliding window,

K (x (i); x (j)) = exp
�

� k x (i) � x (j)k2

� 2

�
; (43)

is the RBF used in the kernel function of the LSSVM, and
� is the bandwidth of the RBF,

x(k) = [u(k); :::; u(k � m); y(k); :::; y(k � n)]T ; (44)

and
� (k) = U (k)(Y (k) � 1v b(k)) ; (45)

where� i (k) is thei th element of vector� (k), andx i +1 (k)
is the(i + 1) th element of vectorx(k),

b(k) =
1T

v U (k)Y (k)
1T

v U (k)1v
; (46)

where1v = [1 ; : : : ; 1]1� L , Y (k) = [y(k); : : : ; y(k � L +
1)]T ,

U (k) =
�
A (k) H
H T h

� � 1

; (47)

H = [K (x (k � L); x (k � 1)); � � � ;

K (x (k � L); x (k � L + 1))] T ; (48)

whereh = K (x(k � L); x(k � L)) + C � 1, andA (k) is
given by (54).C is a positive regularization factor, and if
its value is low, then the outlier points are deemphasized.

� Least Squares Support Vector Machine with Kernel
Tuning [9]:
The Least Squares Support Vector Machine with Kernel
Tuning (LSSVMKT) adaptive PID controller is an evolu-
tion of the LSSVM controller. The main difference is the
ability to adjust the LSSVMKT kernel bandwidth (�) as
follows:

� (k + 1) = � (k) + � � (k); (49)

where
� � (k) = � (k)êm (k)

@̂y(k)
@�(k)

; (50)

@̂y(k)
@�(k)

=
k � 1X

i = k � L

�
� i (k)K (x (k); x (i))

� (k)3
(x (k)�

� x (i)) T (x (k) � x (i))
o

;

(51)

êm (k) = y(k) � ŷ(k); (52)

ŷ(k + 1) =
k � 1X

i = k � L

� i (k)K (x (k); x (i)) + b(k): (53)

3 Results and Discussion

This section discusses the results obtained when the
adaptive algorithms were set to control a real plant. The
performances of the controllers are compared using four
different statistical indices, the Integral Absolute Error
(IAE), the Integral Time-weighted Absolute Error (ITAE),

A (k) =

2

6
4

K (x (k � 1); x (k � 1)) + C � 1 � � � K (x (k � L + 1) ; x (k � 1))
...

. . .
...

K (x (k � 1); x (k � L + 1)) � � � K (x (k � L + 1) ; x (k � L + 1)) + C � 1

3

7
5 (54)

Figure 3: Result of the test with all the algorithms controlling a real DC Motor with a varying load.

���

��������	

�����

���

�����

��	�
�����	

�	���

�����

�������������

Figure 2: Photo of the setup used to perform the experiments.

the Integral Square Error (ISE), and the Root Mean Square
(RMS), which are de�ned as follows:

IAE =
NX

k =1

je(k)j; IT AE =
NX

k =1

kje(k)j;

ISE =
NX

k =1

e(k)2 ; RMS =

vu
u
t

� P N
k =1 e(k)2

�

N
; (54)

whereN is the number of samples (time instants).

3.1 Plant
A system composed of two motors, a shaft coupler, a

motor driver, a relay, two lamps, a programmable logic
controller (PLC), a computer (running Scilab) and a power
source was used to test the control algorithms. The com-
puter and the PLC were connected using the OPC (OLE
(Object Linking and Embedding) for Process Control)
communication protocol. Figure 2 outlines the connec-
tions between all the components of the setup. One of the
motors receives command signals, and the other works as

Table 1: Statistical comparison between all controllers studied
in this work.

IAE ITAE ISE RMS Points
Dahlin 872 (2) 117667 (3) 27860 (2) 166.9 (2) 16 (2)
Pole Placement 973 (5) 124279 (5) 28703 (3) 169.4 (3) 22 (4)
DB2 867 (1) 117412 (2) 27717 (1) 166.5 (1) 13 (1)
DB3 994 (7) 153091 (8) 28906 (5) 170.0 (5) 29 (7)
ZN 1113 (8) 121935 (4) 30349 (7) 174.2 (7) 31 (8)
SN 974 (6) 112145 (1) 33386 (8) 182.7 (8) 26 (6)
LSSVM 961 (4) 142252 (7) 29949 (6) 173.1 (6) 25 (5)
LSSVMKT 917 (3) 138017 (6) 28891 (4) 170.0 (4) 18 (3)

a generator. The control signal can be varied in the in-
terval from 0 to 100 (percentage), which corresponds to a
variation from 0 to 12 Volts. The lamps are connected to
the terminals of the generator and since they consume en-
ergy, they increase its load. The relay is used to turn on/off
the lamps/load. The tests consisted of running all the con-
trol algorithms during 100 seconds with a sampling inter-
val of 250 milliseconds. The motor always started in rest
and was set to achieve a reference speed of 100 [pp/(0.25
seg)] (pulses per 250 milliseconds). After 20 seconds the
reference speed changed to 120 [pp/(0.25 seg)], and at 60
seconds it changed again to 90 [pp/(0.25 seg)]. The relay
was turned on at 40 seconds (increasing the load of the
generator), and was turned off at 80 seconds.

3.2 Control Algorithms Comparison
Figure 3 shows the output speed of the real DC mo-

tor under the control of the studied control algorithms. It
shows that all the controllers were able to properly fol-
low reference changes and that they were able to com-
pensate variations on the load of the motor. Since all the
controllers performed similarly the IAE, ITAE, ISE, RMS
numerical indices, eqs. (54), were used to compare the
controllers performances.

Table 1 presents the results of the application of these
indices for all control algorithms. Each controller received
a score for each numerical index based on its performance
(the best received 1 and the worst received 8) and the
best controller was the one which summed least points.
With just 5 points, the Deadbeat controller of second order
achieved the best score. Figures 4(a) and 4(b) shown the

(a) Speed and control signal. (b) Identi�ed coef�cients.

Figure 4: Result of the real test using the Deadbeat controller of
second order using LSM with adaptive directional forgetting.

results of the Deadbeat controller of second order. Figure
4(a) shows how the output of the plant and the control sig-
nal change when the reference changes, and when a vari-
ation on the motor load is introduced. Figure 4(b) shows
the time evolution of the plant's estimated parameters.

Besides controller performance, simplicity of tunning
is another important feature that was pursued. The explicit
identi�cation algorithms LSMadf have two variables that
need to be tuned, the initial gain of the covariance matrix,
and the forgetting factor� . Neither of them is much sen-
sitive and a satisfactory tuning of these variables is easy
to obtain. The Deadbeat algorithms (of second and third
orders) and Ziegler-Nichols do not have any variable to be
adjusted (obviously the variables from the explicit iden-
ti�cations still need to be adjusted), which means they
are easier to install. The Dahlin and Single Neuron algo-
rithms, both have a scale parameter to increase/decrease
the responsiveness of the controller which is also easy to
adjust. The Pole Placement algorithm has two variables
that need to be adjusted, the natural frequency! n , and
the damping factor� , which makes it a bit more chal-
lenging for the installer. The algorithms LSSVM and
LSSVMKT revealed to be the most dif�cult to adjust. Not
only both algorithms have six variables that need to be
adjusted (which means that the installer needs to have a
deeper understanding of the controller) but the calibration
of these variables also revealed to be more sensitive and
dif�cult.

4 Conclusions

In this work, several adaptive PID controllers, STCs
with a PID structure, that can be used to control un-
known plants in industry were tested and compared. The
controllers were tested on a real DC motor with a vary-
ing load, and their performance was mathematically an-
alyzed. The tested algorithms were STCs with either
implicit or explicit identi�cation (the later requiring in-
dependent identi�cation algorithms). The employed ex-
plicit identi�cation method was the LSMadf, and had a
good performance. Among the control algorithms, the one
which performed better was the Deadbeat of second order,
followed by the Dahlin's controller, and the third best was
the LSSVRKT. Besides having the best performance, the
Deadbeat of second order and Dahlin, were also very easy

to tune to a satisfactory performance. The LSSVMKT was
much more dif�cult to tune.

Acknowledgment

This work was supported by Project SCIAD “Self-
Learning Industrial Control Systems Through Process
Data” (reference: SCIAD/2011/21531) co-�nanced by
QREN, in the framework of the “Mais Centro - Regional
Operational Program of the Centro”, and by the European
Union through the European Regional Development Fund
(ERDF).

References

[1] A. Ajiboye and R. Weir. A heuristic fuzzy logic approach
to emg pattern recognition for multifunctional prosthesis
control. IEEE Transactions on Neural Systems and Reha-
bilitation Engineering, 13(3):280–291, September 2005.

[2] K. J. Åström and T. Hägglund.PID Controllers: Theory,
Design, and Tuning. Instrument Society of America, Re-
search Triangle Park, NC, USA, 1995.

[3] K. J. Astrom and B. Wittenmark. Adaptive Control.
Addison-Wesley, Boston, MA, USA, 2nd edition, 1994.

[4] P. Bashivan and A. Fatehi. Improved switching for multi-
ple model adaptive controller in noisy environment.Jour-
nal of Process Control, 22(2):390–396, 2012.

[5] V. Bobál, J. Böhm, J. Fessl, and J. Machá�cek. Self-tuning
PID Controllers. Advanced Textbooks in Control and Sig-
nal Processing. Springer London, 2005.

[6] P. K. Kolavennu, S. Palanki, D. A. Cartes, and J. C. Telotte.
Adaptive controller for tracking power pro�le in a fuel
cell powered automobile. Journal of Process Control,
18(6):558–567, 2008.

[7] V. Ku �cera. A dead-beat servo problem.International Jour-
nal of Control, 32(1):107–113, 1980.

[8] V. Ku �cera. Analysis and Design of Discrete Linear Con-
trol Systems. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1991.

[9] K. Ucak and G. Oke. Adaptive pid controller based on on-
line lssvr with kernel tuning. InProc. International Sym-
posium on Innovations in Intelligent Systems and Applica-
tions (INISTA 2011), pages 241–247, June 2011.

[10] S. Wanfeng, Z. Shengdun, and S. Yajing. Adaptive pid
controller based on online lssvm identi�cation. InProc.
IEEE/ASME International Conference on Advanced In-
telligent Mechatronics (AIM 2008), pages 694–698, July
2008.

[11] M. Wang, G. Cheng, and X. Kong. A single neuron self-
adaptive pid controller of brushless dc motor. InProc.
Third International Conference on Measuring Technol-
ogy and Mechatronics Automation (ICMTMA 2011), vol-
ume 1, pages 262–266, January 2011.

[12] P. E. E. Wellstead and M. B. Zarrop.Self-Tuning Systems:
Control and Signal Processing. John Wiley & Sons, Inc.,
New York, NY, USA, 1st edition, 1991.

[13] B. Wittenmark.Self-tuning PID-controllers Based on Pole
Placement. Department of Automatic Control, Lund Insti-
tute of Technology, 1979.

[14] J. G. Ziegler and N. B. Nichols. Optimum settings for au-
tomatic controllers.Transactions of ASME, 64:759–768,
1942.

