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Abstract

The paper proposes a method to select the best vari-

ables and respective time-lags for industrial applications

when the objective is the estimation of a target variable

using the information content of empirical data. No fur-

ther information is assumed about the process. The prob-

lem of jointly selecting the best variables and the respec-

tive time-lags is treated as a variable selection problem.

This assumption implies an increase of input dimension-

ality and multicollinearity into input space. Then, a mul-

tidimensional mutual information estimator based on the

l-nearest neighbor algorithm is used in a forward search

procedure to select the best variables and and respective

time-lags. To verify the performance of selected variables

and delays, the method was successfully applied in two

data sets. A least squares support vector machine was

used as the main model for the soft sensor in both cases.

1 Introduction

Most industrial processes are equipped with online pro-

cess sensors for an online supervision, monitoring, and

control. However, there are critical variables that can not

be measured with physical sensors, but only by laboratory

analysis, thus leading to the lack of enough information

about what occurs in real time. A real time estimator of

these critical variables can lead to a better understanding

about the operation of the process, allowing a fast deci-

sion making when necessary. This type of estimator, ref-

ereed in the literature as soft sensor, in many cases can be

build using these online available sensor measurements.

Thus, soft sensors are inferential models that use on-line

available sensor measures for on-line estimation of vari-

ables which cannot be automatically measured at all, or

can only be measured at high cost, sporadically, or with

high delays (e.g. laboratory analysis), they are important

tools for many industrial processes. However, to build a

soft sensor model, it is not necessarily true that all the

recorded variables are relevant or useful. Generally, the

selection of the best variables for the prediction setting is

done by manual selection, by system experts, and in few

cases, only time lag selection is performed through auto-

matic methods [15, 3]. For physically large and highly

integrated processes, enumeration of candidate variables

based on process insight may not be feasible [15]. In

these cases it is necessary to perform automatic methods

for variable and time lag selection, without help of system

experts.

From the machine learning point of view, the input

variable selection objective is to find the optimal subset

of the whole set of possible input variables [4], so that

the variables of this subset can be used as inputs in a pre-

diction setting to correctly predict the output using a suit-

able model. However, for complex industrial processes,

in most of the cases, there is also the issue of selecting the

most adequate time-lag for each input variable. Thus, in

this context the variable selection problem includes two

sub-problems. The first one is the selection of best input

variables, and the second one is to find respective time

lags for each variable.

Methods for input variable selection can be classified

into two classes: filter methods and the wrapper methods

[6]. Filter methods use statistical measures to classify the

variables, according to their influence and relevance on the

target variable. On the other hand, wrapper methods use

the learning model as the basis for selection. Often, wrap-

per methods may achieve more accurate prediction results

because variables selection will take into account the ap-

proximation model. Thus, variable selection will be per-

formed in such a way that prediction error is minimized.

However, filter methods are more generic since they only

select variables for the prediction setting, not only mak-

ing them suitable to understand the process, but also to

leaving open the options for choosing the type of approx-

imation model that will be subsequently used to construct

the model.

In the literature, two different approaches for selection

of variables and respective time-lags using filter and wrap-

per methods have been addressed. In the first approach, it

is assumed that the best variables are known, remaining

the selection of the best time-lag for each variable [3, 11];

generally the variables are selected by an expert, this is

a good way for selection, but for generic applications or

complex processes this analysis can be very complicated,



expensive and/or inaccurate. In the second approach, it is

assumed that both the best variables and respective time-

lag are unknown [2, 9, 12].

In [3] different methods for time-lag selection are

used: the simple correlation method, the partial correla-

tion method, Mallows Coefficient with linear and nonlin-

ear models [15] and PLS based methods. However, most

of these methods are designed for linear models, so they

can not be the best choice for non-linear modeling. The

Mallows Coefficient method with non-linear models is

computationally expensive when the input dimensionality

high. A linear time-lag model optimized by a genetic al-

gorithm was proposed by [11] to perform delay selection,

and it had a good performance to predicting the nitrogen

oxides NOX and oxygen O2 in the combustion operation

in industrial boilers. In [2] the proposed method first se-

lects the best input variables by means of self-organizing

map (SOM) and then selects the best time-lags using the

Lipschitz quotients. This method fails in some aspects:

the first is the selection of the number of neurons in Ko-

honen maps, that can bring different results, and the sec-

ond is the time-lag selection after input variable selection

which can bring wrong results because a variable with the

correct time-lag can contain more information about the

output than a variable with the incorrect time-lag [12].

Performing the selection of the time-lags of each vari-

able before variable selection improves the final predic-

tion performance. In [12] the time-lag of each variable

was selected using the mutual information measure ([1],

Chapter 2) and then a multilayer perceptron model was

used to select the best set of input variables (with each

variable having the best time-lags selected before). Some

works have used the mutual information measure to select

best input variables and best time-lags. In [9] a multi-

dimensional mutual information measure, based on his-

togram estimator, and a multidimensional estimator ap-

proach based on the “maximum relevance minimum re-

dundancy” (MRmR) principle [10] was used; And it has

been shown that the method outperforms the linear meth-

ods based on correlation coefficient in the cases of study.

However, this method assumes that a variable can appear

just once and the best time-lag is selected for that variable.

For a better understanding about an industrial process

(i.e. the knowledge about the best variables that affect a

target variable), the best choice to select best variables

and respective time-lags is by means of filter methods

[3, 15, 12, 9], because they do not take into considera-

tion the model used, but use only the information content

of data. Moreover, some complex systems involve non-

linear interactions among variables, making not suitable

the use of linear filter methods, that generally are sim-

pler in terms of implementation and computational cost,

but fail to measure non-linear interactions. Mutual in-

formation, that can be considered as a generalization of

the linear correlation value, can measure nonlinear inter-

action among candidate of input variables and the target

output, using information content into input-output data.

However, the main difficulties are in the estimation of the

mutual information in multidimensional spaces. The most

commonly used method is the histogram approach [9, 12],

but this method suffers from the problem of high compu-

tational costs and low estimation accuracy. The Parzen

window estimator is used in [10], but the generalization

for multidimensional space is computationally expensive.

A suitable estimator to multidimensional mutual informa-

tion, with low computational cost and one free parame-

ter was proposed recently by [7], and it is based on the

l-nearest neighbor algorithm.

The contributions of this work are: the problem of

jointly selecting the best variables and the respective time-

lags is treated as a single variable selection problem,

where all variables and respective time-lags are ensem-

bled in a single set of candidate variables. This assump-

tion implies an increase of input dimensionality and multi-

collinearity into input space. The variable selection prob-

lem is solved with a forward search procedure, with the

multidimensional mutual information measure, estimated

by the l-nearest neighbor algorithm. Moreover, for this

work it is not assumed any knowledge about the process.

To verify the performance of selected variables and their

respective time-lags, the method was successfully applied

in two data sets. A least squares support vector machine

was used as the main approximation model for the soft

sensor in both cases.

The paper is organized as follows. Section 2 gives the

motivation and mathematical definition of the problem of

selection of input variables and respective time-lags. Sec-

tion 3 presents the mathematical definition of mutual in-

formation and presents how to estimate it through a l-
nearest neighbor method. The proposed procedure to se-

lect the variables and respective time-lags is presented in

Section 4. Section 6 presents experimental results on two

estimation problems. Finally, Section 8 gives concluding

remarks.

2 Problem Formulation

2.1 Motivation

As discussed above the problem of selecting variables

for prediction settings in complex industrial processes can

be divided into two sub-problems. The first, is the prob-

lem of selecting the best subset of variables. The second

problem is to find respective time lags for each variable.

Assuming this formulation, the variables with the respec-

tive time-lags can be ensembled into a single set, and the

variable selection algorithm chooses the best subset from

the whole set. This paper adopts this approach: the prob-

lem of jointly selecting variables and the respective time-

lags is transformed into a single unified variable selection

problem. This assumption implies an increase of input di-

mensionality and multicollinearity into input space.

The following notation is used in the paper. For any set

of elements (variables or constants) A = {a1, . . . , an},
(ai ∈ R, i = 1, . . . , n), define the ν operator that trans-



forms A into vector a = ν(A) = [a1, . . . , an]
T . Only

ordered sets will be considered in this paper. Conversely,

A = ν−1(a). Then, for any input vector, x, the corre-

sponding set of elements is X = ν−1(x).

2.2 Mathematical Formulation

Assume that there is an original training dataset given

by a set of exemplars F∗ = {(u(k), yd(k)) | k =
1, . . . ,m}, where u(k) = [u1(k), . . . , uq(k)]

T ∈ R
q and

yd(k) ∈ R are the vector of input variables and the output

target at instant k, respectively. The set of input variables
referred to instant k is given by U (k) = ν−1(u(k)) =
{u1(k), . . . , uq(k)}. Without loss of generality, the

set X(k) = {x1(k), . . . , xn(k)} = {u1(k), u1(k −

d
(1)
1 ), . . . , u1(k − d

(1)
nd ), . . . , uq(k), . . . , uq(k − d

(q)
nq )} is

defined as the corresponding input set with all variables

with all possible time-lags, where x(k) = ν(X(k)) =

[x1(k), . . . , xn(k)]
T ∈ R

n, where d(j) = {d
(j)
1 , . . . , d

(j)
nj }

are the possible time lags for variable uj . The modified

training dataset is given by F = {(x(k), yd(k)) | k =
1, . . . ,m}, where without loss of generality, it is assumed

that the number of exemplars remains the same after in-

clusion of all possible time-lags for all variables. With-

out referring to a specific time instant, the following two

sets of input variables can be defined: U = ν−1(u), and
X = ν−1(x). The goal of the variable and delay selec-

tion procedure is to select a subset S ∈ X of the most

significant variables for the prediction setting.

Thus, it is possible to verify the increase of input di-

mensionality |F∗| ≤ |F| due to the ensemble of best

variables and respective time-lags. While this mathemat-

ical formulation is restricted by the assumption that the

possible delays are known, its practical relevance is very

high. If only a maximum delay is known, a set of multiple

possible delays up to that maximum can be used. In this

definition, with the increase of possible delays and con-

sequently the increase of input dimension, the complexity

of the search algorithm will scale up, due the fact that the

forward search procedure generally results inO(n2)worst
case computation costs.

3 Mutual Information

Mutual Information is a non-linear measure of depen-

dency between variables ([1], Chapter 2). Differently

from the correlation value (the most common filtering cri-

terion used for variable and time-lag selection), mutual in-

formation can be expanded for multidimensional spaces,

making it suitable as a variable selection criterion. The

following subsections give the mathematical definition for

multidimensional mutual information (MI) and discusses

a MI estimator based on the k-nearest neighbor estimator.

3.1 Mathematical Definition

Let p(x), p(yd) and p(x, yd) be the probability density
functions of the input vector x, output yd, and the joint

probability density function of the input vector and the

output, respectively. The information of the setX of input

variables is given by the Shannon’s entropy ([1], Chapter

2):

H(X) =

∫

x

p(x) log p(x) dx. (1)

It is important to note that the more informative the set X
is, the higher is its entropy value. The information shared

byX and Yd = {yd}, or mutual information ofX and Yd,
is given by:

I(X;Yd) =

∫

x

∫

yd

p(x, yd) log
p(x, yd)

p(x)p(yd)
dxdyd. (2)

Equation (2) is well analyzed when using the following

entropy form ([1], Chapter 2):

I(X;Yd) = H(X) +H(Yd)−H(X,Yd). (3)

From analysis of Equation (3) it is seen that mutual in-

formation is the information shared between variables X
and Yd. The base of the logarithm determines the units in

which information is measured. Natural logarithms will

be used in the sequel, so that entropy will be measured in

nats.

3.2 l-Nearest Neighbor Estimator

A possible estimator for multidimensional mutual

information is based on the l-nearest neighbor algo-

rithm and was proposed by [7]. Define variables

z(k) = (x(k), yd(k)) = (x1(k), . . . , xn(k), yd(k)) (k =
1, . . . ,m), the distances ε(k)/2 between z(k) and its l-
th neighbor, and the distances εx(k)/2, εx1

(k)/2, . . .,
εxn

(k)/2, and εyd
(k)/2 between the same points pro-

jected into the subspaces of x, x1, . . ., xn, and yd, respec-
tively. For k = 1, . . . ,m, and h = 1, . . . , n (recall that n
is the dimension of x(k)), define nxh

(k) as the number of

points x(j) (j = 1, . . . ,m) that obey ||xh(k)− xh(j)|| ≤
εxh

(k)/2, and define nyd
(k) as the number of points yd(j)

(j = 1, . . . ,m) that obey ||yd(k)− yd(j)|| ≤ εyd
(k)/2.

Then, the mutual information can be estimated by:

Î(X;Yd) = ψ(l)− (n− 1)

(

1

k
− ψ(m)

)

−

−
1

m

m
∑

k=1

(

n
∑

h=1

nxh
(k) + nyd

(k)

)

,(4)

where ψ is the digamma function. An advantage of the

above l-nearest neighbor method is that it does not sim-

ply replace entropy in (3) with their estimates, but it is

designed to cancel errors of individual entropy estimates

[7]. A practical drawback of the l-nearest neighbor-based
approach is that the estimation accuracy depends on the

value of l and there seems no systematic strategy to ap-

propriately choose the value of l [14]. With a small value

for l, the estimator has a large variance and a small bias,

whereas a large value of l leads to small variance and large

bias. In this work, the mean value of the mutual informa-

tion values obtained for l = 3, . . . , 6 has been used.



Input: Input set F∗ and d(j), for j = 1, . . . , q;
Output: Selected set S of input variables and

respective time-lags;

Create the ensembled set F . (see Section 2.2);

S := ∅;
Jmax(0) := 0;
int := 0;
stop := 0
while stop 6= 1 and X 6= ∅ do

int← int+ 1;
forall xi ∈ X do

Ji(int) := Î(S ∪ {xi};Yd);
selected := argmaxi Ji(int);
Jmax(int) := Jselected(int);

end

if Jmax(int) < Jmax(int− 1) then
stop := 1;

else
S := S ∪ {xselected};
X := X \ {xselected};

end

end

return S;

Algorithm 1: Steps of the Variable and Time-Lag se-

lection algorithm.

4 Variable and Time-Lag Selection Proce-

dure

This section proposes the variable and time-lag selec-

tion based on multidimensional mutual information. The

proposed variable selection algorithm can be divided into

two main steps: (1) transformation of the set F∗ of pos-
sible variables and time-lags, into a single set F , and (2)

a forward search procedure, using the the MI estimator as

cost function.

The advantage of the proposed method is that it does

not take into consideration the particular model used for

modeling/estimating the target variable, and can appropri-

ately measure nonlinear interactions between the system

variables, and select also the delay for each variable. The

forward selection procedure has shown to be suitable due

to the low computation cost and the necessity of few in-

teractions to find the best solution.

Algorithm 1 describes the proposed procedure for

the selection of variables and respective time delays.

According to Algorithm 1, the ensembled input set F is

constructed from the original input set F∗ and the pos-

sible time-lags d(j) for each variable. This procedure is

detailed in Section 2.2. With the set F constructed, a for-

ward search procedure is applied to find the best variables.

The first selected variable is one that has the maximum

mutual information value, Jmax, with the target output

yd. This variable is stored in the set of selected variables

S and removed from the set of input variablesX . At each

iteration, a variable from the input set X is selected to be

included in the output set S, until the estimated mutual

information starts to decrease. A decrease in the mutual

information, means that there are no more candidate in-

put variables that can that can be added to the set S, and
make S contain more information with respect to the tar-

get variable yd. When such decrease occurs the procedure

is finished. The output set S contains the best variables to

predict yd.

5 Least Squares Support Vector Machine

This section is gives a brief overview about the least

squares support vector machine (LS-SVM) model used

as the approximation model to implement the soft sensor.

The output of the LS-SVM has the following form:

y(k) = w
T
ϕ(x(k)) + b+ et(k), (5)

where y ∈ R is the estimated output, b ∈ R is a bias term,

w ∈ R
nh is an unknown coefficient vector, andϕ is a non-

linear variable mapping which transforms the original in-

put x ∈ R
n into a high-dimensional vector ϕ(x) ∈ R

nh .

Consider the following constrained optimization problem

with a regularized cost function:

minw,b,et
1
2w

T
w + γ 1

2

∑m

k=1 e
2(k), (6)

s.t y(k) = w
T
ϕ(x(k)) + b+ et(k),

k = 1, . . . ,m,

where γ is a linearization constant and K(x(i),x(j)) =
ϕ(x(i))Tϕ(x(j)), i, j = 1, . . . ,m is a kernel function. In

this work the radial basis function kernel was employed:

K(x(i),x(j)) = exp(−||x(i)− x(j)||/σ2);
The problem (6) is solved using Lagrange multipliers

and the solution is expressed in dual form [13]. The esti-

mated y(k) is given by:

y(k) = f(x(k)) =
m
∑

j=1

αjK(x(k),x(j)) + b (7)

where αj are the Lagrange multipliers. Further details

about the model can be found in ([13], Chapter 3). The

model was implemented using the toolbox available in the

webpage [8].

6 Experiments

This section shows the performance of variable and

time-lag selection on two real data-sets. In the first

dataset, the objective is to estimate the butane concentra-

tion in the bottom flow of a debutanizer column, it was in-

troduced by ([3], Chapter 5) and is available for download

in the book’s website. In the second experiment the objec-

tive is to infer the total chemical oxygen demand COD at

the effluent of a wastewater treatment plant (WWTP). For

the measurement of approximation quality performance

it is used the root mean square error (RMSE), normal-

ized mean square error (NMSE), maximum output error



Table 1: Description of the variables of Debutanizer Column.

Variables Description

Top temperature at debutanizer column u1

Top pressure at debutanizer column u2

Reflux flow u3

Reflux flow u4

Flow to the next process u5

Bottom temperature 1 at debutanizer column u6

Bottom temperature 2 at debutanizer column u7

(C4) concentration y

(MAE) and the correlation coefficient between predicted

and desired output, in the test data. For comparison pur-

poses, the best variables using correlation coefficient pro-

cedures, similarly to the procedure used in ([3], Chapter 5)

are also selected. Also, for comparison, the model is eval-

uated without variable and time lag selection, i.e. using all

variables from F∗ in the prediction setting. The type of

model used for inference is the least square support vector

machine (Sec. 5).

6.1 Debutanizer Column

For the (C4) concentration estimation in

a debutanizer column there are available

seven candidates for input variable U (k) =
{u1(k), u2(k), u3(k), u4(k), u5(k), u6(k), u7(k)}.
Table 1 gives a detailed description about input variables.

A block scheme of the debutanizer column is given in

([3], Appendix A). The maximum delay chosen for each

variable is 8 samples, and the possible delays were spaced

by 4 samples and started at zero. Thus, the ensembled

candidates input set is given by X(k) = {u1(k), u1(k −
4), u1(k − 8), . . . , u7(k), u7(k − 4), u7(k − 8)}, which
includes 21 candidate variables. The original number of

samples is 2394, but due to the consideration of delays,

this number is reduced for 2386. To apply the input

variable and time-lag selection algorithm, the whole

dataset was divided into a training data set of 2088 points,
and a test dataset of 298 points.

Two algorithms are compared for variable and delay

selection. The first method is based on the correlation co-

efficient, and the second method consists of Algorithm 1.

In the first method the correlation coefficient (CC) was

used to select the best variables and respective time-lags.

The CC between the real output and each input variable in

the training dataset of the variables ofX(k) was evaluated.

The criterion used to remove the least significant variables

was the following: input variables with an absolute value

of CC below the threshold of 0.2 were rejected in the se-

lection procedure. Table 2 shows the selected variables

and respective time lags for correlation coefficient proce-

dure (marked with ‘∗’). Ten input variables were selected,
where variables u4, u6, and u7 were not selected for any

delay. The final prediction model was trained using the

least squares SVM with the selected inputs. Table 3 (line

CC+LS-SVM”) shows the prediction results of the predic-

Table 2: Selected variables and respective time lags on the

Debutanizer experiment.

Time Lag/Variable
MI (◦), CC (∗)

u1 u2 u3 u4 u5 u6 u7

(k) ◦ ∗ ◦ ∗ ◦ ◦∗
(k − 4) ◦ ∗ ∗ ∗
(k − 8) ◦ ∗ ∗ ∗ ◦ ∗

Table 3: Performance results on the butane concentration esti-

mation in the Debutanizer experiment.

Method+Model
Performance Results

|S| RMSE NMSE MAE Correlation

MI + LS-SVM 7 0.0461 0.0750 0.3627 0.9626
CC + LS-SVM 10 0.0625 0.1516 0.3129 0.9223
No Selection 7 0.0619 0.1499 0.3846 0.9234
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Figure 1: Comparison between the real and predicted C4 con-

centration in the Debutanizer experiment, using the variables and

delays selection procedure of Algorithm 1.

tion setting designed with the correlation coefficient based

variable selection procedure.

When the mutual information based forward selection

procedure proposed in Algorithm 1 is employed, seven

variables are selected. The selected best input variables

are indicated in Table 2 (marked with ‘◦’). Variables u2,
u6 and u7 were not selected as inputs, for any delay. Ta-

ble 3 (line “MI+LS-SVM”) shows the prediction results

of the prediction setting designed with the variable selec-

tion procedure of Algorithm 1. The final prediction, for

the test set, is depicted in Figure 1. Table 2, in the line

“No Selection”, presents the results of prediction perfor-

mance obtained when variables and delays selection is not

performed.

In this case study, it is possible to conclude that the

mutual information criterion can adequately handle non-

linear interactions between input variables in the variable

and delay selection problem. The performance results

have shown that the application of Algorithm 1 that is

based on the mutual information criterion leads to a higher

prediction performance when compared with the applica-

tion of the method based on the traditional correlation co-

efficient performance index in the variable selection tech-

nique. The proposedMI-based selection procedure selects

a lower number of (variable, delay) pairs while attaining a



Table 4: Description of the variables of the simulated WWTP.

Variables Description

Dissolved Oxygen in effluent u1

Dissolved Oxygen in reactor 1 u2

Settler sludge height u3

Qin (Influent flow rate) u4

Qe (Effluent flow rate) u5

Qpu (Primary settler underflow flow rate) u6

Influent temperature u7

Effluent temperature u8

Instantaneous sludge wastage rate u9

Instantaneous methane production u10

Instantaneous total gas flow normalized to P-atm u11

Instantaneous pumping energy u12

COD in effluent y

better performance.

6.2 Simulated WWTP

This section presents experimental results of a case

study concerning the estimation of the total chemical oxy-

gen demand (COD) at the effluent of a wastewater treat-

ment plant (WWTP). The WWTP study was conducted

using the Benchmark Simulation Model No. 2 (BSM2)

[5]. BSM2 is a platform-independent WWTP simulation

environment defining a plant layout, a process model, in-

fluent data, test procedures and evaluation criteria. The

benchmark is evaluated for two years with acquisition

data for the variables being available with a 2 hour sam-

pling interval. There are 12 input variables in the data-

set which are candidates for the variables and time-lag se-

lection problem. We define the set of input variables as:

U (k) = {u1(k), . . . , u12(k)} and the output, COD, as y.
The description of each variable, in U (k) is given in Table

4.

For each input variable, five possible input delays were

chosen (0, 1, 2, 3, 4). Thus, the ensembled candidates in-

put set is given by X(k) = {u1(k), u1(k − 1), u1(k −
2), u1(k−3), u1(k−4), u2(k), . . . , u12(k−4)}, the origi-
nal number of samples in the dataset is 4368, but due to the
consideration of delays this number is reduced for 4364.
To apply the input variable and time-lag selection algo-

rithm, the whole data set of was divided into a training

data set of 3819 points, and a test data set of 545 points.

Similarly to the debutanizer experiment (Sec. 6.1), two

algorithms are compared for variable and delay selection:

the first is based on the correlation coefficient, and the sec-

ond method consists of Algorithm 1. In the first method,

the criterion used to remove the least significant variables

was the following: input variables with an absolute value

of CC below the threshold of 0.4 were rejected in the se-

lection procedure. Table 5 shows the selected variables

and respective time lags for correlation coefficient pro-

cedure (marked with ‘∗’). Eleven input (variable, delay)

pairs, of six input variables, were selected, where vari-

ables u1, u2, u7, u8 were not selected for any delay. The

final model was trained using the least squares SVM with

Table 6: Performance results on the COD estimation in the

WWTP experiment.

Method+Model
Performance Results

|S| RMSE NMSE MAE Correlation

MI + LS-SVM 6 2.11 0.236 9.27 0.87
CC + LS-SVM 11 2.80 0.413 13.23 0.77
No Selection 12 2.19 0.254 17.03 0.86
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Figure 2: Comparison between the real and predicted COD in

the WWTP experiment.

the selected inputs. Table 6 (line “CC+LS-SVM”) shows

the prediction results of the prediction setting designed

with the correlation coefficient based variable selection

procedure.

When the mutual information based forward selection

procedure proposed in Algorithm 1 is employed, five vari-

ables and six (variable, delay) pairs were selected. The se-

lected best input variables are indicated in Table 5 (marked

with ‘◦’). Variables u1, u2, u4, u5, u6, u7 and u8 were not
selected as inputs, for any delay. Table 3 (line “MI+LS-

SVM”) shows the prediction results of the prediction set-

ting designed with the variable selection procedure of Al-

gorithm 1. The final prediction, for the test set, is depicted

in Figure 2. Table 6, in the line “No Selection”, presents

the results of prediction performance obtained when vari-

ables and delays selection is not performed.

Again in this second experiment, it is possible to con-

clude that the mutual information criterion can adequately

handle non-linear interactions between input variables in

the variable and delay selection problem. The perfor-

mance results have shown that the application of Algo-

rithm 1 that is based on the mutual information criterion

leads to a higher prediction performance when compared

with the application of the method based on the traditional

correlation coefficient performance index in the variable

selection technique. The proposed MI-based selection

procedure selects a lower number of (variable, delay) pairs

while attaining a better performance. This is a positive

point for soft sensor settings where it is desirable to have

lower requirements in terms of the number of sensors re-

quired.



Table 5: Selected variables and respective time lags in the WWTP experiment.

Time Lag/Variable
MI (◦), CC (∗)

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12

(k) ∗ ∗ ∗ ∗ ◦ ∗ ◦ ◦ ∗
(k − 1) ◦ ∗ ∗ ∗ ∗ ∗
(k − 2) ◦
(k − 3)
(k − 4) ◦

7 Discussion

Correlation coefficient is a classical criterion used for

linear variable selection. However, the main shortcoming

of individual variable selection is that it does not take into

consideration the interaction among variables, and can not

remove redundant variables, because redundant variables

have similar values. Moreover, it is still necessary to pro-

vide a threshold to remove less relevant variables.

It is known that when irrelevant variables are deleted

from the model, prediction results can be improved. An

advantage of the use of the mutual information is that it

can be used as a tool to deal with the problem of redun-

dancy: it can be used as a basis for selecting relevant vari-

ables for complex and highly nonlinear processes. Of-

ten the use of mutual information permits to attain a bet-

ter choice of variables and delays on nonlinear processes,

thus ultimately permitting to get a better understanding of

the process. The method proposed in this paper can re-

place the use of the correlation coefficient in the initial

data analysis steps in soft sensor development.

8 Conclusions

This work presented a method to perform variable and

time-lag selection for industrial applications. The method

was successfully applied in two datasets. The case stud-

ies indicate that the proposed method can give better re-

sults when compared with correlation coefficient variable

selection, and when compared to the situation when vari-

ables and delays selection is not performed. Moreover,

unlike the case of the procedure based on the correlation

coefficient, the proposed method has the advantage that it

is not necessary to define a prior threshold value for the

stopping condition. The results indicate that the proposed

method can replace with advantage the method based on

the correlation coefficient.
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