Road Detection Using High Resolution LIDAR
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Abstract—This paper proposes a road detection approach
based solely on dense 3D-LIDAR data. The approach is built
up of four stages: (1) 3D-LIDAR points are projected to a 2D
reference plane; then, (2) dense height maps are computed using
an upsampling method; (3) applying a sliding-window technique
in the upsampled maps, probability distributions of neighboring
regions are compared according to a similarity measure; finally,
(4) morphological operations are used to enhance performance -
against disturbances. Our detection approach does not depenao
road marks, thus it is suitable for applications on rural areas and
inner-city with unmarked roads. Experiments have been carried
out in a wide variety of scenarios using the recent KITTI-ROAD
benchmark [1], obtaining promising results when compared to
other state-of-art approaches.

I. INTRODUCTION

Dgpectiqn of r_oad regions ahead of a vehicle in r.ea-l'WO”dFig. 1. lllustrative representation of a dense-height mepjafed in the top,
conditions is an important research problem for vehicutat a obtained from upsampling LIDAR points. Bellow, it is a spass of points
mobile robotics applications. Considering safety requigats,  projected to the image plane. The grid represents a neighbdrinask (kernel)
high reliability demands, and the large diversity in reais Used in the proposed upsampling method. Here, colors repreksftarent

. ! . heights: red and orange are regions with low height, flowegdipw, and so
conditions, road detection becomes a very challenging. task, 314 so forth.
Road terrains can vary significantly, for instance the paam@m

can be made of different materials or have different pastern

Besides, there can be changes due to weather conditiongnsraches rely on a more or less complex model of the
light cor_1d|t|ons or shadows. It is also common that ro,adroad, as in [8]. Other approaches require a precise lotaliza
boundaries are not detectable because they either dosttaxi system obtained using a high-performance Global Positipni
are occluded by objects or cars on the road. All these factorgysiem (GPS) and/or an Inertial Measurement Unit (IMU) [9]
make road detection a very difficult recognition problem. 554 [10]. On the other hand, solutions using a combination of

Several road detection systems have been developed ovefPAR and vision are reported in [8] and [11]. Finally, in [[L2
the last decade. A survey on recent progress in road and la@e authors study the possibility of replacing a laserseann
detection is given in [2]. According to [2], and considering Py & stereo camera; they conclude that this approach has
usual sensing technologies, most road detection systeens d,msausfactory performance when the surface has. very low
based on camera (vision), LIDAR, or a fusion of both sensorstexture — as is the case of most road surfaces. Besideso stere
Vision based methods are the most popular, mainly due tgenerally has lower precision in long range than LIDAR.
the presence of visual cues and landmarks, such as [3],
[4]; in particular, Kuhnlet al. [5] use spatial ray features
(SPRAY), extracted from three confidence maps, as the inp
to a boosting classifier. A large number of approaches egplor
the longitudinal patterns of roads: line markings, wheaths,
and the road edge [6], [7]. However, most of these approach
do not deal with occlusions, such as a vehicle in front of th
camera, neither provide a solution for unmarked roads.

Using 3D-LIDAR data only, and assuming the LIDAR sen-
sior is calibrated with respect to a 2D camera-referenceeplan
an upsampling method was developed in order to create a dense
height-map (elevation-map) out of the sparse and noisy 3D

int-cloud (see Fig.1). Based solely on such high-resmiut

eight map, a new road detection approach is presented in

this paper. Experimental tests have been carried out in a wid
variety of scenarios using the KITTI-ROAD benchmark [1],

High resolution 3D-LIDAR such as the Velodyne HDL- where the performance of our method is compared with state-
64E enables accurate dense depth measures in real-tined;the-art methods for road detection. In Fig. 1, an example
with ranges upwards of 50 meters, being effective undeof a RGB image (bottom) from KITTI database, and a high-
most operating conditions (namely surface textures, skedo resolution elevation map (top) generated using our upsampl
and different light conditions), thus making this a promgsi method are shown; the sparse point-cloud, projected in the
sensor for road detection. Most LIDAR-based road detectioiimage plane, were colored as function of the height.
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Fig. 2. Overview of the proposed road detection approachr Rmin stages are involved: (1) projection of 3D-LIDAR psiimito a 2D reference plane; (2)
upsampling the sparse points to a dense (high resolutioghteap; (3) sliding-window technique that uses a similarityasuge over neighboring regions in
the height map; and (4) threshold and final morphological djpers

The structure of the paper is as follows: section Il detailsEvery pointX. is then rectified to match the image plane using
our approach, including: a briefly explanation of the prog@t  a rectification matrixt...
of 3D points to a 2D plane; followed by a description of our

upsampling method; the sliding-window technique, present U
in section II-C, uses height probability density functioofs v =7 x 3)
neighboring regions which are compared according to a sim- 1 reesher

ilarity measure; finally, in section 1I-D the post-processi
stage is described. Experimental results on the KITTI-ROAD
benchmark and discussions can be found in section 1ll, befor
the paper concludes in section IV.

Considering the projected LIDAR points in pixel coordi-
nates(u,v), as given by (3), some operations are performed
in advance to the upsampling stage (described in the next
section). Namely, the points outside the camera plane are
Il. ROAD AREA ESTIMATION discarded and the remaining points are sorted accordin to i
osition in pixel units, in order to speed up the search mece
inally, the points are rearranged to a new space that casbin

The overall flow of the road detection approach is depictef?
he coordinates in pixel unifa:, v), the range-, and the height

in Fig. 2, which is composed by four processing stages: (1
projection of 3D-LIDAR points into a 2D reference plane; P, 7

(2) upsampling the sparse points to a dense (high reso}ution’z’ such that a poinP is represented by = (u, v, 7, z).
height map; (3) sliding-window technique that uses a sirityla
measure over neighboring regions in the height map; and (4
final morphological operations.

A. Point projection

Taking advantage of the calibrated data provided in the
KITTI benchmark, our approach uses the spatial-relatignsh
between 3D points projected to a camera plane. The Velody
HDL-64E S2, used in the benchmark, has 0.09 degree angular _ . _ _
resoluton, 2 om distance accuracy, collecting around LEE, 5, Bxaneleohan mage sioung sheee 2 1oy LOAR e
million pomts/_second. Scans are stored as floating poiitts w projecte)g into a high_'resolution (12%2 875 pixelsF)’ image plane. P
[x;y; 2] coordinates @ = forward,y = left, z = up) [1]. The
rigid body transformation from the Velodyne coordinates to
camera coordinates is expressed by: B. Upsampling Sparse Range Data

Since LIDAR point clouds are sparse and noisy (as shown
cam _ [ RSo guelo (1) in Fig. 3), an upsampling method is applied in order to
velo ™ 0 1 obtain a smooth (filtered) and dense map. For upsampling

LIDAR range inputs we first used the method proposed by
where R¥¢lo and il are the rotation and translation matri- Dolson et al. [14] and, after some experimental evaluations,
ces, respectively. Detailed information regarding LIDARda we decided to develop a method with the goal of obtaining
camera calibration, data alignment, the calibration roasiin high-resolution elevation maps conditioned on range dala o
(1), and intrinsic and extrinsic parameters are given if}.[A3  The Dolson’s method, whose implementation code is availabl
3D point X, = (,y,2,1)" in the LIDAR coordinates system at [15], rely on the assumption that areas of similar textore
gets projected to a point in the camera plafe= (z,y,2,1)"  the camera image will have alike depth/range value. Moreove
according to: most methods, such [14], are designed to solve the upsagnplin

X =T X, (2)  problem of sparse 3D points jointly using information from

velo “*v



intensity images. On the other hand, the method explained i
this paper, which resembles in some way the method propose
in [14], uses only data from the 3D LIDAR. Furthermore,
assuming the heightz{axis) values of the LIDAR points in
the road are roughly constant in contrast to the depth value:
we decided to create dense maps from the heightormation
instead of range-.

Let P = (u,v,r,2) denotes a calibrated set of 3D sparse
LIDAR points projected to a camera plane as explained in sec
[I-A. The value of the target dense map, in a given position
(u,v), is estimated by the weighted combination of the height
valuesz of the sparse pointP in a neighborhood, as follows:

1
H(u,v) = & Z Wk * 2k 4)

KEN(m) Fig. 4. (a) An example of an image from the KITTI-dataset. (bg Tutput

image, where the objects are detected using the Bhattachdigtance over

: ; : P ; the dense map. Blue represents values nedreQ kigh similarity between
W_f:ﬁ_re the neligr?bortuow(ﬁ) Isliie.fmed by the Ilmlged retglond neighbor regions), and orange values neari.&, (low similarity between
within a maskm: with size11 x 11 (in our case), and centered peighpor regions).
in position(u, v). In (4), « is a normalizing factor that ensures

weights sum to ond,e, a = > wy.

Similarly to the bilateral filter, which was first described i C- Histogram Similarity Measure

[16] and then used in [17] to upsample low resolution images, |t js assumed that the road is a smooth surface where two
each weightw; is determined by two factors: _neighbor regions have small variation in height. Relyingtis

- a pixel distance functiorf() that considers the difference in assumption, road segments and road-edge areas are igentifie
position between the mask central po@tu, v) and the points  ysing a measure of similarity between the height probgbilit
P(i,j) within the neighborhoodV'(m); distribution of two neighbor regions. The values of height o

- and a confidence weighting tergir). In our caseg(r) is  those regions (or patches) are extracted from the dense map,
calculated as a function of the measured range distanaed  optained from (5).

normalized by the maximum range.

A similarity measure mathematically determines the short-
est distance between two observations in a high dimensional
space. Various similarity/dissimilarity measures haveerbe
1 formulated throughout the years, each with its own strength

H, — P — calr) -z oo (5 and weaknesses [19]. Among them, the Bhattacharyya destanc

(we) = o @ Z H gy = Qeunl)-9(r) - 2.9 ©) is widely used and has been found to be more accurate for

1,5)EN (M)
general purposes than a number of other measures [20]. Let
where the distance functiof) is assumed to be the Euclidean v represent a given featurg,and ¢ two discrete probability

Thus, a 2D-spatial neighborhood filter is formulated as:

distance between the coordinates in pixel units: distributions over the same domain X. Then, the discrete for
of Bhattacharyya coefficient is:
F(Pig) = Quum) = V(i —u)? + (7 —v)? (6) Blpu(z),q0(2)] = 3 V/po(@) - qu(@). (8)
rzeX

Knowing that LIDAR points are not error-free, namely the , . L
Velodyne HDL-64E S2 has 2.5 cm RMSE range accuracy!S Metric form, as proposed in [21], is given by
and average 0.002 rad beam divergence which causes inherent
uncertainty in the sensor returns [18], we have considered D = /1 - Blpy(x), g(2)] ©)
these uncertainties as function of the distance thus, ttieeiu
the object is from the LIDAR, the greater is the error in the
measured point®. Having this effect in mind, the value of
the range factoy(r), in (5), decreases proportional with the  The task of computing the height similarity between two
distance, penalizing points as function of their distaneenf  neighbor regions can be described as follows: first, a gjidin
the LIDAR: window of fixed size [n x m ] scans across the complete dense

map (left-to-right-top-to-bottom), according to a stepesi\.
1 For each patch extracted in the sliding window, a normalized
(7) histogram is computed over the flattened array of heighteglu
Then, an empirical estimate of the probability density fiorts
where m, represents the maximum range of LIDAR. Note (pdf) is produced by dividing each bin of the histogram by the
that the number of elements inside the mask is not constamumber of elements in each bin. Finally, the similarity betw
and depends on the 3D-clouds sparsity, and the pixel-positi the actualpdf and thepdf of the previous patch is computed
(u,v) of P are non-integer values, as shown in Fig. 3. using (9).

where, in case of a complete mismatch (9) yields a value of
1, while maximum match yields 0.

g(r) = 7’/77



Fig. 5. In (a) we have an example of a road without obstaclesievirn (b) and (c) there are vehicles on the road. Finally,dnthere is a difficult case where
the road in the left part is considered ground-truth, whighhad a complete missing (red color).

The output is a map, as shown in Fig. 4, with values
between 0 and 1, where values near 0 represent a region wil
smooth variations of height and values near 1 represeransgi
with much variation in height—likely an obstacle or a curb.

PRECISION [%]

D. Post-processing

In this latest processing stage, a threshold is used t
distinguish between objects, road-edges and estimateéuk r
region delimited by them. This threshold is chosen in order t
maximize the average precision of the global category in the
training set. Furthermore, morphological operations [2&}
performed in order to improve the quality of the segmentatio
More specifically, morphological erosion with a structgrin
element of sizé x 5 is used to remove small objects, followed
by a morphological dilatation with a structuring elemensiae
7 x 7 connects regions that are close to each other.

PRECISION [%]

Ill. EXPERIMENTS

The performance of the road-detection approach was as-

1

UM ROAD 1 UMM ROAD
N N
N -
5\ g \,
1 =4
\ <]
| S
\ 2
2
£
20 40 60 80 100 20 40 60 80 100
RECALL [%] RECALL [%]
(a) UM_ROAD (b) UMM_ROAD
UU ROAD 1 URBAN ROAD
~ -1
> \
N N
=4 ‘\
\ s} \
\ ) Y
\ [} \
\ 2
\ o
£
20 40 0 100 20 40 0 100
RECALL [%] RECALL [%]
(c) UU_ROAD (d) URBAN_ROAD

sessed using the KITTI-ROAD Benchmark Suitel[Which Fig. 6. Precision-Recall curves from the KITTI evaluati@ner, per urban
consists of 579 frames (rectified images with average dpatig°enes: obtained in the testing set.

resolution of 1242x 375 px), corresponding to 289 training
frames and 290 testing frames. The dataset comprises thr

different categories of road scenes, as well as a globageste KT evaluation server. Following the benchmark evaloati

combining all scenes. Table | summarizes the categories ar{)Bre

the number of frames in each dataset.

thodology, performance assessment is carried out insterm
the following measuresMaxF (Maximum value of F-

measure),AP (Average Precision)PRE (Precision), REC

TABLE I.  KITTI- ROAD DATASET SUMMARY. (Recall),FPR (False positives rate) arfeNR (False negatives

- — rate). Further information of the dataset and details diggr
Scene N.Train  N.Test Short description .
UM _ROAD 95 96 Grban Marked two-way road the performance methodology are presented in [1], [13].
UMM_ROAD 96 99  Urban Marked Multi-lane road Results on the testing set for each urban scene are shown in
UU_ROAD 98 100 Urban Unmarked road Fig. 6, in terms of Precision-Recall, and summarized in &abl
URBAN_ROAD 289 290 all urban scenes combined

Il with percentage values of the performance measures. The

reported results, obtained directly from the evaluatiorvese
Images and 3D-LIDAR scans of the KITTI-ROAD dataset are consistent with other state-of-art methods (even thoues

were recorded from five different days on inner city (urbanjuse LIDAR data only) whose results are publicly available on
roads. The training set comprises hand-labeled grounb-truthe KITTI-ROAD website.

annotations, while the testing set is evaluated using tlieeon

Figure 5 illustrates the performance of the method qualita-

Lhttp://www.cvlibs.net/datasets/kitti/fevabad.php (Road) tively on a set of test images. Detection errors occurredhiyai



TABLE II. PERFORMANCE ON THE TESTING SEXFROM EVALUATION 3
SERVER). (3]
Scene MaxF AP PRE REC FPR FNR
UM 83.40 % | 86.61 % | 83.45% | 83.35% | 7.63% | 16.65 % [4]
UMM | 84.49 % | 89.57 % | 88.24 % | 81.04 % | 12.63 % | 18.96 %
UU | 79.34% | 80.04% | 82.25% | 76.63% | 550 % | 23.37 %
URBAN | 82.72% | 87.58 % | 85.44 % | 80.17 % | 7.87 % | 19.83 % [5]
due to the following factors: [6]

e The morphological operations used in post-processing
stage may detach some areas to the road, while addingy)
others that do not belong to the road;

e As already mentioned, the LIDAR measurements un- (g
certainties grow as function of the distance. Therefore,
road regions that are far from the vehicle can be hardigj
to detect;

e Moreover, the benchmark performance criteria consid-
ered that, in some cases, road areas separated from tf1€]
main road by a barrier (rail road, garden, etc.) should
also be detected (see Fig.5(d)). However, our approach
intends to detect only the road ahead of the vehicle,
which increases the number of false negatives;

e Finally, since our detection approach does not depen&m
on road marks, it may fail to detect some roads
delimited only by marks.

[12]

IV. CONCLUSION

In this paper, we propose a road detection approach basétp]
on 3D-LIDAR data. We also propose an upsampling method,
to create dense maps, that takes into account the uncgrtairﬁ 4]
of the LIDAR readings as function of measured distances.
Furthermore, our road detection solution relies on a shityla
measure between neighbor regions on height dense map. Sings;
the detection is based on region features, our detectiohadet
is robust against some variations over the road, such as

unknown number of lanes or slopes. [16]

The reported experiments in the KITTI-ROAD dataset
show that LIDAR data may be very useful on road detection,
even on unmarked roads. As future work, we plan to exploré!’]
the LIDAR reflectivity information in order to detect lane
markings. We also intend to use processing-time optinupati

1
techniques (such as GPU implementation). e
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