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Abstract

This paper proposes a new method for input variable

and delay selection (IVDS) for Soft Sensors (SS) design.

The IVDS algorithm is composed by the following steps:

(1) Time delay selection; (2) Identification and exclusion

of redundant variables; (3) Best variables subset selec-

tion. The IVDS algorithm proposed in this work per-

forms the delay and variable selection through two dis-

tinct methods, mutual information (MI) is applied to delay

selection and for variable selection a multilayer percep-

tron (MLP) based approach is performed. It is shown in

the case studies that the application of the delay selection

before applying the variable selection increases the gen-

eralization of the MLP-model. The algorithm uses the rel-

ative variance tracking precision (RV TP ) criterion and

the mean square error (MSE) to evaluate the precision

of soft sensor. Simulation results are presented showing

the effectiveness of the method.

Keywords: variable selection, soft sensors, neural net-

works, multilayer perceptrons.

1. Introduction

Data-driven soft sensors (DDSS) are inferential models

that use on-line available sensor measures for on-line es-

timation of variables which cannot be automatically mea-

sured at all, or can only be measured at high cost, sporadi-

cally, or with high delays (e.g. laboratory analysis). These

models are based on measurements which are recorded

and provided as historical data, the methods themselves

are empirical predictive models like Multi-layer Percep-

tron (MLP), Suport Vector Machines (SVM), etc. They

are valuable tools to many industrial applications such as

refineries, pulp and paper mills, wastewater treatment sys-

tems, just to give few examples [5].

The development of DDSS can be divided into four

main stages: (I) Data collection, selection of historical

data; (II) Data pre-processing; (III) Model selection, train-

ing and validation; (IV) Soft sensor maintenance. In the

first stage the training and evaluation data of the model

are selected. The usual steps in pre-processing are the

handling of missing data, outliers detection and replace-

ment, selection of relevant variables (i.e. feature selec-

tion), handling of drifting data and detection of delays be-

tween the particular variables [8]. One problem in the pre-

processing step is that it requires a large amount of manual

work and expert knowledge about the underlying process.

The model selection, training and validation phase is one

of most important in soft sensors development, requiring

the correct selection of the model, so that it can correctly

reproduce the target variable. The last step is soft sen-

sor maintenance, where the goal is to maintain a good soft

sensor response even in the presence of process variations,

or some data change.

The DDSS is built based on empirical observations of

the process, where steps (II) and (III) above are essential

for a correct development, being directly related to the se-

lection of input variables and respective time lags and to

the type of selected prediction model.

Some techniques were proposed for delay selection in

soft sensors context. A linear time-delay model optimized

by genetic algorithm was proposed by [13] to delay selec-

tion, was show a good performance to predict the nitro-

gen oxides NOX and oxygen O2 estimation in combus-

tion operation in industrial boilers. A method based on

radial basis function model (RBF) was used to select best

delays using the MSE as cost function [4]. A delay se-

lection method was proposed by [11] using mutual infor-

mation method for data-driven prediction using non-linear

models and was shown that mutual information may give

better results when compared with a correlation analysis

approach in the case analyzed.

Process engineers are often eager to find the optimal

levels of process variables that make the key quality vari-

able as close to its target as possible. Some studies have

used techniques based on variance as principal component

analysis (PCA) for variable selection [14], these methods

are designed for linear models, so they can not be the best

choice for non-linear modeling. A method to select best

variables is to use PLS method [7, 5], when the model



used to prediction is linear and the data have multicolin-

earity and noise it show good results. Studies have been

based on multilayer perceptron networks (MLP), calcu-

lating the salience (a measure of the importance of vari-

ables) of each variable using mean square error as crite-

rion (MSE) [9], and using a backward search procedure to

iteratively exclude the less important variable until a stop

condition is met, with the network being retrained after

each variable removal. The paper [12] studied the MLP

to perform variable selection, characterizing the salience

of each variable in terms of the effect of its presence in

the MSE and discussed when is necessary to retrain the

network when a variable is removed. In most of cases the

selection using MLP needs to retrain the network which

makes the approach very computational expensive when

the dimension of input space is large. [1] proposed an ap-

proach that uses a neural network model as the tool for

variable selection. In this method the network is trained a

single time, and when a variable is removed the remain-

ing weights are adjusted so that the overall input-output

behavior is kept constant, but this method fails to detect

and exclude redundant variables.

Many DDSS applications have used the MSE criterion

[5, 11, 8, 14]. However, MSE does not measure the track-

ing precision between the prediction and the real, so [10]

proposed the use of relative variance tracking precision

(RVTP), being more suitable for DDSS applications.

The method proposed in this paper uses mutual infor-

mation to select the best delay for each variable. After

delay selection for each variable, the linearly redundant

variables are removed, and finally the MLP-based variable

selection algorithm proposed by [1], is performed using

the RVTP and the MSE as the stopping condition. This

work introduces the following innovations: (1) methodol-

ogy for selecting both delays and variables in the same

with; (2) delay selection using mutual information has

been seldom explored previously; (3) removing redun-

dant variables before MLP-based variable selection; and

(4) the use of RVTP as one of the parameters for model

evaluation, exhibiting the advantages of its use. Simula-

tions performed with industrial process data sets are pre-

sented. The simulations show that the proposed algorithm

has better results when compared with previous methods.

The method was successfully applied to predict the butane

concentration C4 in a debutanizer column and to predic-

tion nitrogenous total in the effluent TN in a wastewater

treatment system model.

The paper is organized as follows. Section 2 gives the

mathematical definition of the problem of input variable

and respective time lags selection. Section 3 presents

the mathematical definition of mutual information and

presents how it can be used used to select the best delay for

each variable. In Section 4 is given a review of the method

proposed by [1]. The new MLP-based variable selection

algorithms proposed in this paper are presented in Section

5. TheRV TP evaluation criterion is defined in Section 6.

Section 7 presents experimental results. Finally, Section 8

gives concluding remarks.

2. Input Variable and Delay Selection

The selection of input variables can be defined as the

optimal subset of the whole set, so that it can correctly

predict the output using a certain model. However, when

it comes to complex industrial processes there is also the

issue of selecting the delay of each variable, in this case,

the selection of input variables has two problems, the first

one is to select the best subset, the second is to find re-

spective time lags for each variable. Below is given the

mathematical definition of the problem.

2.1. IVDS Problem Statement

The IVDS problem can be described mathematically

as follows. For any set of elements A = {a1, . . . , an},
define the ν operator that transforms A into vector a =
ν(A) = [a1, . . . , an]

T . Only ordered sets will be con-

sidered in this paper. Conversely, A = ν−1(a). A

function G receives input from variables belonging to set

U = {u1(t− k1), u2(t− k2), . . . , up(t− kp)},

y(t) = G(u), (1)

where u = ν(U), and the set of time delays is de-

fined as K = {k1, k2, . . . , kp}. It is assumed that G

can be a linear or nonlinear mapping. To estimate G,

it is assumed that a set XD = {x1(t − d1), x2(t −
d2), . . . , xn(t − dn)} of measurement variables is avail-

able, where D = {d1, d2, . . . , dn} is the set of time de-

lays. It is assumed that both the most appropriate xi vari-

ables and corresponding delays di can be selected during

the IVDS design. Assume that for each variable xi(t−di)
there is an optimal delay d∗i . Then defineXD∗ = {x1(t−
d∗1), . . . , xn(t−d

∗
n)}, whereD

∗ = {d∗1, . . . , d
∗
n} is the set

of optimal delays. It is assumed that

U ⊆ XD∗ . (2)

The goal of IVDS is to select the set of optimal delays

D∗ = {d∗1, . . . , d
∗
n}, and a subset of variables

X∗
D∗ ⊆ XD∗ , (3)

that most adequately represent the information contained

in the real input variables from U . Hence, an approxima-

tion model for G (1) can be written as:

ŷ(t) = F (x∗
D∗ ; θ), (4)

where F is a functional mapping parameterized by θ, and

x
∗
D∗ = ν(X∗

D∗).
It is possible to separate delay selection from variable

selection in IVDS. In the approach proposed in this pa-

per, delay selection is performed as the first step using

maximum mutual information as criterion to obtain XD∗ .

Then, in a second step, an MLP-model approach is be em-

ployed to select the best variables,X∗
D∗ . The definition of

mutual information is given below, and it is shown how to

select best delay for each variable.
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3. Delay Selection

Industrial installations track of their systems by con-

tinuously recording the measurements of a large amount

of sensors. Industrial competition leads to a need to in-

crease the knowledge of the process for further optimiza-

tion. For example, consider a process where it would be

important to find out how long it takes for material to

flow from one point in the process to another. Injecting

tracing substances and measuring the time directly might

be difficult, expensive, and interfere with the process in

a negative way. Instead, it might be possible to measure

two related variables, for example temperature, at the two

points in the process and find out the time lag between the

strongest correlations. The time lag can then give a very

good indication of how long it takes for material to travel

from one point to the other. Mutual information is a gen-

eral correlation measure that unlike the correlation coeffi-

cient can be generalized to all kinds of probability distri-

butions. Given an appropriate model of the distributions,

this measure can potentially detect non-linear dependen-

cies between variables. In this work mutual information is

used as the basis to detect the best delay for each variable.

3.1. Discrete Mutual Information

Mutual information (MI) is a measure of dependency

between variables, that takes into account the probabilis-

tic distribution of variables. It can be calculated through

entropy measurements [3]. The mutual information be-

tween two discrete random variables X and Y is given

by:

I(Y ;X) = H(Y ) +H(X)−H(X,Y ), (5)

where H(X) and H(X,Y ) are Shannon entropies [3] are

given by:

H(X) =
N∑

i=1

− log[P (xi)] · P (xi), (6)

H(X,Y ) =

N∑

i=1

N∑

k=1

− log[P (xi, yk)] · P (xi, yk), (7)

where N is the number of discrete values (bins) for each

variable, and xi is the event i of variable X , for i =
1, . . . , N .

3.2. Delay Selection Procedure

The purpose of the delay selection procedure is to find

d∗i ∈ D∗ for i = 1, . . . , n. The approach proposed here

uses MI. For each input variable, xi(t− di), the MI of the

input-output pair is computed for a set of admissible input

delays. The chosen delay, d∗i , is the one that maximazes

the MI (5):

d∗i = argmaxdi∈∆i
{I[xi(t− di); y(t)]} (8)

where ∆i is the set of admissible values of di and i =
1, . . . , n.

This approach is independently used for each input

variable to chose the most appropriate time lag for the in-

put variable, without considering the dependency among

input variables.

4. MLPB Review

In this section the MLP-based variable selection

(MLPB) developed by [1] is reviewed. This section starts

with an overview about MLP model. Then, the MLPB

algorithm is presented.

4.1. MLP Model

For a multilayer perceptron feed-forward neural net-

work model M = (V,E,w), let V be the set of nodes,

which is divided into the subset VI of input nodes, the

subset VH of hidden nodes and the subset VO of output

nodes. E ⊆ V × V is the set of connections. VH is parti-

tioned into collection of sets of nodes Vi, where Vi is the

set of nodes of hidden layer i, i = 1, . . . , NL, and NL is

the number of layers. For each connection from node j to

node i, (i, j) ∈ E, it is associated a weight wij ∈ R, and

Xij is input i of neuron j, Yj the output of neuron j and

wij the weight from neuron i to neuron j.

4.2. MLPB Algorithm

Let X = {x1, . . . , xn} be the set of input variables,

and y the output variable, for the variable selection prob-

lem. X corresponds to the result XD∗ of the delay se-

lection method of Sec. 2. Assume there is available a

data set D = {(x(t), y(t)) : t = 1, . . . , N} of measure-

ments of input and output variables for N time instants

t = 1, . . . , N , where x = ν(X) = [x1, . . . , xn]
T .

Assume that a MLP neural network, MX , where the

inputs are the elements of X , and the output is y, was

trained with the data set of measurements D to approxi-

mate G (1). The variable selection procedure can be used

independently of the learning method used for training.

The elimination criterion used to select the less relevant

input variable in the network is given by the minimal sum

of inputs criterion for the nodes of the first hidden layer

V1 (the layer whose nodes receive inputs from variables

in X). The MLPB algorithm performs a backward search

procedure, using the following minimal weighted sum of

input nodes criterion to chose a node from V1:

r =argmin
xj∈X

{
N∑

t=1

xj(t)
∑

i∈V1

wij

}
(9)

and pruning-off from X the selected irrelevant input xr,

such that the variables remaining are those belonging to

X − xr. After the removal of the input node/variable, the

remaining weights are adjusted in such a way that the net

input of every node of V1 remains unchanged. This cor-

responds to finding δij such that the following equalities
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hold:

N∑

t=1

∑

xj∈X

wijxj(t) =
N∑

t=1

∑

xj∈{X−xr}

(wij + δij)xj(t),

∀ i ∈ V1.

(10)

The quantities δij are the adjusting factors for the weights

wij . Simple algebraic manipulations yield the following

linear system of equations:

N∑

t=1

∑

xj∈{X−xr}

δijxj(t) =

N∑

t=1

wirxr(t), ∀ i ∈ V1. (11)

Without loss of generality (nodes and variables can be

re-numbered), assume that in (11) i = 1, . . . , P , j =
1, . . . , Q, and r = Q + 1. Equations (11) can be rep-

resented in vector form as

Aδ = b, (12)

having an overdetermined solution, where δ =
[δ11, . . . , δ1Q, . . . , δP1, . . . , δPQ]

T , A = [aij ] is a ma-

trix where aij = 0, ∀i, j, except aik =
∑N

t=1
xj(t) for

k = (i − 1)Q + j, and j = 1, . . . , Q. b = [bi] is a

vector where bi =
∑N

t=1
wirxr(t). A way to solve (12)

is by means of a standard least-square method. A com-

mon way to solve (12) is to use the conjugate-gradient

method called CGPCNE [2], providing a good and fast

least-squares solutions.

The MLPB algorithm is described as follows:

1. (Initialization) Set X ← “Initial set of n input vari-

ables”, “y as corresponding output”; set k = n.

2. (MLP Train) SetMX ← “A trained MLP neural net-

work having as input X and corresponding output

y”.

3. (Backward Selection) repeat until k = 0

(a) (Selected Variables) Set Sk ← X “the subset

of selected variables resulting from iteration k;

it has cardinality k”;

(b) (Remove Variable) Set xr ← “Variable to be

removed using criterion (9)”; X ← X\{xr};

(c) (Update MLP model) Set MX ← “Updated

MLP neural network using X , by adjusting the

remaining weigths according to (10), (12), as

follows: w
(new)
ij = w

(old)
ij + δij”; Set k ← k− 1.

4. (Selected variables) Set S∗ as the best Sk subset (k =
n, . . . , 1) by a manual analysis of the RVTP and the

MSE on a validation set;

5. Output the set S∗ containing the selected variables.

A drawback of the MLPB algorithm is that it fails to

remove redundant variables. This can decrease the perfor-

mance of the resulting model after variable selection and

model learning. Moreover, when the dimension of the in-

put space is large the intermediate MLP models often fail

to represent the dynamics of the system, decreasing the

performance of the MLPB variable selection algorithm.

5. Proposed Algorithms

This section presents the new algorithms proposed in

this paper. The first is the MLP-based variable selection

by minimal redundancy (MLPBR) algorithm (Sec. 5.1).

The second is the delay selection using mutual informa-

tion and MLP-based variable selection (DMLPB) algo-

rithm (Sec. 5.2). Finally, the third is the delay selection

using mutual information and MLP-based variable selec-

tion by minimal redundancy (DMLPBR) algorithm (Sec.

5.3).

5.1. MLPBR Algorithm

The MLPB has some disadvantages, as discussed

above. The MLPBR algorithm solves the redundancy

problem, excluding redundant variables. Moreover, this

reduces the dimensionality of the input space, thus in-

creasing the algorithm performance. The criterion used to

detect redundant variables is the pearson coefficient, given

by:

ρ(x, y) =

∑
t[(x(t)− x)(y(t)− y)]√∑

t(x(t)− x)2
√∑

i(y(t)− y)2
. (13)

where x(t) and y(t) are the values of variables x and y at

time instant i, i.e. are the i-th samples of these variables.

This coefficient measures the degree of correlation among

two random variables, based on the quality of a linear ad-

justment of the data. It takes values between −1 and 1,
where ρ = 1 corresponds to a positive perfect correlation

among the two variables, ρ = −1 corresponds to a perfect
negative correlation among the two variables (i.e. if one

increases, the other decreases), and ρ = 0 means that the

two variables are linearly independent.

The algorithm for removal of redundant variables

works as follows. For every pair of input variables

(xi, xj), such that ρ(xi, xj) > K, the variable of the pair

that has the lowest influence on the output, y, is removed.

The degrees of influence on the output are measured by the

pearson coefficients ρ(xi, y), and ρ(xj , y), respectively.
K is a free parameter. A typical adequate value for K is

0.8. The MLPBR algorithm is described as follows:

1. (Initialization) Set X ← “Initial set of n input vari-

ables”, and “y as corresponding output”.

2. (Detect Redundant Variables) Set R ← “Set of se-

lected redundant variables to be excluded”; set X ←
X\R.
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3. (MLPB Algorithm) Set X and y as input of MLPB

algorithm (Sec. 4.2).

4. (Output) Set S as output of MLPB algorithm (Sec.

4.2).

This algorithm is suitable for applications of variable

selection, when it do not needs to know the delays for each

variable.

5.2. DMLPB Algorithm

To improve the output prediction, the DMLPB algo-

rithm performs a delay selection before the variable se-

lection algorithm. The DMLPB algorithm is described as

follows:

1. (Initialization) Set XD ← “Initial set of n variables

where D is the set delays to be determined, one for

each variable of XD”, and “set y as the correspond-

ing output”;

2. (Delay Selection) Set XD∗ ← “The best delay for

each variable inXD using (8), whereD∗ is the set of

best delays, one for each variable of XD∗”.

3. (MLPB Algorithm) SetXD∗ and y as input of MLPB

algorithm (Sec. 4.2).

4. (Output) Set SD∗ as output of MLPB algorithm (Sec.

4.2).

5.3. DMLPBR Algorithm

This final algorithm is a combination of the algorithms

described before, it can easily defined as following:

1. (Initialization) Set XD ← “Initial set of n variables

whereD is the set of delays to be determined, one for

each variable of XD”, and “y as the corresponding

output”;

2. (Delay Selection) SetXD∗ ← “The set of input vari-

ables with the best delay for each variable inXD be-

ing selected using (8), where D∗ is the set of best

delays, one for each variable of XD∗”.

3. (Detect Redundant Variables) Set RD∗ ← “Set of

selected redundant variables to be excluded”; set

XD∗ ← XD∗\RD∗ .

4. (MLPB Algorithm) Set XD∗ and y as the input of

MLPB algorithm (Sec. 4.2).

5. (Output) Set SD∗ as output of MLPB algorithm (Sec.

4.2).

6. Evaluation Criterion

The most common indicator of quality models is the

root mean square error (MSE), but the MSE does not

measure the tracking precision. [10] proposed the use of

Table 1: Selected variables in Experiment I using the pro-

posed algorithms.

Method Variables

DMLPB
u5(t− 7), u6(t), u1(t− 7), u3(t− 5),

u2(t) , u4(t− 2), u7(t)

MLPB
u1(t), u7(t), u5(t), u6(t),

u4(t), u3(t), u2(t)

DMLPBR
u5(t− 7), u7(t), u3(t− 5), u2(t),

u1(t− 7), u4(t− 2)

MLPBR
u7(t), u1(t), u5(t), u4(t),

u3(t), u2(t)

relative variance tracking precision, RVTP, for soft sen-

sors applications:

RV TP = 1−
σ2
error

σ2
measurement

, (14)

where σ2
error is the variance of the prediction error (dif-

ference between the model prediction and the measure-

ment value), and σ2
measurement is the output measurement

variance. RVTP (14) indicates the tracking precision be-

tween output and the model when the output changes. It

is a measure of how precisely the SS output remains with

enough precision when the value of the output changes.

When RVTP is less than zero, the precision of SS is very

low. The closer RVTP approaches 1, the more accurately

the SS tracks the real process [10].

7. Experimental Results

7.1. Experiment I

The first case of study consists in the pre-

diction of butane (C4) concentration in the bot-

tom flow of a debutanizer column. There are

seven candidate input variables forming vector

V = [u1(t), u2(t), u3(t), u4(t), u5(t), u6(t), u7(t)]
and an output variable y(t). This case study was in-

troduced by [5] and an associated data set is available

for download in the book website. To apply the IVDS

algorithm, the whole data set of 2394 sample was divided

into a training data set of 1481 points, and a validation

data set of 729 points.

Table 1 presents the results of the variable selection

methods. The lists of variables represent the order by

which the variables were selected by each algorithm. For

example, in the debutanizer results of Table 1, the sec-

ond subset selected by the DMLPB algorithm is com-

posed by u5(t − 7), u6(t), and the fourth best subset

found by the DMLPBR algorithm is composed by u5(t−
7), u7(t), u3(t− 5), u2(t).

The four algorithms have been applied to select the

best variables to predict C4 concentration. Figs. 1 and

2 plot the values of MSE and RVTP criteria versus the
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Figure 1: Subset size versusMSE for theMLPB,MLPBR,

DMLPB and DMLPBR algorithms for C4 estimation.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

7 6 5 4 3 2 1

R
V

T
P

Number of variables in subset

DMLPB
DMLPBR

MLPB
MLPBR

Figure 2: Subset size versus RVTP for the MLPB,

MLPBR, DMLPB and DMLPBR algorithms in C4 esti-

mation.

number of variables in the subset. As can be seen, the

DMLPBR is superior when compared with the other algo-

rithms. The selected best subset of variables is composed

by four variables is composed by four variables. Accord-

ing to Table 1 these variables are the components of vector

XD∗ −XR∗ = {u5(t− 7), u7(t), u3(t− 5), u2(t)}. The
graphs of Figs. 1 and 2 show that the MLPBR, DMLPB

and DMLPBR variable and delay selection methodologies

proposed in this paper give superior results when com-

pared to the MLPB algorithm. Moreover, they show that

RVTP is more a efficient performance index to analyze

the results, when compared to MSE. Fig. 3 presents the

C4 estimate using the model developed with the delays

and variables selected by the DMLPBR algorithm. It is

observed that a very reasonable prediction accuracy is at-

tained using the set of variables selected by the proposed

DMLPBR algorithm.
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Figure 3: C4 estimation using the variables selected by

DMLPBR algorithm.
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Figure 4: Subset size versusMSE for theMLPB,MLPBR,

DMLPB and DMLPBR algorithms for TN estimation.

7.2. Experiment II

The second case study concerns the estimation of the

total nitrogen at the effluent of a wastewater treatment

plant (WWTP). The WWTP study was conducted us-

ing the Benchmark Simulation Model No. 2 (BSM2) [6].

BSM2 is a platform-independent WWTP simulation envi-

ronment defining a plant layout, a process model, influent

data, test procedures and evaluation criteria. The bench-

mark is evaluated for two years with acquisition data for

the variables being available with a 15min sampling inter-

val. There are 25 input variables in the data set which are

candidates for the variables and delay selection problem.

Table 2, and Figures 5 and 4, present the results of

the delay and variables selection procedures. The re-

sults indicate that, with the DMLPBR algorithm, it is

possible to reliably estimate TN with only eight vari-

ables, XD∗ −XR∗ = {u24(t − 25), u25(t − 22), u7(t −
17), u21(t), u4(t − 35), u14(t − 17), u22(t − 36), u6(t −
10)}. From Figs. 4 and 5 is possible to conclude that with

the DLMPBR algorithm the error remains approximately

constant with different numbers selected variables, but the
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Figure 5: Subset size versus RVTP for the MLPB,

MLPBR, DMLPB and DMLPBR algorithms in TN esti-

mation.

Table 2: Selected Variables in Experiment II using the

proposed algorithms

Method Variables

DMLPB

u25(t− 22), u7(t− 17), u8(t− 17),
u3(t− 34), u24(t− 25), u23(t− 23),
u15(t− 15), u2(t− 25), u22(t− 36),
u6(t− 10), u20(t− 38), u19(t− 37),
u13(t− 13), u4(t− 35), u14(t− 17),
u21(t), u18(t− 38), u12(t− 15),

u17(t− 38), u5(t− 25), u10(t− 14),
u1(t− 5), u11(t− 11), u9(t− 16),

u16(t− 37)

MLPB

u25(t), u8(t), u3(t), u24(t),
u7(t), u23(t), u15(t), u6(t),
u2(t), u22(t), u20(t), u19(t),
u13(t), u4(t), u12(t), u17(t),
u21(t), u18(t), u14(t), u5(t),
u1(t), u10(t), u11(t), u9(t),

u16(t)

DMLPBR

u24(t− 25), u25(t− 22), u7(t− 17),
u21(t), u4(t− 35), u14(t− 17),

u22(t− 36), u6(t− 10), u5(t− 25),
u11(t− 11), u16(t− 37), u1(t− 5)

MLPBR

u24(t), u21(t), u1(t), u20(t)
u14(t), u6(t), u16(t), u13(t),

u4(t), u25(t), u7(t)

RVTP decreases when the number of selected variables

decreases.

Fig. 6 presents the TN estimate using the model de-

veloped with the delays and variables selected by the

DMLPBR algorithm. Again, a very reasonable prediction

accuracy is attained using the set of variables selected by

the proposed DMLPBR algorithm.
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Figure 6: TN estimation using the variables selected by

DMLPBR algorithm.

8. Conclusion

In this paper, three algorithms were presented for input

delay and variable selection, two covering the field of in-

put delay and variable selection (DMLPB and DMLPBR)

and one for input variable selection (MLPBR), without

perform delay selection, that is a improvement of the al-

gorithm proposed by [1]. It was shown trough experimen-

tal results, that when the most adequate delay for each

variable is selected, and redundant variables are removed,

there is an important improvement in prediction accuracy.

The results show the DMLPBR to be the most suitable al-

gorithm for variable and delay selection applications. It

was observed that with DMLPBR input variable and de-

lay selection is performed in such a way that the number

of required input variables can be reduced, while at the

same time the output prediction accuracy is maintained.

For applications involving only variable selection (but not

delay selection) the MLPBR algorithms can be used. In

this paper, an estimation case study concerning this later

problem was not presented, but it is possible to conclude,

from the graphs in the experimental results, that MLPBR

is superior to the MLPB algorithm.

The methods proposed here shows to be suitable for

Soft Sensor applications when the input variables for pre-

diction is unknown and when aMLPmodel can accurately

predict the output variable. The proposed methods have

shown to be fast and reliable for the two experiments pre-

sented in this paper.
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