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Abstract: This paper cover a new method for variable selection in Soft Sensors design for

industrial applications. We propose the use of Mutual Information for variable selection

and to exclude redundant variables. As evaluation of quality model, we use a new criterion

of tracking precision called relative variance tracking precision in parallel with the root

mean square criterion. The proposed methodology was successfully applied to infer the total

nitrogenous TN in a wastewater treatment system Benchmark.

Keywords: Soft Sensors, Variable Selection, Mutual Information, Neural Networks

1. INTRODUCTION

Data-driven Soft Sensors (DDSS) are inferential mod-

els that use available on-line sensor measures for on-

line estimation of process variables which cannot be

automatically measured at all, or can only be mea-

sured at high cost, sporadically, or with high delays

(e.g. laboratory analysis). The construction of DDSS

models is based on measurements which are recorded

and provided as historical data. The approximation

methods that serve as the basis for SS are empiri-

cal predictive models such as Multi-Layer Perceptron

(MLP), Support Vector Machines (SVM). DDSS are

valuable tools to many industrial applications such

as refineries, pulp and paper mills, wastewater treat-

ment systems, just to give few examples (Fortuna et

al., 2006).
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Pre-processing is an essential step for a correct de-

velopment of the DDSS, the goal of this stage is to

treat the data in such a way, that it can be effectively

processed by the model. The usual steps in this phase

are the handling of missing data, outliers detection

and replacement, input variable selection (IVS) or fea-

ture selection, handling of drifting data and detection

of delays between the particular variables (Kadlec et

al., 2009). When data is efficiently treated and in-

put variables are correctly selected, the DDSS model

can reproduce correctly the input-output relationship.

Methods for selection of input variables can be clas-

sified in two classes: filter methods and the wrapper

methods (Kohavi and John, 1997). Filter methods use

a statistical measure to classify the variables, accord-

ing to their influence and relevance on the target vari-

able. On the other hand, wrapper methods use the

learning model as the basis for selection. Often wrap-

per method may achieve more accurate prediction re-

sults because variables selection will take into account

the approximation model. Thus, variables selection

will be performed such that prediction error is mini-

mized. However, filter methods are more generic since

they only select variables for the prediction setting, not

only making them suitable to understand the process,

but also to leaving open the options for choosing the



type of approximation model that will be subsequently

used to construct the SS.

Mutual information (MI), is a high order statistical

parameter that is having growing application in the de-

sign of filter methods for variable selection. The main

advantages of MI are capacity to measure the depen-

dency between variables, including nonlinear depen-

dency, the robustness to noise and invariance to non-

linear data transformation (Chow and Huang, 2005).

However, it is difficult to use MI in high dimensional

spaces as required for analysis and modeling in prob-

lems involving a large of variables. This is due to the

difficult of estimating the probability density (PDF),

that is the basis of MI.

To solve this problem, some authors have developed

variable selection algorithms, for classification prob-

lems, that can be extended for regression problems,

based on two-dimensional (2D) approach where vari-

able selection is performed by analyzingMI of pairs of

variables (Battiti, 1994; Peng et al., 2005; Chow and

Huang, 2005; Kwak and Choi, 2002). A greedy se-

lection approach was proposed by (Battiti, 1994), se-

lecting relevant variables and at the same time exclud-

ing redundant variables according a pre-determined

factor. Variants of Battiti’s Mutual Information Fea-

ture Selector (MIFS) are: MIFS with Uniform Distri-

bution (MIFS-U) (Kwak and Choi, 2002), the min-

redundancy max-relevance (mRMR) criterion (Peng

et al., 2005). But these methods fail to detect the

best subset, because do not take into consideration the

relation among variables.

The common approaches in variable selection algo-

rithm perform a forward search procedure using a cer-

tain criterion as stop, like maximum mutual informa-

tion criterion, but these approaches can be expensive

computationally when input space is large, making the

search hard expensive. A idea is that before apply a

forward search procedure, be applied a pre-processing

step that remove redundant variables and remains that

are essential for the model.

This paper proposes a input variable selection (IVS)

algorithm based on mutual information. The algorithm

is divided in two steps. First, it is performed the exclu-

sion of redundant variables using mutual information

criterion and after is performed a forward search pro-

cedure based on high dimensional mutual information.

Moreover, the paper proposes and demonstrates the

use of the VS method to estimate the total nitrogen

TN in the effluent in a benchmark for watstewater

treatment system.

This paper is organized as follows. Section 2 gives

the mathematical definition of the problem of input

variable selection. Section 3 presents the mathemati-

cal definition of mutual information and presents how

to estimate it through a K-Nearest Neighbor method.

The new variable selection algorithm proposed in this

paper is presented in Section 4. Section 5 presents the

RVTP evaluation criterion. Section 6 presents exper-

imental results. Finally, Section 7 gives concluding

remarks.

2. INPUT VARIABLE SELECTION

The problem of IVS consists on analyzing all available

the inputs for a system and choose a subset of vari-

ables that are adequate to be used for inputs in order

to develop a model of the system for purposes such

as classification, prediction, or control. If unnecessary

variables are kept in the model, noise may be intro-

duced into the model and the overall results may be

poorer than if only the required inputs are used. More-

over, if irrelevant variables are deleted from the model,

the soft sensor accuracy can be improved (Qin, 1997).

Therefore, it is important to select a subset of process

variables that are truly relevant to the predicted vari-

ables. Below, the mathematical definition of the IVS

problem is given.

2.1 IVS Problem Statement

The IVS problem can be described mathematically as

follows. For any set of elements A = {a1, . . . , an},
define the ν operator that transforms A into vector

a = ν(A) = [a1, . . . , an]
T . Only ordered sets will

be considered in this paper. Conversely, A = ν−1(a).
A function G receives input from variables belonging

to set U = {u1(t), u2(t), . . . , up(t)},

y(t) = G(u), (1)

where u = ν(U). It is assumed that G can be a

linear or nonlinear mapping. To estimate G, it is

assumed that a set X = {x1(t), x2(t), . . . , xn(t)}
of measurement variables is available. It is assumed

that the most appropriate xi variables can be selected

during the IVS design. It is assumed that:

U ⊆ X. (2)

The goal of IVS is to select the best subset of variables

S ⊆ X, (3)

that most adequately represent the information con-

tained in the real input variables from U . Hence, an

approximation model for G (1) can be written as:

ŷ(t) = F (s; θ), (4)

where F is a functional mapping parameterized by θ,
and s = ν(S).

In the approach proposed in this paper, the variable

selection is performed as the first step excluding re-

dundant variables. Then, in a second step, a high di-

mensional mutual information criterion is employed

in a forward search procedure to select the best vari-

ables. Often, mutual information analysis in variable

selection methods is performed between pairs of vari-

ables. The approach followed in this paper constitutes



a more realistic analysis alternative to mutual infor-

mation since the analysis is performed directly in the

high-dimensional space of the set of all relevant vari-

ables that are candidate for the selection procedure.

3. MUTUAL INFORMATION

Process engineers are often eager to find the optimal

levels of process variables that make the key quality

variable as close to its target as possible (Jun et al.,

2009). Some studies have used techniques based on

variance such as principal component analysis (PCA)

to select these variables (Warne et al., 2004). These

methods are designed for linear models, so they can

not be the best choice for non-linear modeling. A

PLS method is applied in (Jun et al., 2009; Fortuna et

al., 2006) to select best variables. This method shows

good results when the model used is linear and the

data is multicolinear and noised. Recently the use of

MI for variable selection in non-linear problems is

growing. Mutual Information is a general correlation

measure that unlike the correlation coefficient can be

generalized to all kinds of probability distributions.

Below, it is given the mathematical definition of multi-

dimensional MI. Also, it is discussed how MI can

be estimated in high dimensional spaces using a K-

nearest neighbors (KNN) based approach.

3.1 Mutual Information

Mutual Information is a non-linear measure of depen-

dency between variables. It can be calculated through

entropy measurements (Cover and Thomas, 1991). Let

x
1
, . . . , xn, y be random variables, x = [x1 . . . xn]

T .

In this paper, it will be assumed that x
1
, . . . , xn are

inputs and y is an output of a system. The Mutual

Information of y and x is defined as the amount of

information that input x contains about output y, and
can be calculated as:

I(x; y) = H(y) +H(x1) + . . .+H(xn)

−H(y, x1, . . . , xn).
(5)

H(y), H(x1), . . ., H(xn) and H(y,x) are the Shan-
non entropy (Cover and Thomas, 1991). The Shannon

entropy of a random variable z1 is defined as:

H(z1) = −

∫

z1

f(z1) log[f(z1)]dz1. (6)

In an n-dimensional space of n random variables

z1, . . . , zn, the multi-dimensional entropy is defined

as:

H(z1, . . . , zn) = −

∫

z1

. . .

∫

zn

f(z1, . . . , zn)

× log[f(z1, . . . , zn)]dz1 . . . dzn,

(7)

where f(z1) and f(z1, . . . , zn) are the probability

density function (PDF) of z1, and the joint PDF of

z1, . . . , zn, respectively. The base of the logarithm de-

termines the units in which information is measured.

Natural logarithms will be used in the sequel, so that

entropy will be measured in nats.

3.2 Mutual Information Estimation

The PDF estimation is generally performed using an

histogram approach (Ludwig. et al., 2009), but this is

very computational expensive and non reliable, gener-

ating large errors in high dimensional problems. An

alternate approach is to use Parzen window meth-

ods, but for high dimensional space such methods

become computational expensive, and it becomes dif-

ficult choose the correct window size.

In the method proposed in this paper, PDF estima-

tion is performed using the KNN approach proposed

by (Kraskov et al., 2004). Assume that a set Z =
{(xi,yi), i = 1, . . . ,m} of m samples zi = (xi,yi)
of random variables z = (x,y) is available, where

xi, and yi may be vectors or scalars, as special case.

Define the norm of ||(u,v)||max = max {||u||, ||v||},
where || · || denotes the euclidean norm. Let Nk(i) be
the set of k nearest neighbor samples of (xi,yi) with
respect to the norm || · ||max, and let:

εx(i) = max{‖ xi − x
′

i ‖ | (x
′

i,y
′

i) ∈ Nk(i)}, (8)

εy(i) = max{‖ yi − y
′

i ‖ | (x
′

i,y
′

i) ∈ Nk(i)}, (9)

ε(i) = ||εy(i), εx(i)||max, (10)

where z
′ = (x′

i,y
′

i) is the k
th nearest neighbour of

zi, according with the maximum norm. Taking into

account (10) we can count the number of nx points

whose distance from xi is strictly less than ε, and
similarly the number of points, ny, whose distance

from yi is strictly less than ε.

In this way, was shown by (Kraskov et al., 2004) that

MI can be estimated by:

Î(x;y) =

ψ(k) + ψ(m)−
1

k
−

1

m

m∑

i=1

{ψ[nx(i)] + ψ[ny(i)]},

(11)

where ψ is digamma function (Kraskov et al., 2004).

For n random variables x1,x2, . . . ,xn−1,y the fol-

lowing extension of (11) holds:

Î(x1;x2; . . . ;xn−1;y) =

ψ(k) + (n− 1)ψ(m)−
1

m

m∑

i=1

{
ψ[nx1(i)]

+ψ[nx2(i)] + . . .+ ψ[nxn−1
(i)] + ψ[ny(i)]

}
.

(12)

An advantage of the above KNN-based method is that

it does not simply replace entropies in (5) with their

estimates, but it is designed to cancel errors of indi-

vidual entropy estimates. A practical drawback of the

KNN-based approach is that the estimation accuracy

depends on the value of k and there seems no sys-

tematic strategy to choose the value of k appropriately



(Suzuki et al., 2008). With a small value for k, the esti-
mator has a large variance and a small bias, whereas a

large value of k leads to small variance and large bias.

In this paper, a range of k = 6, . . . , 20 has been used,

and the final MI estimate results from the mean of the

estimates for all the values of k in this range.

4. VARIABLE SELECTION ALGORITHM

This section proposes the new input selection algo-

rithm based on high dimensional mutual information

by minimal redundancy (HDMIVSR). Assume there

is available a data-set D = {(x(t), y(t)) : t =
1, . . . , N} of measurements of input and output vari-

ables for N time instants t = 1, . . . , N , where x =
ν(X) = [x

1
, . . . , xn]

T , and X = {x1, . . . , xn} is the
set of input variables that will undergo the selection

procedure for which there is available the measure-

ments included in D. ν is an operator that transforms

a set of variablesX into the vector whose components

are the variables of the set.

The variable selection algorithm proposed here can be

divided in two main steps: (1) detection and exclusion

of redundant variables, and (2) a forward search pro-

cedure, using MI (5) as criterion of selection, until

a stop condition is meet. To estimate MI the multi-

dimensional estimator (12) will be employed.

In this paper the redundancy between two random

variables xi and xj is defined as the following redun-

dancy coefficient:

R(xi, xj) =
I(xi;xj)

H(xi) +H(xj)
. (13)

R(xi, xj) takes values between 0 and a maximum

value of

Rmax(xi, xj) =
min[H(xi), H(xj)]

H(xi) +H(xj)
, (14)

where R(xi, xj) = Rmax(xi, xj) corresponds to a

high redundant variable and a R(xi, xj) = 0 means

that the two variables are independent. Using (13), and

(14), a normalized version of (13) that can take values

between a minimum of 0 and a maximum of 1, can be
written as follows:

R̂(xi, xj) =
R(xi, xj)

Rmax(xi, xj)
=

I(xi;xj)

min[H(xi), H(xj)]
.

(15)

The algorithm for removal of redundant variables

works as follows. For every pair of input variables

(xi, xj), such that ρ(xi, xj) > K, the variable of the

pair that has the lowest influence on the output, y, is
removed. K is a free parameter. A parameter K can

variate between 0 and 1, a typical adequate value for

K is 0.4. The degrees of influence of xi and xj on

the output are estimated using (15) as R̂(xi, y), and

R̂(xj , y), respectively. The HDMIVSR algorithm is

described as follows:

I) (Initialization) Set X ← “Initial set of n vari-

ables”, and S ← “empty set”; set k = 1.
II) (Detect redundant variables) Set XR ← “Set of

selected redundant variables to be excluded”; set

X ← X\XR.

III) (Computation of MI with the output variable) for

each variable x ∈ X compute I(x; y).
IV) (Choice of first feature) Find the variable x for

which I(x; y) is maximum, i.e. x =argmax
u∈X

{I(u; y)}; set Ik
max

= I(x; y) =max
u∈X

{I(u; y)};

set Ik−1

max
= Ik

max
/2; set X ← X\{x}; set

S ← {x};
V) (Forward Selection) repeat until Ik−1

max
> Ik

max

i) k = k + 1.
ii) (Computation of MI) Find variable x ∈

X that, when incrementally added to the

set of selected variables, S, maximizes the

high-dimensional MI I[ν(S ∪ {x}); y], i.e.
x =argmax

u∈X

{I[ν(S ∪ {u}); y]};

iii) set Ik
max

= I[ν(S ∪ {x}); y];
set X ← X\{x}; set S ← S ∪ {x};

VI) Output the set S containing the selected vari-

ables.

5. EVALUATION CRITERION

The most common indicator of quality models is the

root mean square error (MSE), but the MSE does not

measure the tracking precision. (Li et al., 2009) pro-

posed the use of relative variance tracking precision,

RVTP, for soft sensors applications:

RV TP = 1−
σ2

error

σ2
measurement

, (16)

where σ2

error is the variance of the prediction error

(difference between the model prediction and the mea-

surement value), and σ2

measurement is the output mea-

surement variance, both computed considering all the

samples of the complete test set. RVTP (16) indicates

the tracking precision between output and the model

when the output changes. It is a measure of how pre-

cisely the SS output remains with enough precision

when the value of the output changes. When RVTP

is less than zero, the precision of SS is very low. The

closer RVTP approaches 1, the more accurately the SS

tracks the real process (Li et al., 2009).

6. EXPERIMENTAL RESULTS

This section presents experimental results of a case

study concerning the estimation of the total ni-

trogen TN at the effluent of a wastewater treat-

ment plant (WWTP). The WWTP study was con-

ducted using the Benchmark Simulation Model No. 2

(BSM2) (Jeppsson et al., 2006). BSM2 is a platform-

independent WWTP simulation environment defining

a plant layout, a process model, influent data, test



Table 1.

Variables Description

Dissolved Oxigen in effluent u1

Dissolved Oxigen in reactor 1 u2

Dissolved Oxigen in reactor 2 u3

Dissolved Oxigen in reactor 3 u4

Dissolved Oxigen in reactor 4 u5

Dissolved Oxigen in reactor 5 u6

TSS (Suspended solids) in influent u7

TSS (Suspended solids) in effluent u8

TSS (Suspended solids) in reactor 1 u9

TSS (Suspended solids) in reactor 2 u10

TSS (Suspended solids) in reactor 3 u11

TSS (Suspended solids) in reactor 4 u12

TSS (Suspended solids) in reactor 5 u13

TSS (Suspended solids) in Aerated Settler u14

TSS (Suspended solids) in settler u15

Settler sludge heigth u16

Qin (Influent flow rate) u17

Qe (Effluent flow rate) u18

Qpu (Primary settler underflow flow rate) u19

Influent temperature u20

Effluent temperature u21

Instantaneous sludge wastage rate u22

Instantaneous methane production u23

Instantaneous total gas flow normalized to P-atm u24

Instantaneous pumping energy u25

Table 2.

Selected variables for different values ofK

Group Selected Variables

K = 1.00 G1 u24,u23,u1,u2,u3,u6,u5,u4,u14,

u11,u10,u9,u12,u13,u20,u21,

u15,u8,u25,u22,u17,u18,u19,u7,u16

K = 0.90 G2 u23,u21,u20,u13,u12,u11,u14,u15,

u8,u1,u7,u6,u5,u10,u9,

u22,u19,u18,u2,u3,u4,u16

K = 0.80 G3 u23,u21,u20,u13,u12,u11,u14,u15,

u8,u1,u7,u6,u5,u10,u22,

u18,u2,u3,u4,u16

K = 0.70 G4 u23,u21,u20,u13,u12,u14,u15,u8,

u1,u7,u6,u5,u10,u22,u18,

u2,u4,u16

K = 0.60 G5 u23,u21,u20,u13,u14,u15,u1,u7,

u6,u2,u22,u10,u4

K = 0.50 G6 u23,u21,u20,u13,u14,u1,u7,u6,u2,u22

K = 0.40 G7 u23,u21,u20,u13,u7,u1,u6,u2,u22

K = 0.30 G8 u23,u21,u20,u13,u7,u22,u2

K = 0.20 G9 u23,u21,u13

K = 0.10 G10 u13

procedures and evaluation criteria. The benchmark

is evaluated for two years with acquisition data for

the variables being available with a 1 hour sampling

interval. There are 25 input variables in the data-set

which are candidates for the variables and delay selec-

tion problem. We define the set of input variables as:

U = [u1, u2, . . . , u25]
T and the output, TN , as y. The

description of each variable, in U is given by Table 1.

The HDMIVSR algorithm proposed in Section 4 was

applied to estimate TN . Different values for K were

tested to identify what is the best value to perform the

prediction. The selecteds inputs variables are shown in

Table 2.

Table 3.

Prediction results for each group

Group
RMSE RMSE RVTP RVTP

Train Evaluation Train Evaluation

G1 0.0100 0.0323 0.91 0.62

G2 0.0116 0.0175 0.79 0.65

G3 0.0132 0.0322 0.76 0.67

G4 0.0129 0.0312 0.76 0.60

G5 0.0139 0.0244 0.74 0.63

G6 0.0206 0.0620 0.72 0.54

G7 0.0172 0.0471 0.65 0.66

G8 0.0246 0.0335 0.55 0.56

G9 0.0319 0.0289 0.42 0.57

G10 0.0329 0.0433 0.40 0.37
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Figure 1. RVTP value for each group (see Table 2 for

the corresponding values ofK).

Then it was applied a MLP model with architecture

N × 5× 1, where N is the number of input variables

and 5 is the number of hidden nodes. Sigmoidal acti-

vation functions were used in the hidden layer, and lin-

ear activation functions were used in the output layer.

The training process uses the Nguyen Window algo-

rithm for weights initialization, and the Levenberg-

Marquardt training method with Mean Squared Error

(MSE) as performance function, and minimum gradi-

ent threshold, T = 10−10, as stop criterion. As eval-

uation criterion will be used root mean square error

RMSE in train and test set. The results are shown in

Table 3.

Analyzing the Figs. 1 and 2 is possible to conclude

that the G7 group (K = 0.4) achieves the best trade-
off between the number of selected input variables,

and the train and validation accuracy. Thus, it is possi-

ble to conclude that withK = 0.4 the model achieves

the best results. Fig. 3 presents the prediction results.

7. CONCLUSION

This paper proposed an algorithm to perform variable

selection in prediction settings. The main advantage

of this algorithm in comparison with previously pro-

posed methods is the exclusion of redundant variables

before applying the forward variable search proce-

dure. Thus, by reducing the search space, the forward

search procedure becomes faster. The newmethod was



0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 2 3 4 5 6 7 8 9 10

M
S

E

Group index

Test
Train

Figure 2. MSE value for each group (see Table 2 for

the corresponding values ofK).

 

N
o
rm
a
li
z
e
d
 T
o
ta
l 
N
it
ro
g
e
n
 i
n
 e
ff
lu
e
n
t 
(m
g
/L
)

0

0.2

0.4

0.6

0.8

1

Samples (1h)
0 50 100 150 200 250 300 350

Figure 3. TN estimation using the variables selected

by HDMIVSR algorithm for the G7 group (K =
0.4).

applied for a waste water treatment plant data-driven

soft sensor application. The results of applying the

selected variables in the prediction setting have shown

good prediction accuracy. In this case study, it was

concluded that removing irrelevant variables with the

factorK = 0.4 is a good choice.
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