
Co-evolutionary Genetic Multilayer Perceptron for Feature Selection and
Model Design

Francisco Souza, Tiago Matias, and Rui Araújo
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Abstract

This paper proposes a method for Soft Sensors de-
sign using a Multilayer Perceptron model based on co-
evolutionary genetic algorithms, called CEV-MLP. This
method jointly and automatically selects the best input
variables and the best configuration of the network for the
prediction setting. The CEV-MLP is constituted by three
levels, the first level selects the best input variables and
respective delays set, the second level is composed by the
parameters of hidden layers to be optimized (number of
neurons in the hidden layers and transfer function), and
the third level is the combination of first and second level.
The method was successfully applied, and compared with
two state-of-the-art methods, in three real datasets. In all
the experiments, the proposed method shows the best ap-
proximation accuracy, while all the design of the predic-
tion setting is performed automatically.

1 Introduction

Data-driven soft sensors (DDSS) are inferential models
that use on-line available sensor measures, possibly com-
plemented with measures obtained with laboratory anal-
ysis, for on-line estimation of variables which cannot be
automatically measured at all, or can only be measured at
high cost, sporadically, or with high delays (e.g. labora-
tory analysis) [4, 7, 16].

The selection of input variables and respective delays
is essential to obtain an accurate and reliable reproduc-
tion of the target variable. If the network is trained with
all available input variables in the dataset, it is being as-
sumed that all features are good variables for prediction.
However, this assumption is not valid when the data has
irrelevant and/or redundant features. Moreover, the prob-
lem of selecting the most adequate delays for input vari-
ables remains. An MLP trained with irrelevant variables
could be more flexible that without them and have better
approximations in training set, but also will have a poor
generalization performance [13]. Feature selection also

decreases the training time of models and prevents net-
work over-fitting [18]. In this work both steps of (1) se-
lecting input variables and delays, and (2) selecting MLP
network structure are solved using a multilayer percep-
tron model (MLP) by means of a co-evolutionary scheme.
This approach of variable selection based on, and using,
the learning model is called a wrapper approach [8].

The most common methods used to perform variable
selection for MLP use a sequential backward search (SBS)
or a sequential forward search (SFS) procedure and use
the sum of squares error (SSE) as cost function. In [13] the
variable selection algorithm using the traditional SBS was
discussed, and the authors propose the retraining of the
network when a feature is removed for evaluation. How-
ever, this method in some datasets becomes computation-
ally expensive, because it is necessary retrain the network
n(n−1)

2 times, wheren is the input dimensionality.

In [17] a pruning algorithm for MLP networks is pre-
sented. In a pruning algorithm, the network is oversized
and then the least significant hidden neurons and weights
are pruned to find the smallest feasible size. In [17] it is
proposed a sensitivity measure to verify the output sen-
sitivity due to input perturbation, and a relevance mea-
sure to verify the relevance of neurons. Variable selection
can be performed using both measures. In [5] it is pro-
posed an evolutionary scheme for feature selection, called
SAGA. This algorithm first uses simulated annealing to
guide the global search in a solution space, and then uses
a genetic algorithm to perform optimization. The main
disadvantage of this method is that it does not take into
account the optimization of the model, e.g. the number
of the neurons in the hidden layer, when used in combi-
nation with a MLP model. In [14], a new cost function
for simultaneous input variable and hidden node selection
for an MLP model is proposed. This method penalizes
the weights during fitting so that useless input variables
can be excluded. The performance of the method de-
pends on tuning the amount of penalization and the shape
of the penalization function, i.e. the method is not fully
automatic and depends on the dataset. In [10], a new
fast model-based neural input selection method is pre-



sented. It is assumed that nonlinear models like polyno-
mial NARX models, Volterra series and neural networks
(NN) can achieve equivalent performance given that cer-
tain conditions are met. It is used a Volterra series model
that is “linear-in-the-parameters”, making it possible the
use of existing model selection methods, e.g. orthogonal
least-squares method. This method achieves significant
reduction in the computational complexity but does not
take care of the automatic design of the model used.

Genetic Algorithms (GA) have proved to be a useful
tool to solve optimization problems. In [3], it is stud-
ied how to determine the optimum pipe size for networks
used in natural gas applications. In [11] a Genetic Al-
gorithm is used to maximize mutual information between
the input and output variables, to prediction of oil flow. A
multi-objective Genetic Algorithm (MOGA) based on the
wrapper approach for feature selection is proposed in [9].
The MAGO is used to optimize a multi-objective problem,
simultaneously minimizing the error rate and the model
complexity. Compared with proposed algorithm, the main
disadvantage is that this method does not optimize the hid-
den layer design, i.e. the number of hidden nodes and the
activation functions. An approach using methods for non-
linear variable selection in conjunction with T-S fuzzy
models was proposed by [2], for soft sensors applications.
It uses T-S fuzzy models from available input/output data
by means of a co-evolutionary genetic algorithm and a
neuro-based technique. The soft sensor design is carried
out in two steps. First, the input variables of the fuzzy
model are pre-selected from the secondary variables of a
dynamical process by means of correlation coefficients,
Kohonen maps and Lipschitz quotients. Such selection
procedure considers nonlinear relations among the input
and output variables. Second, a hierarchical genetic algo-
rithms is used to identify the fuzzy model itself. The input
variable selection proposed by [2] has some shortcomings.
First, the selection of the number of neurons in Kohonen
maps is not automatically performed. Second, delays are
not jointly selected with input variables, which can bring
lower-accuracy results because a variable with the correct
delay can contain more information about the output than
a variable with the incorrect delay [16].

In this paper, a new co-evolutionary multilayer percep-
tron (CEV-MLP) method is proposed. Differently from
previous approaches the method takes into consideration,
and jointly selects, both the input variables and the config-
uration of an MLP prediction neural network. The CEV-
MLP is constituted by three levels. The first level selects
the best input variables and respective delays set. The
second level is composed by, and selects, the parameters
of hidden layers to be optimized (number of neurons in
the hidden layers and transfer function). The third level
is the combination of the first and second levels. The
method was successfully applied, and compared with two
state-of-the-art methods, in three real datasets, two pub-
licly available datasets (Box Jenkins gas furnace, and Gas
Mileage), and a dataset of a problem of flour concentra-
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Figure 1: Topology of MLP-TL neural network;O is the out-
put node,WI = W = [wij ] is the n × h matrix of the
weights connecting the inputs to theh hidden layer nodes, and
wO = [w1O, . . . , whO]

T is the output weight vector. The hid-
den layer biasesbI and the output biasbO are omitted to sim-
plify the diagram.

tion estimation in a real-world urban wastewater treatment
plant (WWTP). The proposed CEV-MLP method exhibits
the best prediction performance. This is achieved while
the method automatically designs the prediction setting by
jointly selecting input variables, the respective delays,and
the MLP prediction model.

The paper is organized as follows. The MLP architec-
ture is overviewed in Section 2. The new MLP variable
selection algorithm proposed in this paper is presented in
Section 3. Section 4 presents experimental results. Fi-
nally, Section 5 gives concluding remarks.

2 Multilayer Perceptron Architecture

An MLP neural network (NN) with two layers, that is
used as the basis for the CEV-MLP, is represented in Fig-
ure 1. In [12, 6] it was shown that an MLP with one only
hidden layer and a sufficient number of neurons can uni-
formly approximate any continuous function to any accu-
racy.

The MLP NN can be mathematically represented by:

y = g
(

f
(

x
T
WI + bI

)

wO + bO
)

, (1)

wherex = [x1, . . . , xn]
T is the input vector,y is the pre-

dicted output,WI = W = [wij ] is then × h matrix of
the weights connecting the inputs to theh hidden layer
nodes,bI = b = [b1, . . . , bh] is the vector of biases of
the hidden layer nodes. The output weights that connect
the hidden neurons with the output neuron and the output
bias are represented bywO = [w1O, . . . , whO]

T andbO,
respectively.f(·) andg(·) represent the activation func-
tions of the nodes of the hidden layer, and output layer,
respectively. The network is trained by minimizing the
mean square error (MSE) of all network output samples:

Emse(y, yd) =
1

L

L
∑

k=1

[y(k)− yd(k)]
2
,



where,y(k) andyd(k) are the predicted and desired out-
put of k-th input data sample, andL is the number of ex-
emplars. In this workf(·) can be a tangent sigmoid or a
linear function andg(·) is a linear function. To perform
the MLP NN design there are several parameters to be
considered: the types of the activation function, the num-
ber of neurons in the hidden layer and the best subset of
input variables and respective delays.

3 CEV-MLP

The objective of the CEV-MLP is to optimize the final
prediction model by jointly selecting the appropriate MLP
architecture and the best subset of input variables and re-
spective time delays. The optimization is performed by
means of genetic algorithms. The CEV-MLP is consti-
tuted by three hierarchical levels (Fig. 2). The first level
is constituted by the possible sets of input variables and
respective delays, the second level is constituted by the
possible set of hidden layer configurations and the third
level represents the combination of the first and second
level, i.e. the final model.

3.1 Hierarchical Architecture
Fig. 2 shows the detailed scheme of the CEV-MLP, it

is constituted by3 levels. The detailed description of each
level is given below:

First Level is constituted by the possible sets of input
variables and respective time delays that will be used
to design the DDSS. The chromosome is represented
by a binary encoding, where each allele (element of
the chromosome that is located at a specific position)
corresponds to each input variable and respective de-
lay (see Fig. 2). One zero in one allele indicates that
the input associated to this allele is not considered.

Second Level is constituted by the possible sets of hid-
den layer configurations. Each allele of the chromo-
some can get values from zero to two. The zero value
indicates that the neuron of the hidden layer associ-
ated to this allele will be pruned, i.e. the number of
the neurons is given by the number of alleles differ-
ent from zero. If the allele gets the value one or two,
this means that the activation function of the neuron
of the hidden layer associated to this allele will be
tangent sigmoid or linear, respectively.

Third Level is constituted by the possible sets of MLP
configurations. Each chromosome is constituted by
two alleles that can get a non-negative integer, being
that the first allele represents the individual of level 1
and the second allele represents the set of level 2.

A predictor at the third level is denoted byS(m,l)
3 =

C(Sm
2 , Sl

1), a combination of Levels1 and2, whereSm
2 ,

Sl
1 are them-th andl-th, chromosomes of Levels2 and1,

respectively, andC is an operator that generates a MLP

input: Maximum number of chromosomes for each
level, lmax,mmax, kmax

output: A optimal MLP model with best variables
and configuration

i← 1;
int← 1;
while int < Nmax do

forall k = 1, . . . , kmax do
EvaluateJk

3 (i) using Equ. (2a);
end
forall m = 1, . . . ,mmax do

EvaluateJm
2 (i) using Equ. (2b);

end
forall l = 1, . . . , lmax do

EvaluateJ l
1(i) using Equ. (2c);

end
Select the two best chromosomes on Level1,
Level2 and Level3, according withJ l

1, Jm
2 and

Jk
3 to be parents. For a fast convergence all the

other inputs are removed and reproduction is
performed to obtain new ones. Perform mutation
in all new children for all levels;
if Jk

3 (i) == Jk
3 (i− 1) then

int← int+ 1;
else

int← 1;
end
i← i+ 1;

end

Algorithm 1: Steps of CEV-MLP algorithm

model using theSm
2 andSl

1 chromosomes. The predicted
output generated byS(m,l)

3 is given byy(m,l).
The cost function for thek-th chromosome of the third

levelJk
3 = J

(m,l)
3 , which is given by the mean square er-

ror between the predicted and real outputs in the training
dataset, and cost functions for Levels1 and2 are, respec-
tively, given by:

Jk
3 = J

(m,l)
3 = Emse

(

y(m,l), yd

)

, ∀k, (2a)

Jm
2 = min

(

J
(m,1)
3 , J

(m,2)
3 , . . . , J

(m,lmax)
3

)

, ∀k, (2b)

J l
1 = min

(

J
(1,l)
3 , J

(2,l)
3 , . . . , J

(mmax,l)
3

)

, ∀k. (2c)

kmax, lmax, mmax, are the maximum number of chro-
mosomes at Levels3, 2, and1, respectively. It is impor-
tant note thatkmax ≤ mmax · lmax, because the num-
ber of chromosomes of Level3, is always lower than
mmax · lmax.

An example of the encoding and the hierarchical rela-
tions is given in Fig. 2. In this example, the first allele of
thek-th set of Level 3 indicates that the set of input vari-
ables and delays for the network will be the 6th set repre-
sented at Level 1, while the second allele indicates that the
configuration of the hidden layer of the MLP will be the
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Figure 2: Graphical Representation Scheme of CEV-MLP algorithm.

one described in the 3rd chromosome of Level 2. The first
allele of the chromosome of level 2 is zero. So the num-
ber of neurons in hidden layer will be five, the size of the
chromosome (6) minus the number of zero valued alleles
(1). The neurons associated to the 2nd and 4th allele will
have a linear activation function and the remaining will
have tangent sigmoid transfer function. Level 1, specifies
that the inputs of the network will be the variablesx1, x3,
x5 andx6.

The CEV-MLP is specified in Algorithm 1. The first
step of the algorithm is the random initialization of the
populations of all levels. After this, whileNmax is less
thanint, i.e. while the method does not reach the maxi-
mum number the of iterations with the same error: for all
chromosomes of Level 3, the performance of the network
is computed; for all levels the best two chromosomes are
selected to be the parents and the other are removed; new
ones are obtained by reproduction and mutation.

3.2 Genetic Algorithm Operators
The methods used for initialization, selection, repro-

duction and mutation in the genetic algorithm of the CEV-
MLP approach are described in this section.

Initialization: The initial population is chosen randomly
with uniform distribution. Is know that random ini-
tialization can affect convergence time, but good re-
sults have been obtained in CEV-MLP.

Selection: The selection method used was elitist selec-
tion [15]. This method selects the best chromosomes
to be the parents, the remaining are removed and new
chromosomes are generated, in this work the best
chromosomes considered are the first two. A ran-
dom number between 0 and 1,Rs, is generated, if
Rs < 0.5 the first individual is used as a father and
the second as a mother, and if theRs ≥ 0.5 the sec-
ond individual is the father and the first is the mother.

R

1 0 0 1 1 1 0 0 1 0

Father

Mother

Child

Reprodution Mutation

Before mutation

After mutation

0 0 1 1 0 1 1 1 1 1

1 0 0 1 1 1 0 1 1 1

1 0 0 1 1 1 0 1 1 1

1 0 1 1 1 1 0 1 1 0

Figure 3: Genetic operators: Single-point Reproduction and
Mutation of two alleles.

Reproduction: For reproduction the single point
crossover technique was used. The process consists
of taking two parents and produce a child [15].
As described above, all chromosomes except the
parents are removed and new ones are obtained by
the crossover of the two selected parents. For each
child, the crossover process generates a random
point of crossover,Rr, and the child will receive
the alleles from 1 toRr from the father and the rest
of the alleles are received from the mother. This
process is illustrated in Fig. 3.

Mutation: Mutation of two alleles was the third opera-
tion used. This is used to maintain the diversity of
the population and to prevent the algorithm from be-
ing trapped in a local minimum. The mutation is
an operator that alters the value of one or more ran-
domly selected alleles in a chromosome. To perform
crossover and mutation in the second and the third
level, the chromosomes are converted in binary en-
coding. Mutation is also illustrated in Fig. 3.

4 Experiments and Results

This section presents experimental results in three dis-
tinct datasets, verifying the performance and demonstrat-
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Figure 4: Predicted and target outputs using CEV-MLP for the
Box and Jenkins furnace gas test dataset.
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Figure 5: MSE of the network validation of the proposed algo-
rithm for the Box and Jenkins furnace gas dataset.

ing the effectiveness of the proposed methods. The ap-
proximation performance of the soft sensors is evaluated
using the mean square error (MSE) and the correlation
coefficient between predicted and desired output, in the
validation and test data. For all experiments the reproduc-
tion and mutation probabilities are 80% and 10%, respec-
tively, and the number of chromosomes for each level are:
kmax = 20, mmax = 200, lmax = 200 andNmax = 30.
The datasets were divided in training and test data and, in
turn the training data was randomly divided in 75% for
training and 25% for validation. The proposed method is
compared with (i) the traditional SBS method using MLP,
and (ii) the method proposed in [10].

4.1 Box and Jenkins Dataset
The Box-Jenkins gas furnace process data1 was

recorded from a combustion process of a methane-air mix-
ture, and consists of 296 data points[y(t), u(t)] [1]. The
input u(t) is the gas flow rate into the furnace and the
outputy(t) is the carbon dioxide (CO2) concentration in
the outlet gas. The sampling interval is 9 [s]. To pre-
dict y(t) the following set with all variables and possible
considered delays is examinedX(t) = {y(t − 1), y(t −
2), y(t− 3), y(t− 4), u(t− 1), u(t − 2), u(t− 3), u(t−
4), u(t−5), u(t−6)}. The first 250 samples were used for
training and the remaining for test/evaluation. The maxi-
mum number of neurons in the hidden layer was limited
to three.

The results of the application of the three methods is

1Provided by IEEE Neural Networks Council Standards Com-
mittee Working Group on Data Modeling Benchmarks. Available:
http://www.stat.wisc.edu/˜reinsel/bjr-data/gas-furnace .
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Figure 6: Predicted and target outputs using proposed algorithm
for the Automobile MPG dataset.
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Figure 7: MSE of the network validation of the proposed algo-
rithm for the Automobile MPG dataset.

presented in Table 1. Fig. 4 shows the predicted and the
target outputs for the test dataset, and Fig. 5 shows the
prediction error during the CEV-MLP operation, as can
be seen the error stabilizes at iteration40.

The proposed CEV-MLP chooses more pairs of input
variables and delays than the traditional SBS and method
of [10], but the mean square error and correlation coef-
ficient has similar values. CEV-MLP attains these re-
sults while exhibiting the advantages discussed in Sec.
1, namely automatically selecting both the input variables
and respective delays, as well as the MLP structure. The
selected configuration for the MLP model is composed by
two neurons in the hidden layer and both activation func-
tions are tangent sigmoid.

4.2 Automobile MPG Dataset
The automobile gas mileage dataset corresponds to a

problem of predicting the number of miles per gallon
(MPG). It is a six input, single output regression prob-
lem. The gasoline consumption needs to be predicted
based on some input variables. These variables are the
number of cylinders, displacement, horsepower, weight,
acceleration and model year. The original data is avail-
able in the UCI (Univ. of California at Irvine) Machine
Learning Repository2. The input set considered isX(t) =
{u1(t), u2(t), u3(t), u4(t), u5(t), u6(t)}. Whereu1 is the
number of cylinders,u2 the displacement,u3 the horse-
power,u4 the weight,u5 the acceleration, andu6 is the
year. The train and test dataset are composed by196 sam-
ples each. The maximum number of neurons to be se-

2Available: http://archive.ics.uci.edu/ml/datasets/Auto+MPG .



Table 1: Performance Results for the Box and Jenkins dataset

Method Selected Inputs MSE Test Correlation Test

SBS y(t− 1), y(t− 2), u(t− 3) 5, 94e− 3 0, 981

Li & Peng [10] y(t− 1), y(t− 2), ut− 3) 5, 75e− 3 0, 981

CEV-MLP y(t− 1), y(t− 2), u(t− 3), u(t− 5), u(t− 6) 5, 69e − 3 0, 980

Table 2: Performance Results for the Gas Mileage dataset

Method Selected Inputs MSE Test Correlation Test

SBS u2(t), u6(t) 3, 30e− 2 0, 899
Li & Peng [10] u1(t), u2(t), u3(t), u6(t) 2, 70e− 2 0, 918
CEV-MLP u2(t), u4(t), u5(t), u6(t) 2, 43e − 2 0, 927

lected by the CEV-MLP is three.
The results are presented in Table 2. Fig. 6 shows the

predicted and the target outputs and Fig. 7 shows the pre-
diction error of the network while the proposed method
performs the optimization of the prediction setting (vari-
ables, delays, and network structure).

The CEV-MLP method chooses the most adequate sub-
set of input variables and respective delays when com-
pared with the SBS method and the method proposed by
[10]: CEV-MLP has better results in terms of error and
correlation coefficient. The MLP model selected by the
CEV-MLP is composed by tree neurons in the hidden
layer with tangent sigmoidal transfer function.

4.3 WWTP Dataset
In the third experiment the objective is to estimate the

flour concentration in the effluent of a real-world urban
wastewater treatment plant (WWTP). The dataset of plant
variables that is available for learning consists of11 input
variables,U (t) = {u1(t), . . . , u11(t)}, and one target out-
put variable to be estimated,y. The variables correspond
to physical values, such as pH, turbidity, color of the wa-
ter and others, see Table 3 for further details. The pos-
sible input variables with respective delays used as input
for the optimization problem are:X(t) = {u1(t), u1(t −
1), u1(t − 2), . . . , u11(t), u11(t − 1), u11(t − 2)}. The
input variables are measured online by plant sensors, and
the output variable in the dataset is measured by labora-
tory analysis. The sampling interval is 2 [hours]. The
proposed algorithm jointly selects the best variables and
delays, as well as the MLP structure, for the flour predic-
tion setting. The train and test dataset are composed by
196 samples.

The results of the application of the three methods
(SBS-MLP, [10], CEV-MLP) are presented in Table 4.
Fig. 8 shows the predicted and the target outputs, and Fig.
9 shows the prediction error of the test set while the CEV-
MLP performs the network optimization and selection of
best input variables and delays. The proposed algorithm
has chosen less input (variable, delay) pairs than SBS and
the method of [10], and the MSE and correlation values

Table 3: Variables of the wastewater treatment plant dataset

Variables Description
u1 Amount of chlorine in the influent;
u2 Amount of chlorine in the effluent;
u3 Turbidity in the raw water;
u4 Turbidity in the influent;
u5 Turbidity in the effluent;
u6 Ph in the raw water;
u7 Ph in the influent;
u8 Ph in the effluent;
u9 Color in the raw water;
u10 Color in the influent;
u11 Color in the effluent;
y Flour in the effluent.
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Figure 8: Predicted and target outputs using proposed algorithm
for the WWTP dataset.

between the target and predicted outputs show that the
proposed CEV-MLP method has better prediction perfor-
mance results. The selected MLP is composed by eight
neurons in the hidden layer, where three of them are lin-
ear and the remaining are tangent sigmoidal.

5 Conclusion

The paper proposed a new method for jointly select-
ing input variables and corresponding delays, as well as
constructing the structure of an MLP prediction model.
An evolutionary scheme using genetic algorithms selects
the best set of input (variable, delay) pairs and the best
MLP model, making it suitable for Soft Sensor applica-



Table 4: Performance Results for the WWTP dataset.

Method Selected Inputs MSE Test Correlation Test

SBS
u9(t−4), u10(t−4), u1(t−2), u3(t−2), u4(t−2), u5(t−2),
u6(t− 2), u1(t), u3(t), u4(t), u6(t), u7(t), u9(t)

8, 05e− 2 0, 815

Li & Peng [10]
u1(t − 4), u3(t − 4), u5(t − 4), u7(t − 4), u9(t − 4), u10(t − 4), u11(t − 4),
u3(t− 2), u7(t− 2), u8(t− 2), u1(t), u5(t), u7(t), u8(t), u9(t), u10(t), u11(t)

8, 56e− 2 0, 804

CEV-MLP u4(t− 4), u1(t− 2), u4(t− 2), u8(t− 2), u4(t) 6, 87e − 2 0, 844
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Figure 9: MSE of the network validation of the proposed algo-
rithm for the WWTP dataset.

tions. The proposed method does not require any prior
knowledge concerning of the model and about the best in-
put variables; Only the empirical input-output data is re-
quired.

To validate and demonstrate the performance and ef-
fectiveness of the proposed methodology, the algorithm
was applied on three prediction problems with real-world
datasets, and compared with two state-of-art methods.
The experimental results have shown the effectiveness of
the proposed method. The proposed CEV-MLP method
exhibits the best prediction performance, while automati-
cally designing the prediction setting (jointly selectingin-
puts, delays, and prediction model).

Future work will implement different optimization
methods, and incorporate more criteria to be optimized.
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Project SInCACI/3120/2009.

Francisco Souza has been supported by Fundação
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