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Abstrat

Soft sensors for regression appliations (SSR) are inferential models that use on-line available sensors (e.g. temperature,

pressure, �ow rate, et) to predit quality variables whih annot be automatially measured at all, or an only be

measured at high ost, sporadially, or with high delays (e.g. laboratory analysis). SSR are built using historial data

of the proess, usually provided from the supervisory ontrol and data aquisition (SCADA) system or obtained from

laboratory annotations/measurements. In the SSR development, there are many issues to deal with. The main issues

are the treatment of missing data, outlier detetion, seletion of input variables, model training, validation, and SSR

maintenane. In this work a literature review, on eah of these topis will be performed, reviewing the most important

works in these areas. Emphasis will be given to the methods and not the appliations.
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1. Introdution

Industrial proesses are well equipped with a variety of

sensors, suh as temperature, �ow rate and pressure sen-

sors, designed for online supervision, monitoring and on-

trol, and to maintain onsistent produt quality. Some

variables, whih may be quality variables for example, an-

not be automatially measured online, due to the lak of

sensors, or due to the high ost of the sensor, thus leading

to the lak of enough information about the system state

in real-time. Usually, laboratory tests of produt samples

are onduted to measure o�-line the produt quality on

a spei�ed interval base. In order to measure the quality

variables in real-time, one an use omputational intel-

ligene methodologies to build intelligent/omputational

sensors to infer the value or the quality target variables

from other on-line measured proess variables. The basis

for building suh intelligent sensors is that the values of

target variables, or the produt quality, have a funtional

relationship with other proess variables that an be mea-

sured on-line. Suh kind of intelligent sensors is one of

the appliations of soft sensors [1; 2℄, refereed here as soft

sensor for regression appliations (SSR). They are impor-

tant tools for many industrial proesses, suh as pulp and

paper mills, wastewater treatment systems, ement kilns,

re�neries, and polymerization proesses, just to give a few
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examples. In general terms, soft sensors an be de�ned

as inferential models that use online available sensor mea-

surements (easy to measure variables) for on-line estima-

tion of quality variables (hard to measure variable) whih

annot be automatially measured at all, or an only be

measured at high ost, sporadially, or with high delays

(e.g. laboratory analysis).

A SSR is a regression model whih uses easy-to-measure

variables to predit a hard-to-measure variable. It is sub-

jet of researh in many areas. Originally, SSRs were stud-

ied as part of hemometris, whih stands for statistial

methods for extrating information from data sets that

often onsist of many measured variables [3℄. Aording

to Wold [3℄: �Chemometris, is heavily dependent on the

use of di�erent kinds of mathematial models (high in-

formation models, ad ho models, and analogy models).

This task demands knowledge of statistis, numerial anal-

ysis, operation analysis, et., and in all, applied mathe-

matis.�, i.e. hemometris is not an isolated/sole researh

area. From the hemometris literature it is possible to see

the use of di�erent approahes inluding mahine learning

and pattern reognition [4℄, arti�ial intelligene [5℄, sys-

tem identi�ation [6℄, and statistial learning theory [7℄.

Despite the fat that the objetives and emphasis on all

these areas are di�erent, they are intrinsially onneted

by the neessity to learn models from data. This point of

view is further justi�ed in the work done in [8℄, where the

author revises the problem of system identi�ation.

Then, the state of the art disussed here will not be

limited the hemometris literature, it will also disuss the

main and reent ontributions from the other areas.

SSR development enompasses the same design yle of

lassial regression systems [9; 6℄. However, it has its own
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peuliarities. SSR development has the following main

steps [1; 2℄: (I) data olletion and �ltering, (II) sele-

tion of input variables, (III) model hoie and training,

(IV) model validation, and (V) model maintenane. In

the �rst stage the data is olleted, and the goals of this

stage inlude the handling of missing data and outliers.

The goals of the seond stage are the seletion of most

relevant inputs, and possibly also the respetive time lags.

The model hoie and training requires the orret sele-

tion and learning of the model. The model validation step

is neessary to judge if the learned model reprodues the

target variables within aeptable quality or performane

levels. The last step is SSR maintenane, where the goal

is to maintain a good SSR response under the presene of

proess variations or some data hange.

2. Data Colletion and Pre-Proessing

Industries are usually required to store their data from

the proesses. This is the basis for the subsequent use of

suh data for system optimization, or other related data

driven methods. Unfortunately, data olletion in real in-

dustrial appliations omes with well know problems to

deal with, suh as problems with sampling time, missing

data, outliers, working onditions, auray, and so on.

2.1. Sampling Time

In industrial systems some variables are aquired at dif-

ferent time rates. This is most evident when analyzing

the sample rates of easy-to-measure and hard-to-measure

variables. In the majority of problems the aquisition fre-

queny of easy-to-measure variables is muh higher than

the aquisition frequeny of hard-to-measure variables. In

suh ases there is the neessity to synhronize the vari-

ables. This problem is usually refereed in literature as

multirate harater, or multiple-rate phenomenon [10℄. In

pratie the following two approahes are most ommonly

adopted:

1. Down-sample of the easy-to-measure data samples, in

aordane with the slow sampling rate of the hard-

to-measure variables, by exluding the samples of the

easy-to-measure variables that do not have a orre-

sponding hard-to-measure (target) value [11; 12℄;

2. Instead of exluding the samples that do not have

the respetive target, a �nite impulse response (FIR)

model is estimated and applied on the samples in or-

der to estimate the hard-to-measure, low sampling

rate, variables. The big onern in this approah is

the seletion of weighting values and length of the

FIR �lter, in [10℄ a heuristi approah was adopted,

while in [13℄ an approah based on the expetation

maximization (EM) was proposed.

Although down-sampling by exluding is straightforward

to implement in pratie, it has a ritial drawbak of in-

formation loss and may lead to inaurate models, mainly

if the hard-to-measure variable is sampled sarely and/or

with unertain delays [13℄. A better approah is to model

the data by using the FIR �lter. However, the weights and

length of the FIR �lter should be designed or estimated

arefully.

2.2. Missing Data

It is quite ommon to have observations with missing

values for one or more variables. The problem of missing

data ours when no value is stored for a variable in an

observation. There are two ommon approahes to deal

with missing data. The �rst one is the removal of samples

ontaining missing data, an approah also known as list-

wise deletion. The seond approah is to �ll-in the missing

values using some imputing method. The �rst approah

an be used if the number of missing values is small, but

otherwise it should be avoided [7℄. In the seond ase, the

simplest strategy is to impute the missing value with a

mean or median of non missing values for that variable.

Another approah is the hot-dek imputation, where a

missing value is imputed from a randomly seleted value

of the input for similar target values [14℄. These methods

of mean/median imputation, and hot-dek imputation, are

usually referred as multiple imputation.

Two other methods whih are often employed for han-

dling missing data are the maximum likelihood (ML)

method and the EM method. The ML method models

the missing variable/s based on the available data. Essen-

tially, the ML assumes some model for the data distribu-

tion of the missing variable, and then the parameters of the

model are estimated using ML. In [15℄ the authors assumed

linear relationships, while in [16℄ several nonlinear models

were used to model the relationship among the non-missing

variables and the variable with missing values. In both

ases, the authors reported signi�ant improvement when

ompared to multiple imputation methods (hot-dek, and

mean/median imputations). The EM approah to handle

missing data is reported in [17℄, it works similarly to the

ML proedure, although it is an iterative proedure. First

it estimates the missing data using the observed data and

the �rst estimates of the model parameters. In the seond

step, the estimated missing data are used together with

observed data to estimate the parameters. This iterative

proess repeats until there are no signi�ant hanges in pa-

rameters estimates. In [18℄ it is made an extensive review

on methods for missing data imputation.

2.3. Outliers

Outliers are observation values that deviate signi�antly

from the typial, meaningful range of values. Observations

take inonsistent values when ompared to the majority of

reorded data, and this an greatly a�et the performane

of the SSR design [2℄. Outliers an be aused, for ex-

ample, by sensor malfuntion, ommuniation errors, or

sensor degradation. To alleviate the e�ets of outliers it

is neessary �rst to detet them, and then to treat them.
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However, when applying outlier detetion methods, usu-

ally the results have to be validated manually by the model

developer and/or proess expert. The goal of the manual

inspetion is to detet any possible outlier maskings (i.e.

false negative detetions - not deteted outliers) and out-

lier swamping (i.e. false positive detetions - orret values

labeled as outliers).

Typial outlier detetion methods are based on statis-

tial tehniques. The most simple approah is the 3σ-
rule [19℄, whih is based on an univariate distribution of

variables. The 3σ-rule works as follows: assuming that a

variable is drawn from a Gaussian distribution with mean

µ and standard deviation σ, the samples of that variable

whih are outside the bounds [µ− 3σ, µ + 3σ] are onsid-
ered outliers. A robust version of 3σ-rule is the Hampfel

identi�er [20℄, whih onsiders the absolute mean and ab-

solute mean deviation. The Hampfel identi�er is suitable

in the ases where the data is severely a�eted by out-

liers, and it has shown to be pratially e�etive in real

appliations [21; 19℄. The above approahes are onsid-

ered as univariate outlier detetion methods, sine they

are applied on eah variable separately. However, in many

ases outliers annot be deteted by onsidering the vari-

ables individually. Then, multivariate tehniques should

be adopted. Outlier detetion based on multivariate teh-

niques takes into onsideration the interation among vari-

ables, and it an deliver most aurate results, as demon-

strated by [1; 22℄. It often works by using distane mea-

sures to indiate those samples whih are far from the

enter of data distribution. A ommon distane measure

adopted is the Mahalanobis distane, where the samples

onsidered outliers are the ones with a large value of Ma-

halanobis distane [23℄. Other multivariate approah om-

monly used in the SSRs ontext is based on data pro-

jetion/dimensionality redution tehniques, suh as prin-

ipal omponent analysis (PCA) or partial least squares

(PLS), together with the Jolli�e parameters [24; 25℄. It

works by deomposing the original data using PCA or

PLS, and then using the deomposed data to ompute the

Jolli�e parameters [24℄. The Jolli�e parameters help to

identify the samples that do not onform with the orre-

lation struture of data and the ones that in�ate the data

variane. In [25; 1℄ outlier detetion based on PCA, PLS,

and Jolli�e parameters was studied and has been shown

to be a powerful alternative for outlier detetion in SSRs

appliations.

In [26℄ several outlier detetion methods were ompared

(six in total), and the authors onluded that the e�ay

of the proposed methods depends strongly on the problem

domain. In partiular, the e�ay depends on whether

the data is multivariate normal, on the dimension of data

set, on the type of outliers, and on the amount of out-

liers in the data set. The authors reommend a battery of

multivariate outlier detetion tests to detet outliers. In

the SSR ontext, [22℄ ompared several outlier detetion

methods in the modeling of a sulfur reovery unit. The use

of outlier detetion improved onsiderably the SSR au-

ray in the ase-study, and PCA-based outlier detetion

ahieved the best results.

The book of [27℄ provides several disussions regarding

pre-proessing tehniques and their appliation in the SSR

ontext. Real-world examples as well omparison of teh-

niques are also presented. In [2; 28℄ general overviews on

pre-proessing tehniques are also presented.

3. Variable Seletion

In SSR appliations there is frequently a large amount of

andidates for input variables oming from the supervision

struture of the proess. The number of andidates an

range to thousands [29; 30℄. The use of blak-box models

already suggests that the SSR designer has few knowledge

about the system to be modeled, and onsequently about

the variables whih a�et the target variable. However,

this not true in all the ases, sine in most of SSRs appli-

ations the seletion of a set of most relevant variables is

made by system experts. Nonetheless, for physially large

and highly integrated proesses, enumeration and sele-

tion of andidate variables based on proess insight may

not be feasible [25℄. Moreover, most of the works in the

literature indiate that frequently only few variables are

neessary to ompose the SSR model. A redued number

of variables has several advantages, suh as the redution

of model development time, possibility of aggregation of

the information about the physial interpretation of the

proess, or the improvement of the model performane.

Moreover, a redution of the number of variables implies

a lower number of required real sensors, dereasing osts,

and inreasing or enabling feasibility of appliations.

The following are possible approahes onerning vari-

able seletion that may be adopted during SSR design [31℄:

Use of all inputs: This approah leads to extremely

high dimensional approximation problems. The prob-

lems assoiated with learning of a model with many

input variables su�er from large omputational de-

mand, large probability of ourring over�tting, and

poor performane of the regression model. Over�t-

ting means that the model is very aurate on train-

ing data, but it has poor auray on previously un-

seen test data. A large number of input variables

and a limited number of samples auses a urse of di-

mensionality phenomena [32℄, whih refers to some,

normally problemati, phenomenon that ours in

high-dimensional spaes but does not our in low-

dimensional spaes. In the ase of a variable seletion

setting, one urse of dimensionality problem that o-

urs is that the number of samples required to repre-

sent an input spae inreases exponentially with the

number of variables. Another problem that ours is

the inrease of omputational osts in algorithms deal-

ing with high-dimensional spaes. Variable seletion

is one way to prevent over�tting, inrease the model
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performane, and also to avoid the urse of dimen-

sionality phenomena;

Unsupervised variable seletion: The typial ap-

proah for unsupervised variable seletion is based on

prinipal omponent analysis (PCA) [24℄. It works

by projeting the input spae into a latent spae,

where the �rst latent variable (also alled prinipal

omponent) has the largest possible variane (i.e. it

aounts for as muh of the variability in the data as

possible), and eah sueeding omponent in turn has

the highest variane possible under the onstraint

that it is orthogonal to (i.e. unorrelated with)

the preeding omponents. Then, few omponents

obtained by PCA are used to learn the model.

The seletion of the number of latent variables is

ruial to attain satisfatory results. In a reent

paper [33℄ disusses the ways to selet the number

of omponents to retain in a PCA. Appliations of

PCA as a basis for unsupervising variable seletion

are vast in SSRs literature [34; 35; 36℄;

Supervised variable seletion: In this approah the

seletion of input variables is diretly guided by the

goal of attaining the highest possible model auray;

the relation between the model auray and a sub-

set of inputs an be aessed independently or depen-

dently of the model. Any proedure for input variable

seletion must be based on two main omponents [37℄.

First, a riterion to measure the quality of a subset

must be de�ned, to judge whether one subset is better

than another (this is usually refereed as ost/�tness

funtion). Seond, a searh proedure must be de-

�ned to searh through andidate subsets of variables.

The seletion riteria an be lassi�ed into three dif-

ferent lasses: �lter methods, wrapper methods, and

embedded methods [38; 39℄. Filter methods use statis-

tial measures (e.g. orrelation oe�ient (CC), mu-

tual information (MI)) to quantify the quality of a

subset, and are independent of the model used. On

the other hand, wrapper riteria use the performane

of the model as the riterion, using for example the

mean square error (MSE), the Akaike information ri-

terion (AIC), or the Cp statistis (all these methods

will be later explained in Setion 4). In the third

lass, the embedded methods use a spei� arater-

isti about the model itself or the proess of model

learning to de�ne the riterion (e.g. pruning methods,

regularization). For all the three lasses of methods,

to ahieve the optimal solution, the searh proedure

an onsist of an exhaustive searh of all possible sub-

sets of variables. However, exhaustive searh is highly

omputationally/time expensive, even for a moderate

number of input variables. Then, in pratial appli-

ations, simpli�ed searh methods suh as sequential

searh, or stohasti searh are usually employed in

order to limit the omputational omplexity of the

searh proedure. Appendix A gives an overview on

searh proedures.

3.1. Filter Variable Seletion

The use CC is the most popular method employed for

input variable seletion in SSRs. In suh CC variable sele-

tion method, the linear strength between eah input and

the target is omputed using the Pearson orrelation o-

e�ient, and the variables are ranked aording to their

strength [1; 40; 41℄. For nonlinear regression settings, the

Pearson orrelation is usually replaed by the univariate

mutual information (MI) [42℄, and similarly to CC-based

methods the variables are ranked aording with their im-

portane (see ranking searh in Appendix A). The vari-

able ranking algorithms based on the orrelation oe�ient

and/or univariate MI an be used as the prinipal sele-

tion mehanism or as an auxiliary seletion mehanism

[39℄. As a prinipal seletion mehanism, the seleted in-

puts are used in the learning of the regression model. As

an auxiliary mehanism, the variable ranking is used as a

kind of sreening step, removing only irrelevant variables,

and then the remaining variables are passed to another

variable seletion algorithm to �nally selet the variables.

The multivariate MI approah for variable seletion is

a extension of the univariate MI approah, and it mea-

sures the dependeny of a set of input variables on the

target. In [43℄ it was demonstrated that the multivariate

MI is an adequate riterion for variable seletion in regres-

sion settings. However, the estimation of multidimensional

probability density funtions (pdfs) in the multivariate MI

approah is not an easy task: sparity of data, and high

omputational demand are some problems assoiated with

this task.

In SSRs/regression appliations, the nonparametri k-

nearest neighbors algorithm (KNN) [44℄ and the histogram

based estimators are the most ommonly employed meth-

ods for pdf estimation in the multivariate MI approah

[45; 46℄. The KNN approah tends to be used beause of

the good results reported in the literature [47; 48℄, and the

histogram method is used beause of its easy implementa-

tion and good results when working with a small number

of variables [49℄.

However, when dealing with a large number of input

variables, the use of multivariate MI as a quality riterion

for evaluating subsets of variables is not adequate. The

problems assoiated with pdf estimation are highly aggra-

vated with the inrease in problem dimensionality. In [50℄,

instead of estimating the multivariate MI, the authors ap-

proximate it by using the univariate MI. In the work of

[51℄, inspired in the work of [50℄, the authors developed an

algorithm alled as the �minimum redundany maximum

relevane� (mRMR) priniple for variable seletion based

on univariate MI. It is a well aepted method for variable

seletion (with more than 3313

1

itations sine 2005). Fur-

thermore, in [52℄ it was demonstrated that the algorithms

1

Aording to Google Sholar
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of [50; 51℄ are equivalent to maximization of the multivari-

ate MI between inputs and the target. Another variant of

[50; 51℄ was proposed in [53℄ and is alled normalized mu-

tual information feature seletion (NMIFS). The NMIFS

riterion hanges the form of how the mRMR riterion is

de�ned, to redue its bias and improve the quality of the

seletion of variables.

Several appliations of MI in SSRs and related areas

have been developed. In [49℄ a ombination of geneti

algorithms (GAs) and the mRMR priniple was used to

selet the dynamis (i.e. time lags) of input variables of a

MLP model. In [54; 29℄, the disrete mutual information

was used to selet the variables and orresponding time-

lags in di�erent SSRs and regression problems. In [29℄, it

has been demonstrated that the KNN estimator of mul-

tivariate MI, together with the sequential forward searh

(SFS) proedure (see Appendix A), has a superior per-

formane when ompared with the CC variable seletion

method in two SSRs problems. In [29℄, the seleted vari-

ables were employed in a support vetor regression (SVR)

model to predit the targets. In [55; 56℄, the KNN esti-

mator of multivariate MI, together with the SFS proe-

dure was suessfully employed as a variable seletion tool

in several real-world ase-studies, and the model utilized

was the MLP model. Another reent �lter method for in-

put variable seletion was based on the nearest orrelation

spetral lustering [57℄. The PLS model was learned with

the seleted inputs and then used for estimating the ethane

onentration in an ethylene frationator.

3.2. Wrapper Variable Seletion

Another approah for seleting input variables is by as-

sessing the performane of the learning model (wrapper

approah). Usually this approah ahieves more aurate

predition results when ompared with �lter methods, be-

ause it takes into aount the approximation model. How-

ever, in the wrapper approah it is neessary to learn a

regression model every time a subset of variables is going

to be evaluated, whih is therefore omputationally expen-

sive. Appliations of wrapper methods in SSRs/regression

appliations are given below.

In [58℄, to overome the problem assoiated with a lim-

ited number of samples and a large number of inputs, a

bootstrapping resampling on data was applied. Then, a se-

quential forward �oat searh (SFFS) (an improved version

of SFS; see sequential searh in Appendix A for an explana-

tion on the SFFS proedure) together with a linear model

(LM) with its parameters estimated by the least squares

(LS) estimator, was used to selet the relevant variables.

The error of the LS model was used as the ost funtion.

The seleted variables were used in a PLS method to pre-

dit the vinyl hloride in a polimerization proess. The

reason for the use of LS instead of PLS, in seleting the

variables, lies in the fat that LM has low omputational

ost when ompared to PLS model.

A geneti algorithm (GA) (see stohasti searh in Ap-

pendix A) together with the PLS model was applied in

[59℄ to selet the input variables. Another method based

on GA and PLS to selet the variables and the dynamis

of the system (i.e. the time lags) was proposed in [60℄. In

both these two works, the error of the PLS model was used

as ost funtion.

In [61℄ a vision-based model was developed for the pre-

dition of ore quality at the mine level. Due to the large

number of available variables, a GA ombined with a MLP

network was applied to selet the most relevant variables.

The MLP error was used as the ost funtion.

To selet the variables and the dynamis of the system,

a SVR model together with a variant of GA enoding [62℄

was used in [63℄. The SVR error was used as the ost

funtion. In [64℄ the variables and the parameters of a SVR

model were determined using a hybrid geneti simulated

annealing searh. To selet the models with a omplexity

as small as possible, the �tness funtion was based on the

AIC.

In [65℄ the input variables were seleted based on their

individual predition performane, based on the error of

a Takagi Sugeno (TS)-fuzzy model. The authors om-

pared seletion performed by the expert with the auto-

mati seletion of the inputs, and it was onluded that

both approahes are ompetitive, but in the presented ase

of study, better results were ahieved with the automati

method.

In [66℄ variable seletion based on MLP model and se-

quential bakward searh (SBS) (see sequential searh in

Appendix A) was studied. Disussion about the stop-

ping riterion, auray, and omputational time was per-

formed. The authors onluded that the MLP together

with SBS provides good results, but the main problem

regarding this approah is its demanding omputational

time.

3.3. Embedded Variable Seletion

Embedded algorithms form a lass of variable seletion

algorithms where the seletion of variables is embedded

within the model or the model learning. They share simi-

lar harateristis with the wrapper algorithms, so it may

be di�ult or onfusing to distinguish between embed-

ded and wrapper approahes in some ases [67℄. How-

ever, the main di�erene between them is that an embed-

ded method whih is based on a spei� model annot be

used/employed in ombination/integration with another

model.

Regularization methods are a lass of embedded vari-

able seletion approahes. Suh methods work by adding

a penalty term to the model parameters in the model er-

ror funtion. This penalization shrinks the freedom of the

model parameters during learning. For linear models they

are used as an alternative to the LS solution, and in ases

of poorly onditioned or ill-onditioned problems. From

the statistial theory, the most well know regularization

methods are the least absolute shrinkage and seletion op-

erator (LASSO) [7℄, ridge regression (RR) [68℄, and elasti
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net (EN) [69℄. Another regularization method, widely em-

ployed in the hemometris theory, is the PLS. In [70℄ the

authors give the statistial point of view on the PLS, and

onluded that PLS plays a role similar to the RR.

The regularization approah an also be expanded to

appliation in neural networks (NN), by adding a penalty

funtion in the error funtion. A penalization method

whih penalizes both useless input variables and hidden

nodes was proposed by [71℄. It was shown that the

method outperforms the traditional regularization meth-

ods for weight deay penalization [37℄ and input deay [72℄.

In preditions settings based on NN models, variable se-

letion an be based on sensitivity analysis approahes,

also referred as pruning methods [73; 74℄. In sensitiv-

ity analysis, the importane of an input is measured by

omputing the variation of the output when the input is

perturbed. Usually, all inputs are used to train the net-

work, and then irrelevant inputs are removed sequentially

if they are onsidered irrelevant from the sensitivity metri

point of view. After the removal of irrelevant variables, the

model is retrained and the sensitivity analysis an be per-

formed again. This proedure ontinues until the results

get satisfatory. This is the same proedure as the SBS

searh (see Appendix A). Garson [75℄ proposed a metri

of importane based on the weights of the NN input layer.

Several other proposed methods evaluate the relevane of

a ertain variable by omputing the partial derivatives of

the output with respet to that variable [76; 77℄. In [78℄

the importane is measured by varying the values of one

variable while keeping all the others untouhed, and the

input variable whose hanges mostly a�et the output is

the one that has the most relative in�uene. In [79℄ a NN

is trained with all variables, and then useless variables are

sequentially removed aording to an exlusion riterion

based on the sensitivity metri proposed in [75℄. However,

in ontrast with [75℄, when a variable is removed the exist-

ing NN model is adjusted with a lower omputational ost

when ompared to performing again a omplete retraining

of the network.

A majority of the embedded methods proposed for sup-

port vetor mahine (SVM) models are targeted for las-

si�ation tasks, but some methods an be easily extended

from lassi�ation to regression [80℄. Despite their appli-

ability, their use on SSR appliations has not been tested

yet, but they are worth mentioning here. Input seletion

based on SVM models proeeds in the same way as in MLP

input seletion based on sensitivity analysis, i.e. the sele-

tion proess is usually performed as follows: train a SVM

with all variables, selet and remove the least relevant vari-

ables aording to the sensitivity metri, re-train the SVM

model and proeed in the same manner until satisfatory

results are obtained. In [81℄ the input weights of the SVM

model were used as the sensitivity metri. The approah

was applied in a aner lassi�ation problem where the

number of inputs is larger than 7000 and only few samples

were available. A di�erent approah to de�ne the sensi-

tivity metri was adopted by [82℄, where the sensitivity

metri was based on the upper bound of the leave one out

ross validation (LOOCV) error of the SVM model.

The embedded variable seletion method based on the

SVR model whih is proposed in [80℄ is primarily de-

voted to regression. It exploits the harateristi that the

SVR output an be interpreted as the onditional den-

sity funtion of the target, given the input variables, un-

der the assumption that the output error is haraterized

by a Laplae or a Gaussian probability distribution (suh

interpretation that the output error is haraterized by

the Laplae or the Gaussian probability distributions is

demonstrated in [83℄). Thus, the proposed sensitivity met-

ri measures the di�erene over the input variable spae

of the onditional density funtions of the SVR predition

with and without the feature.

3.4. Hybrid Approahes

Several SSRs appliations ombine several methods to

promote the seletion of input variables.

In [84; 1℄ a ombination of three variable seletion meth-

ods was used to selet the variables. The methods used

were the orrelation oe�ient/satter plots, partial or-

relation, and the Mallows Cp statistis [85℄. The satter

plots and orrelation oe�ient were used as pre-�ltering,

to form a preliminary subset. Then, the Cp statistis and

the partial orrelation were used to aid in the seletion of

the best subset.

In [25℄, PCA pre-proessing was applied on the variables

as an unsupervised variable seletion. It provided better

results when ompared with the variable seletion method-

ology used in [84; 1℄ (disussed in the previous paragraph).

In [86℄, it is demonstrated that ollinearity inreases the

variane of the MLP model, and then it is proposed to use

the PLS as a pre-proessing step for a MLP model, sine

PLS eliminates the ollinearity in the input spae. The

PLS together with a MLP model provided good results

when ompared to a single MLP.

In [40℄ the input variables of a fuzzy model are pre-

seleted from the variables of the dynamial proess by

means of orrelation oe�ients, Kohonen maps and Lip-

shitz quotients.

In [87℄ a hybrid approah based on wrapper and em-

bedded methods was proposed. It approximates the re-

sponse/results of variable seletion based on the MLP pre-

dition error and the SBS searh proedure, de�ned here as

SBS-MLP, but with muh less omputational e�ort. The

proposed method presents similar or better approxima-

tion performane when ompared to two �lter methods

based on MI riterion proposed in [51℄ and [53℄, the em-

bedded method proposed in [79℄, and the wrapper method

based on SBS-MLP [88; 66℄. Moreover, it has been shown

that the proposed method has similar predition perfor-

mane when ompared to the traditional SBS-MLP algo-

rithm, and has the advantage of having lower omputation

ost. The proposed method presents similar or better ap-

proximation performane when ompared to the other four

methods.

6



4. Model Choie and Training

There are two distint model approahes applied for

SSRs development. The �rst is based on white-box mod-

els, obtained through a physial knowledge of the proess,

and the seond lass is based on blak-box or data-driven

models, based exlusively in onstruting a model from

empirial data of the proess. Modeling by the white-box

approah requires strong knowledge about the proess and

demands a long time of modeling work to build the mod-

els [89℄. It usually fouses on the desription of the ideal

steady-states, not being able to desribe the real proess

onditions [2℄. For omplex systems, the white-box mod-

eling approah may be virtually infeasible. Blak-box or

data-driven models are based on empirial observations

of the proess (the methods themselves are empirial pre-

ditive methods). Blak-box modeling is able to desribe

real onditions of the proess, and it requires few knowl-

edge about the system to be modeled. Nevertheless, it

requires intensive work on proess data. Some di�ulties

with these types of approahes are related to the di�ulty

of hoosing the orret model type and struture, the fun-

tions to be used, and the quantity of funtion terms ne-

essary for the development.

In blak-box modeling, the �rst aspet to deide about

is whih kind of model is going to be used. There are al-

ways two hoies: a linear model or a non-linear model.

Aording to many authors, a linear model should always

be onsidered before a nonlinear model. If the linear model

does not provide satisfatory results, one possible expla-

nation, besides many other possibilities, is that the system

possesses a non-linear behavior, then a non-linear model

should be the best hoie [31℄. Good overviews of blak-

box strutures for regression ranging from linear models

(e.g. PLS, LASSO, RR), to nonlinear models (e.g. NN,

SVR, Fuzzy Systems (FS)) are reported in the lassial

books [6; 5; 31; 7; 4℄.

The most popular data-driven models used in SSRs ap-

pliations are the linear models with LS or PLS estimation

methods [90; 91℄, PCA [24℄ in ombination with a predi-

tion model, NNs (mainly the MLP struture), SVRs, FS,

and Neuro-Fuzzy Systems (NFS) [92; 93; 94℄. The PLS

solution is the preferred and mostly applied solution in

ombination with linear models when omparing to LS,

sine it an handle data-ollinearity, whih is a ommon

harateristi in industrial appliations.

Soft sensors are not always omposed of a single regres-

sion model. A ombination of a olletion of models is of-

ten employed. This is denominated an ensemble approah,

whih forms an ensemble of models. Ensemble methods

play an important role in SSRs appliations, mainly when

the number of samples for modeling is small [95℄. The en-

semble of NN models was detailed and disussed in [96℄,

where the authors proposed a method for building an en-

semble of NN models based on GA. A related approah

was used in [97℄ where a framework to optimize the stru-

ture of an ensemble of MLP models was presented. Sev-

eral MLP models with di�erent strutures were trained

using the bootstrap resampling. Then, GA and simulated

annealing (SA) were used to perform the optimization of

the model arhiteture. In [98℄, an evolutionary ensemble

learning using NN and based on negative orrelation learn-

ing was presented. However, [98℄ has some shortomings

suh as not onsidering the possibility of linear ombina-

tion among models, and using pre-de�ned models' arhi-

tetures.

Fuzzy models are knowledge-based models. In some

omplex appliations it is di�ult to tune suh models.

Some approahes try to overome this di�ulty by opti-

mizing the fuzzy model using evolutionary algorithms. In

[40℄ the TS-fuzzy model is tuned using a GA-based ap-

proah. In [93℄ the work of [40℄ was expanded to learn the

TS-fuzzy TS struture together with the seletion of input

variables and delays.

In almost all soft sensor appliations, a single model is

tuned using all available training samples, without distin-

guishing the operating modes of the proess. However,

the existene of multiple operating modes in a proess is

an inherent harateristi of most industrial appliations.

Sometimes, multiple operating modes result from exter-

nal disturbanes, as for example a hange in feedstok or

produt grade or even hanges suh as the diurnal load

variation of a power plant or the summer-winter operation

of a re�nery [99; 100℄. In these situations, onsistently

training a model for eah operating mode or for eah set of

orrelated operating modes of the proess has been shown

to be reasonably onsistent and to be bene�ial for the

predition auray [101; 102℄. During online operation,

when a new sample is made available, the model whih

is the most adequate for the new sample is identi�ed and

then used to make the predition. The identi�ation of

whih model will be used is a key issue in the development

[102; 103; 104℄, whih an be done using expert knowledge

[102℄ or using automati tools, suh as �nite mixture of

Gaussian models (FMGM) [101℄.

In this ontext, in [102℄, the authors work on modeling

the operating modes in a polymerization bath proess

ase study. The orrelated operating modes have been

grouped, and then a separate PLS model was tuned for

eah set of orrelated operating modes. During online

operation, the inoming sample is assigned to the orre-

sponding mode and its model is used for the predition.

However, in [102℄, the expert knowledge of the operators

was used to determine the operating modes and in some

ases or problems suh information might not be available.

Another approah, based on the FMGM, was proposed

in [101℄. In this work, the FMGM is used to automat-

ially identify the di�erent operating modes of the pro-

ess. Then, multiple loalized Gaussian proess regression

models in the nonlinear kernel spae were built to har-

aterize the di�erent dynami relationships between pro-

ess variables (inputs to the predition setting) and qual-

ity variables (outputs of the predition setting) within the

identi�ed operating modes. During online operation, the
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inoming sample is assigned automatially to the orre-

sponding submodel, using the FMGM. The major draw-

bak of [101℄ is that the determination of the operating

modes and model tuning is done separately, i.e. the set of

operating modes is determined independently of the model

used. However, as veri�ed in the ase study of [102℄, a

model an be set for more than one operating mode, with

the advantage of reduing the number of neessary models

and inreasing the number of samples available for tuning

eah model. Another drawbak of [101℄ is that the num-

ber of samples used for tuning eah model is onstrained

by the number of samples of eah operating mode, whih

is de�ned by the FMGM. The approah of [101℄ leads to

�hard� partition boundaries, and onsequently just a part

of the total of samples is used for tuning the predition

model of eah operating mode. Suh an approah an lead

to poor modeling on the orresponding operating mode,

depending on the hosen model and the available samples

In [105℄ a method for dealing with online predition of

the quality variables in proesses with multiple operating

modes is proposed and derived. The method is alled mix-

ture of partial least squares (PLS) experts (Mix-PLS). The

Mix-PLS was be derived based on the mixture of experts

(ME) framework [106℄ and the PLS algorithm. The ME

models input-output observations by assuming that they

have been produed by a set of di�erent random soures

(the random soures an be thought of as operating modes)

and the parameters of eah expert, and of eah gating fun-

tion, were determined using the PLS algorithm. It was

demonstrated that the solution of the parameters using

the PLS algorithm overomes the problem of ollinearity

of input data and also makes the Mix-PLS less prone to

over�tting with respet to the number of mixture models.

The Mix-PLS was ompared with the SVR, MLP, Linear

and PLS models, with superior performane in all the pre-

sented ases of study.

5. Model Validation

The objetive of the model validation step is to evalu-

ate the apability/ability of the trained model to perform

generalization to new samples. Generalization auray

an also be used as an estimator for model ranking in a

variable seletion approah (e.g. in wrapper variable se-

letion) [9℄. For a large data set, usually the model is

learned using only a part of the data set and then the

model performane is measured on the remaining data,

usually alled validation data set, using some performane

metri, usually the MSE (e.g. lower values of MSE indiate

better models) or the normalized root mean square error

(NRMSE). The NRMSE is a normalized version of MSE,

often expressed in perentage, whih gives a more intu-

itive analysis on the performane of the model. For small

data sets, a ross-validation tehnique is usually employed

to evaluate the performane of the model. The ommon

ross validation tehniques are the K-fold ross validation

and the leave-one-out ross validation (LOOCV). In K-

fold ross validation, the training data set is randomly split

into K folds, and then the model learning is performed

using the samples from (K − 1) folds, and the resulting

model is evaluated on the remaining fold, using some per-

formane metri. This proess is repeated for all K folds,

and the performane of the model is the average of the

performane metri on the K folds. The LOOCV is usu-

ally employed when the number of samples is very small,

and it is equivalent to the K-fold ross validation when

the number of folds K is equal to the number of samples.

Other approahes measure the quality of a model in terms

of its auray-omplexity trade-o� (ACT), using riteria

suh as the AIC [107℄, the Bayesian Information Criterion

(BIC) [108℄, or the Cp statistis [85℄.

For dynami linear systems, the autoorrelation fun-

tion of the residuals and the ross-orrelation funtions

between the residuals and the input over a set of unseen

data [109℄ are usually employed to evaluate the apabil-

ity of the trained linear dynami model. For non-linear

dynami systems, the work of [110℄ has provided several

metris to evaluate non-linear dynami models based on

NN.

6. Soft Sensor Maintenane

During SSR design the historial data of the proess is

used to learn the SSR model. However, the historial data

ontains limited information, orresponding to a limited

period of time, and possibly also fousing on a limited set

of operation areas of the state spae. When dealing with

new events, not desribed in the historial data, the SSR

tends to derease its performane. In this ontext, and

to overome suh performane deterioration, the objetive

of SSR maintenane is to maintain a good SSR response

even in the presene of proess variations, or some data

hange. Generally, this is done by updating the SSR model

online/reursively, in bath or sample wise mode, using

the inoming samples of the proess (in this ontext the

SSRs are alled �adaptive SSRs� [111℄). From the mahine

learning perspetive, the area of adaptive SSRs is related

to the problem of onept drift. Conept drift means that

the statistial properties of the target variable hanges over

the time, the term onept means the objet/target to be

predited [112℄.

There are three types approahes ommonly employed

in dealing with onept drift: (1) sample seletion, (2)

sample weighting, and (3) ensemble learning (or learning

with multiple onept desriptors) [113℄. Moreover, as al-

ready disussed before, the mostly used models in SSR

appliations are based on multivariate statistial meth-

ods (LS, PLS, PCA) or arti�ial intelligene tehniques

(NNs (mainly the MLP struture), SVRs, FS, and NFS).

In adaptive SSRs suh models an also be employed, but

there is the onern regarding the learning/adaptation of

parameters. The model(s) an be applied as a single
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model, in the sample weighting or sample seletion ap-

proahes, or several models an be applied together in the

ensemble approah.

6.1. Sample Seletion

In sample seletion, the idea is to selet relevant sam-

ples related to the urrent onept. The next step is to

use suh samples to update or retrain the existing model.

Normally, this seletion is done using window-based ap-

proahes, where the samples whih are inside of a win-

dow are used to retrain/update the model, while samples

outside of the window are disarded. The issues of se-

leting the size of the window and deiding when to re-

train/update the model are ruial for a suessful imple-

mentation. If the seletion of the window size is poorly

handled, there is a danger that the SSR adapts to noise

(if the window size is too short) or, in the ase of a too

long window, it an lead to limited adaptation apability

[114℄. Some adaptive methods based on ANN models in

the sample seletion strategy were proposed in the liter-

ature. In [115; 116℄, a moving window was adopted to

retrain the ANN model. When a new bath of samples is

available the old data is dropped out of the window and

the neural model is retrained adapting to the onept of

the new data. In [116℄ the most relevant features were se-

leted o�ine using the �rst part of the training data by

using a forward searh proedure in ombination with a

MLP network.

Adaptive learning methods for NFS and SVR have been

proposed in the literature, and they are usually based on

sample seletion or ensemble learning. NFS are widely ap-

plied for predition [2; 93℄, but their parameters are usu-

ally learned o�ine. Online tuning of NFS an be done by

Evolving Fuzzy Systems (EFS) [117℄. A step-wise online

learning algorithm for SVR training was proposed by [118℄,

where the update an be done by removing or adding new

support vetors, an appliation in the soft sensor ontext is

given in [119℄. In [120℄ it is proposed the Adaptive Kernel

Learning (AKL) framework for predition and monitoring

tasks. In this ase, the SVR optimization problem was

solved by the least squares approah [121℄. In [122℄, an

adaptive kernel learning method was used. The examples

were seleted, and the exlusion of redundant examples

was performed to redue the omplexity of training. It

was shown to be superior to RPLS in the presented ase

of study.

6.2. Sample Weighting

In the sample weighting strategy, the samples are

weighted aording to their age (the importane of the

samples dereases over time). The learning/adaptation

of parameters is usually done using adaptive learning by

means of exponentially reursive learning. The adaptive

learning has relation to the reursive or online learning

where eah sample is presented one and only one to

learn/adapt the parameters, but in adaptive learning there

is the ability to forget old examples by exponentially as-

signing low weights to old samples, usually by setting a

forgetting fator 0 < λ < 1, suh that the model ould

apture the information of the reent data [113; 111℄. Us-

ing suh sample weighting approahes, there is no need to

use memory to store the samples.

In the sample weighting approah, the following learning

strategies have been used in the literature for the LS, PLS,

and arti�ial neural networks (ANN) models. For the LS

solution, there is the reursive LS (RLS) method, whih

is a well known example of reursive learning, where the

oe�ients of a linear model that minimize the linear least

squares ost funtion are reursively omputed. The PLS

is implemented with its reursive/adaptive form, the reur-

sive PLS (RPLS) [123℄. It is the most popular method in

adaptive SSRs [124; 125; 126; 127; 128; 129; 59; 11; 130℄.

For the other state of the art methods, there are some

adaptive learning strategies in the literature. For single

layer feedforward ANN, a fast learning algorithm with of-

�ine and online solutions, alled online sequential extreme

learning mahine (OS-ELM) was proposed in [131℄. All

these methods are able to forget old samples by setting a

forgetting fator. In [132℄ the problem related with expo-

nential weighting of samples in adaptive soft sensors was

studied. It was assumed that when learning the adaptive

models with small values of forgetting fator, the model

su�ers from problems similar to the ones assoiated with

learning of stati models with small number of samples.

Then, based on this, a mixture of low dimensional models

was proposed and derived, based on the mixture of uni-

variate linear regression models. Mixtures of other types

of models, possibly nonlinear, but linear in the parameters

were also onsidered. The proposed method was evaluated

in two time-varying real-world data sets, and ompared in

di�erent settings with the state of the art methods in adap-

tive soft sensors. The proposed method demonstrated to

provide the best results in almost all ases, mainly when

using small values of forgetting fator.

6.3. Ensemble Learning

In the ensemble learning strategies, the goal is to on-

strut a model for eah onept in the data distribution.

When a new input arrives, the �nal predition value is a

ombination of the results of all the models built previ-

ously for all the onepts, suh as a weighted average of

suh results. Moreover, in the ensemble method, there are

two possible areas that may be subjet to adaptation: at

the level of the model ombination, or at the level of the

models. The ensemble method is less attrative beause of

its omputational demand, neessary to proess and store

several models and/or samples.

Ensemble learning methods �nd di�erent onepts in

the historial data and learn a model for eah of these

onepts. In [11℄ a PLS model was onstruted for eah

di�erent onept found (an approah based on the PLS

model error was used to determine the di�erent onepts).
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The �nal predition is a ombination of the set of the avail-

able models, where the ombination takes into aount a

probability of eah model being responsible for the data

to be predited. The adaptation is performed at the level

of model ombination and at the level of reursive adapta-

tion of the models. The authors termed this method the

inremental loal learning soft sensing algorithm (ILLSA).

[133℄ developed a SSR method using an ensemble learning

strategy where a lustering method, based on the fuzzy C-

means lustering (FCM) algorithm, was used to �nd dif-

ferent onepts, and then a SVR model was learned to

predit in eah onept. During online operation, when

a new sample arrives, the FCM algorithm sets the orre-

sponding adequate SVR model to be used to predit the

output.

7. Conlusions

The soft sensor tehnology has important potential for

industrial appliations and aademi researh. From the

industry perspetive, the soft sensor has an enormous po-

tential to be used as a ommerial tool to improve perfor-

mane, e�ieny, automation degree, and output quality

in industrial systems. From the aademy/researh per-

spetive, the soft sensors an be stated as a multidisi-

plinary topi of researh, that enompasses several areas

of study, suh as mahine learning, pattern reognition,

arti�ial intelligene, system identi�ation, and statistial

learning theory. Moreover, it has several topis to be re-

searhed, where the most emergent topis, are the problem

of variable seletion (inluding dynami seletion) and soft

sensor maintenane. Another topi of researh, is regard-

ing the learning of soft sensor models in multiple operating

senarios/modes.

Aknowledgments

The authors aknowledge the support of Projet SCIAD

�Self-Learning Industrial Control Systems Through Pro-

ess Data� (referene: SCIAD/2011/21531) o-�naned by

QREN, in the framework of the �Mais Centro - Regional

Operational Program of the Centro�, and by the Euro-

pean Union through the European Regional Development

Fund (ERDF). Franiso A. A. Souza and Jér�me Mendes

have been supported by Fundação para a Ciênia e a Te-

nologia (FCT) under grants SFRH/BPD/99708/2014, and

SFRH/BPD/112774/2015.

Appendix A. Searh Proedures

In a variable seletion algorithm, a searh proedure is

used to guide the searh for the best subset of variables.

For D input variables, there are a total of 2D − 1 pos-

sible subsets, where only some of the subsets attain the

optimal solution. Typially, the optimal solution may be

attained for only one of the subsets. By searhing over

all possible subsets (this is alled as exhaustive searh), it

is possible to lead to the optimal solution. However, for

exhaustive searh there is the problem of the large om-

putational demand. For example if there are only 20 vari-

ables, i.e. D = 20, there are 1048575 solutions that need

to be evaluated, if the riterion to evaluate one subset

takes approximately ∼ 1(se) (being optimisti), then it

would be neessary ∼ 12 days to selet the best subset.

The branh and bound (B&B) algorithm leads to the op-

timal solution with less omplexity than the exhaustive

searh, under the onstrain that the evaluation funtion

must be monoti [134℄. However, the algorithm still has

an exponential worst ase omplexity, whih may render

the approah infeasible when a large number of andidate

variables is available [39℄.

The large omputational osts assoiated with the ex-

haustive searh and B&B algorithms, aused by the nees-

sity to evaluate so many subsets, an be redued by using

searh strategies that prioritize the omputational time

rather than the quality of the solution, while still provid-

ing good results. Suh strategies are based on rankers,

sequential and stohasti searhes. These tehniques are

brie�y reviewed below.

Appendix B. Ranking Searh

The ranking searh proeeds as follows. First, the im-

portane of eah input variable, with respet to the target

(measured by any riterion, e.g. CC, MI), is omputed.

Then, the variables are ranked aording to their indi-

vidual merit, with respet to the target variable, in a-

ordane with the hosen riterion. Then, only a subset

of the top variables (from the ranked set), are seleted,

and the remaining variables are exluded. In this searh

approah only D evaluations are required; a very fast ap-

proah. This method gains on the speed of seletion, but

loses on the quality of the seleted variables. This happens

beause, the variables are seleted without taking into on-

sideration the interation among them.

Appendix C. Sequential Searh

The sequential searh works by removing or adding vari-

ables sequentially, following a ertain order. The most

ommon sequential searh proedures are the sequential

forward seletion (SFS) and the sequential bakward sele-

tion (SBS). The SBS proedure, proposed by [88℄, starts

with all variables, and at eah step the variable that on-

tributes least to predit the target, aording with the sub-

set evaluation riterion, is removed. The SBS proedure

stops when a pre-spei�ed number of variables are removed

or until the results get satisfatory. The SFS, introdued

by [135℄, starts with an empty subset, and at eah step

the variable that mostly ontributes to predit the target,

aording with the subset evaluation riterion, is added to

the set of seleted variables. These methods are largely

used in variable seletion proedures.
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Both SFS and SBS have the same omplexity in the

worst ase senario (it is neessary to evaluate

D(D+1)
2

subsets), but in a pratial perspetive the SFS exeutes

faster than SBS. This happens beause the SFS algorithm

evaluates smaller subsets than the SBS at the beginning

of the searh.

The major problem related to the SFS and SBS ap-

proahes is that, for example, when a variable is removed

in SBS, it annot be seleted again. This results in the

so alled nesting e�et, i.e. bad deisions made at the be-

ginning of the searh annot be orreted later. To avoid

or alleviate the nesting e�et in the sequential seletion

Stearns [136℄ proposed the Plus-l-Minus-r searh method.

Eah iteration of the Plus-l-Minus-r is divided into two

substeps. In the �rst step, the SFS runs to selet l new

variables, and in the seond step the SBS runs to exlude

r variables from those that have already been seleted.

Pudil [137℄ proposed modi�ations on the SFS and SBS

to allow them to reselet removed variables, then avoid-

ing the nesting e�et, they are alled as sequential forward

�oating seletion (SFFS) and sequential bakward �oating

seletion (SBFS), and their idea is similar to the Plus-l-

Minus-r algorithm.

Appendix D. Stohasti Searh

Stohasti methods are optimization methods whih in-

lude some randomness in the searh proedure. This

an be thought as a good strategy when dealing with a

large number of input variables [138℄, sine it orresponds

to searh randomly over the input spae, but following a

ertain heuristi. The lass of stohasti algorithms in-

ludes, but is not restrited to, Geneti Algorithms (GA),

Ant Colony Optimization (ACO), and Simulated Anneal-

ing (SA).

The GA is inspired by the biologial evolution, more

spei�ally by the Darwinian priniples of natural evolu-

tion, where the best individuals have a high probability of

survival; It was �rst introdued in [139℄. In the GA, solu-

tions are enoded into hromosomes (individuals) and the

�ttest ones are more suseptible, have higher probability,

to be seleted for reprodution, produing o�spring with

harateristis of both parents. For some of the o�springs

an operation alled mutation (inspired by the natural evo-

lution) is applied, to inlude diversity in the solution.

The ACO is an optimization methodology based on ant

behaviors to establish the shortest route paths from their

olony to food soures and bak [140℄. In nature, ants

randomly walk for �nding food, then they return to their

olony while laying down pheromone trails. Other ants,

when �nding suh path, tend to follow the trail and when

they �nd food, they also walk bak to the olony laying

down pheromone, thus reinforing the trail.

SA is a meta-heuristi proposed in [141℄ for global op-

timization problems. SA is inspired in the behavior of a

warm partile in a potential �eld. Generally, a partile

tends to move down, to the lower potential energy, but

sine it has kinet energy (aused by the non-zero tem-

perature), it moves around with some randomness, and

oasionally it jumps to higher potentials. The partile

is annealed when the time passes in this proess, i.e. if

temperature dereases gradually, so that the probability

to move upwards dereases with time. In SA, the solution

is represented by the partile and the potential energy rep-

resents the ost funtion.
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