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Abstract—This paper proposes a road detection approach
based solely on dense 3D-LIDAR data. The approach is built
up of four stages: (1) 3D-LIDAR points are projected to a 2D
reference plane; then, (2) dense height maps are computed using
an upsampling method; (3) applying a sliding-window technique
in the upsampled maps, probability distributions of neighboring
regions are compared according to a similarity measure; finally,
(4) morphological operations are used to enhance performance
against disturbances. Our detection approach does not depend on
road marks, thus it is suitable for applications on rural areas and
inner-city with unmarked roads. Experiments have been carried
out in a wide variety of scenarios using the recent KITTI-ROAD
benchmark [1], obtaining promising results when compared to
other state-of-art approaches.

I. I NTRODUCTION

Detection of road regions ahead of a vehicle in real-world
conditions is an important research problem for vehicular and
mobile robotics applications. Considering safety requirements,
high reliability demands, and the large diversity in realistic
conditions, road detection becomes a very challenging task.
Road terrains can vary significantly, for instance the pavement
can be made of different materials or have different patterns.
Besides, there can be changes due to weather conditions,
light conditions or shadows. It is also common that road
boundaries are not detectable because they either don’t exist or
are occluded by objects or cars on the road. All these factors
make road detection a very difficult recognition problem.

Several road detection systems have been developed over
the last decade. A survey on recent progress in road and lane
detection is given in [2]. According to [2], and considering
usual sensing technologies, most road detection systems are
based on camera (vision), LIDAR, or a fusion of both sensors.
Vision based methods are the most popular, mainly due to
the presence of visual cues and landmarks, such as [3],
[4]; in particular, Kuhnl et al. [5] use spatial ray features
(SPRAY), extracted from three confidence maps, as the input
to a boosting classifier. A large number of approaches explore
the longitudinal patterns of roads: line markings, wheel tracks,
and the road edge [6], [7]. However, most of these approaches
do not deal with occlusions, such as a vehicle in front of the
camera, neither provide a solution for unmarked roads.

High resolution 3D-LIDAR such as the Velodyne HDL-
64E enables accurate dense depth measures in real-time,
with ranges upwards of 50 meters, being effective under
most operating conditions (namely surface textures, shadows
and different light conditions), thus making this a promising
sensor for road detection. Most LIDAR-based road detection

Fig. 1. Illustrative representation of a dense-height map, depicted in the top,
obtained from upsampling LIDAR points. Bellow, it is a sparseset of points
projected to the image plane. The grid represents a neighborhood mask (kernel)
used in the proposed upsampling method. Here, colors represent different
heights: red and orange are regions with low height, flowed byyellow, and so
on and so forth.

approaches rely on a more or less complex model of the
road, as in [8]. Other approaches require a precise localization
system obtained using a high-performance Global Positioning
System (GPS) and/or an Inertial Measurement Unit (IMU) [9]
and [10]. On the other hand, solutions using a combination of
LIDAR and vision are reported in [8] and [11]. Finally, in [12]
the authors study the possibility of replacing a laserscanner
by a stereo camera; they conclude that this approach has
unsatisfactory performance when the surface has very low
texture – as is the case of most road surfaces. Besides, stereo
generally has lower precision in long range than LIDAR.

Using 3D-LIDAR data only, and assuming the LIDAR sen-
sor is calibrated with respect to a 2D camera-reference plane,
an upsampling method was developed in order to create a dense
height-map (elevation-map) out of the sparse and noisy 3D
point-cloud (see Fig.1). Based solely on such high-resolution
height map, a new road detection approach is presented in
this paper. Experimental tests have been carried out in a wide
variety of scenarios using the KITTI-ROAD benchmark [1],
where the performance of our method is compared with state-
of-the-art methods for road detection. In Fig. 1, an example
of a RGB image (bottom) from KITTI database, and a high-
resolution elevation map (top) generated using our upsampling
method are shown; the sparse point-cloud, projected in the
image plane, were colored as function of the height.



Fig. 2. Overview of the proposed road detection approach. Four main stages are involved: (1) projection of 3D-LIDAR points into a 2D reference plane; (2)
upsampling the sparse points to a dense (high resolution) height map; (3) sliding-window technique that uses a similarity measure over neighboring regions in
the height map; and (4) threshold and final morphological operations.

The structure of the paper is as follows: section II details
our approach, including: a briefly explanation of the projection
of 3D points to a 2D plane; followed by a description of our
upsampling method; the sliding-window technique, presented
in section II-C, uses height probability density functionsof
neighboring regions which are compared according to a sim-
ilarity measure; finally, in section II-D the post-processing
stage is described. Experimental results on the KITTI-ROAD
benchmark and discussions can be found in section III, before
the paper concludes in section IV.

II. ROAD AREA ESTIMATION

The overall flow of the road detection approach is depicted
in Fig. 2, which is composed by four processing stages: (1)
projection of 3D-LIDAR points into a 2D reference plane;
(2) upsampling the sparse points to a dense (high resolution)
height map; (3) sliding-window technique that uses a similarity
measure over neighboring regions in the height map; and (4)
final morphological operations.

A. Point projection

Taking advantage of the calibrated data provided in the
KITTI benchmark, our approach uses the spatial-relationship
between 3D points projected to a camera plane. The Velodyne
HDL-64E S2, used in the benchmark, has 0.09 degree angular
resolution, 2 cm distance accuracy, collecting around 1.3
million points/second. Scans are stored as floating points with
[x; y; z] coordinates (x = forward,y = left, z = up) [1]. The
rigid body transformation from the Velodyne coordinates to
camera coordinates is expressed by:

T cam
velo =

(

Rvelo
cam tvelocam

0 1

)

(1)

whereRvelo
cam and tvelocam are the rotation and translation matri-

ces, respectively. Detailed information regarding LIDAR and
camera calibration, data alignment, the calibration matrices in
(1), and intrinsic and extrinsic parameters are given in [13]. A
3D pointXv = (x, y, z, 1)T in the LIDAR coordinates system
gets projected to a point in the camera planeXc = (x, y, z, 1)T

according to:
Xc = T cam

velo Xv. (2)

Every pointXc is then rectified to match the image plane using
a rectification matrixTrec

(

u
v
1

)

= TrecXc. (3)

Considering the projected LIDAR points in pixel coordi-
nates(u, v), as given by (3), some operations are performed
in advance to the upsampling stage (described in the next
section). Namely, the points outside the camera plane are
discarded and the remaining points are sorted according to its
position in pixel units, in order to speed up the search process.
Finally, the points are rearranged to a new space that combines
the coordinates in pixel units(u, v), the ranger, and the height
z, such that a pointP is represented byP = (u, v, r, z).

Fig. 3. Example of an image showing sparse and noisy LIDAR points from
a Velodyne HDL-64E. The zoom highlights the sparsity of the LIDAR points
projected into a high-resolution (1242× 375 pixels) image plane.

B. Upsampling Sparse Range Data

Since LIDAR point clouds are sparse and noisy (as shown
in Fig. 3), an upsampling method is applied in order to
obtain a smooth (filtered) and dense map. For upsampling
LIDAR range inputs we first used the method proposed by
Dolson et al. [14] and, after some experimental evaluations,
we decided to develop a method with the goal of obtaining
high-resolution elevation maps conditioned on range data only.
The Dolson’s method, whose implementation code is available
at [15], rely on the assumption that areas of similar texturein
the camera image will have alike depth/range value. Moreover,
most methods, such [14], are designed to solve the upsampling
problem of sparse 3D points jointly using information from



intensity images. On the other hand, the method explained in
this paper, which resembles in some way the method proposed
in [14], uses only data from the 3D LIDAR. Furthermore,
assuming the height (z-axis) values of the LIDAR points in
the road are roughly constant in contrast to the depth values,
we decided to create dense maps from the heightz information
instead of ranger.

Let P = (u, v, r, z) denotes a calibrated set of 3D sparse
LIDAR points projected to a camera plane as explained in sec.
II-A. The value of the target dense mapH, in a given position
(u, v), is estimated by the weighted combination of the height
valuesz of the sparse pointsP in a neighborhood, as follows:

H(u,v) =
1

α

∑

k∈N (m)

wk · zk (4)

where the neighborhoodN (m) is defined by the limited region
within a maskm: with size11×11 (in our case), and centered
in position(u, v). In (4),α is a normalizing factor that ensures
weights sum to one,i.e., α =

∑

wk.

Similarly to the bilateral filter, which was first described in
[16] and then used in [17] to upsample low resolution images,
each weightwk is determined by two factors:
- a pixel distance functionf() that considers the difference in
position between the mask central pointQ(u, v) and the points
P(i, j) within the neighborhoodN (m);
- and a confidence weighting termg(r). In our case,g(r) is
calculated as a function of the measured range distancer, and
normalized by the maximum range.

Thus, a 2D-spatial neighborhood filter is formulated as:

H(u,v) =
1

α

∑

(i,j)∈N (M)

f(| P(i,j) −Q(u,v)|) · g(r) · z(i,j) (5)

where the distance functionf() is assumed to be the Euclidean
distance between the coordinates in pixel units:

f(|P(i,j) −Q(u,v)|) =
√

(i− u)2 + (j − v)2 (6)

Knowing that LIDAR points are not error-free, namely the
Velodyne HDL-64E S2 has 2.5 cm RMSE range accuracy
and average 0.002 rad beam divergence which causes inherent
uncertainty in the sensor returns [18], we have considered
these uncertainties as function of the distance thus, the further
the object is from the LIDAR, the greater is the error in the
measured pointsP. Having this effect in mind, the value of
the range factorg(r), in (5), decreases proportional with the
distance, penalizing points as function of their distance from
the LIDAR:

g(r) =
1

r/mr

(7)

where mr represents the maximum range of LIDAR. Note
that the number of elements inside the mask is not constant
and depends on the 3D-clouds sparsity, and the pixel-positions
(u, v) of P are non-integer values, as shown in Fig. 3.

Fig. 4. (a) An example of an image from the KITTI-dataset. (b) The output
image, where the objects are detected using the Bhattacharyya distance over
the dense map. Blue represents values near 0 (i.e., high similarity between
neighbor regions), and orange values near 1 (i.e., low similarity between
neighbor regions).

C. Histogram Similarity Measure

It is assumed that the road is a smooth surface where two
neighbor regions have small variation in height. Relying onthis
assumption, road segments and road-edge areas are identified
using a measure of similarity between the height probability
distribution of two neighbor regions. The values of height of
those regions (or patches) are extracted from the dense map,
obtained from (5).

A similarity measure mathematically determines the short-
est distance between two observations in a high dimensional
space. Various similarity/dissimilarity measures have been
formulated throughout the years, each with its own strengths
and weaknesses [19]. Among them, the Bhattacharyya distance
is widely used and has been found to be more accurate for
general purposes than a number of other measures [20]. Let
v represent a given feature,p and q two discrete probability
distributions over the same domain X. Then, the discrete form
of Bhattacharyya coefficient is:

B[pv(x), qv(x)] =
∑

x∈X

√

pv(x) · qv(x). (8)

Its metric form, as proposed in [21], is given by

D =
√

1−B[pv(x), qv(x)] (9)

where, in case of a complete mismatch (9) yields a value of
1, while maximum match yields 0.

The task of computing the height similarity between two
neighbor regions can be described as follows: first, a sliding
window of fixed size [n×m ] scans across the complete dense
map (left-to-right-top-to-bottom), according to a step size ∆.
For each patch extracted in the sliding window, a normalized
histogram is computed over the flattened array of height values.
Then, an empirical estimate of the probability density functions
(pdf ) is produced by dividing each bin of the histogram by the
number of elements in each bin. Finally, the similarity between
the actualpdf and thepdf of the previous patch is computed
using (9).



(a) (b)

(c) (d)

Fig. 5. In (a) we have an example of a road without obstacles, while in (b) and (c) there are vehicles on the road. Finally, in (d) there is a difficult case where
the road in the left part is considered ground-truth, which we had a complete missing (red color).

The output is a map, as shown in Fig. 4, with values
between 0 and 1, where values near 0 represent a region with
smooth variations of height and values near 1 represent regions
with much variation in height–likely an obstacle or a curb.

D. Post-processing

In this latest processing stage, a threshold is used to
distinguish between objects, road-edges and estimate the road
region delimited by them. This threshold is chosen in order to
maximize the average precision of the global category in the
training set. Furthermore, morphological operations [22]are
performed in order to improve the quality of the segmentation.
More specifically, morphological erosion with a structuring
element of size5×5 is used to remove small objects, followed
by a morphological dilatation with a structuring element ofsize
7× 7 connects regions that are close to each other.

III. E XPERIMENTS

The performance of the road-detection approach was as-
sessed using the KITTI-ROAD Benchmark Suite [1]1 which
consists of 579 frames (rectified images with average spatial
resolution of 1242× 375 px), corresponding to 289 training
frames and 290 testing frames. The dataset comprises three
different categories of road scenes, as well as a global category
combining all scenes. Table I summarizes the categories and
the number of frames in each dataset.

TABLE I. KITTI- ROAD DATASET SUMMARY.

Scene N.Train N.Test Short description
UM ROAD 95 96 Urban Marked two-way road
UMM ROAD 96 99 Urban Marked Multi-lane road
UU ROAD 98 100 Urban Unmarked road
URBAN ROAD 289 290 all urban scenes combined

Images and 3D-LIDAR scans of the KITTI-ROAD dataset
were recorded from five different days on inner city (urban)
roads. The training set comprises hand-labeled ground-truth
annotations, while the testing set is evaluated using the online

1http://www.cvlibs.net/datasets/kitti/evalroad.php (Road)
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Fig. 6. Precision-Recall curves from the KITTI evaluation server, per urban
scenes, obtained in the testing set.

KITTI evaluation server. Following the benchmark evaluation
methodology, performance assessment is carried out in terms
of the following measures:MaxF (Maximum value of F-
measure),AP (Average Precision),PRE (Precision), REC
(Recall),FPR (False positives rate) andFNR (False negatives
rate). Further information of the dataset and details regarding
the performance methodology are presented in [1], [13].

Results on the testing set for each urban scene are shown in
Fig. 6, in terms of Precision-Recall, and summarized in Table
II with percentage values of the performance measures. The
reported results, obtained directly from the evaluation server,
are consistent with other state-of-art methods (even though we
use LIDAR data only) whose results are publicly available on
the KITTI-ROAD website.

Figure 5 illustrates the performance of the method qualita-
tively on a set of test images. Detection errors occurred mainly



TABLE II. PERFORMANCE ON THE TESTING SET(FROM EVALUATION

SERVER).

Scene MaxF AP PRE REC FPR FNR
UM 83.40 % 86.61 % 83.45 % 83.35 % 7.63 % 16.65 %

UMM 84.49 % 89.57 % 88.24 % 81.04 % 12.63 % 18.96 %
UU 79.34 % 80.04 % 82.25 % 76.63 % 5.50 % 23.37 %

URBAN 82.72 % 87.58 % 85.44 % 80.17 % 7.87 % 19.83 %

due to the following factors:

• The morphological operations used in post-processing
stage may detach some areas to the road, while adding
others that do not belong to the road;

• As already mentioned, the LIDAR measurements un-
certainties grow as function of the distance. Therefore,
road regions that are far from the vehicle can be hard
to detect;

• Moreover, the benchmark performance criteria consid-
ered that, in some cases, road areas separated from the
main road by a barrier (rail road, garden, etc.) should
also be detected (see Fig.5(d)). However, our approach
intends to detect only the road ahead of the vehicle,
which increases the number of false negatives;

• Finally, since our detection approach does not depend
on road marks, it may fail to detect some roads
delimited only by marks.

IV. CONCLUSION

In this paper, we propose a road detection approach based
on 3D-LIDAR data. We also propose an upsampling method,
to create dense maps, that takes into account the uncertainty
of the LIDAR readings as function of measured distances.
Furthermore, our road detection solution relies on a similarity
measure between neighbor regions on height dense map. Since
the detection is based on region features, our detection method
is robust against some variations over the road, such as
unknown number of lanes or slopes.

The reported experiments in the KITTI-ROAD dataset
show that LIDAR data may be very useful on road detection,
even on unmarked roads. As future work, we plan to explore
the LIDAR reflectivity information in order to detect lane
markings. We also intend to use processing-time optimization
techniques (such as GPU implementation).
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