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Abstract

This paper proposes a method for online variable se-

lection and model learning (AdaFSML-RLS) to be applied

in industrial applications in the context of adaptive soft

sensors. In the proposed method the model learning is

made online and recursivelly, i.e it is not necessary to

store the past values of data while learning the model.

Furthermore, the proposed method has the capability of

tracking the real time correlation coefficient between each

variable and the target, allowing the knowledge about the

importance of variables over the time. Moreover, in this

method is not necessary to have any knowledge about the

process or variables. The method was sucessfully applied

in two datasets, an artificial dataset and in a real-world

dataset.

Keywords: adaptive soft sensors, recursive least

squares, adaptive feature selection, free lime estimation.

1 Introduction

Today, soft sensors have many applications in indus-

try (e.g. fault detection, process monitoring, the prediction

of critical variables, and control) [4, 7, 13]. Soft sensor

consists on the prediction of critical or hard-to-measure

variables, where easy-to-measure variables are used in

a model to predict the hard-to-measure variables. The

model can be constructed using the underlying knowl-

edge about the process (white-box modeling), or using the

available data to learn a data-driven model (data-driven

modeling, or black-box modeling) or using both the un-

derlying knowledge and the available data (gray-boxmod-

eling). This work will discuss soft sensor prediction using

data-drivenmodeling, and for simplicity the term soft sen-

sor will be used from now on to refer to this type of ap-

proach.

The traditional development of soft sensors has four

main steps: (I) data acquisition and selection of historical

data; (II) data pre-processing; (III) model selection, train-

ing and validation; (IV) soft sensor maintenance. In the

first stage, data is selected for training and evaluation of

the model. Then data is submitted to pre-processing (II).

The goals of this second stage are the handling of miss-

ing data and outliers and to perform an input variable se-

lection when the best variables are unknown [14, 4, 13].

The model selection, training and validation phase (III) re-

quires the correct selection and learning of the model, so

that it can correctly reproduce the hard-to-measure vari-

able. The last step is soft sensor maintenance (IV), where

the goal is to maintain a good soft sensor response even in

the presence of process variations or some data change.

The objective during the variable selection step is to

select a reduced subset of variables from the all available

variables. Such variable selection is essential to obtain

an accurate and reliable reproduction of the target vari-

able as discussed in [5], mainly if the enumeration of can-

didate variables based on process insight is not feasible

[14, 4, 11]. However, this variable selection and conse-

quently the model learning, in the traditional soft sensors

development, is done under two main assumptions: first

is that the process is stationary (i.e. the distribution which

generates the data remains the same over time); and sec-

ond is that the historical dataset is sufficiently representa-

tive, so that the variable selection and model learning can

be done using just the information provided by the histor-

ical data, and afterwards be deployed in the process.

However, the existence of non-stationary behavior in

most industrial plants makes these assumptions above no

longer met, and it is further reinforced by the expertise

and scientific studies which show that the traditional soft

sensor, which is constructed using limited information on

historical datasets, starts to degrade with the changes of

the process over time [8]. Thus, if the process is non-

stationary and the soft sensor is constructed based on tra-

ditional methodology it can lead to wrong results regard-

ing the selected variables and the learned model.

Therefore, if the most representative variables are

known a priori, then the problem becomes limited to the

model learning. This problem can be solved by develop-

ing a model that can adapt to these changes in order to

maintain a correct operation over time. In the soft sen-

sors literature this type of model is referred to as adaptive

soft sensor (ASS). In the ASS the model is periodically

updated, so that it can represent the current trend of the



process, see [8] for a detailed review about ASS.

However, if the most representative variables are un-

known then model learning becomes challenging. The

most usual ways to cope with this problem is described

as follows.

1. An approach to cope with this problem is to learn

the model with all available input variables. This ap-

proach has many drawbacks, mainly if the number

of inputs is large, which can lead to problem such as

overfitting, learning of noise and more [1].

2. It is usual to assume that all the information neces-

sary to select the best variables is provided by the

available dataset [12], then the variables are selected

using the information of the available dataset only

once for all at the beggining of the soft sensor de-

sign procedure. However, for the usual situation of

non-stationary processes, this can lead to the selec-

tion of the wrong variables by the initial variable se-

lection procedure, or, with the evolution of the pro-

cess operation, the selected variables may become

not the best/adequate variables for the prediction set-

ting. This can be disastrous for the soft sensor pre-

diction results.

3. Another approach is to select the best variables and

retrain the model periodically, using the most recent

samples.

Taking into account previous works, the development

of soft sensors in non-stationary environments is condi-

tioned by the knowledge of the best variables, or under the

approaches and assumptions previously described. Dif-

ferently from the previously discussed approaches, this

work proposes a recursive method for variable selection

and model learning using recursive least squares (RLS)

for adaptive soft sensors applications. In the proposed

method the importance of each variable is determined on-

line, specifically, a RLS model is created for each avail-

able variable to predict the hard-to-measure variable and

the correlation coefficient between each input variable and

the real target variable is computed from the model param-

eters and updated with every new sample. Then, a new

variable is created by a weighted sum of the outputs of the

RLS models for all input variables, where the weights are

determined using the correlation coefficient of each vari-

able. As the proposed method is recursive, it does not

need to store any past values of data, and it also does not

need of any variables scaling on the pre-processing step.

Moreover, the proposed method can also be used as a way

to interpret the process for process control purposes as in

[3], with the advantage that importance of each variable,

to predict the target, is given by the well know correlation

coefficient. It is important to properly choose the adequate

variables to be used in the design of the control architec-

ture.

The proposed method was evaluated by using two pre-

diction problems, an artificial problem and a real one. In

the artificial problem, the proposed method and the RLS

method were applied in the prediction of an artificially

created target; the comparison was then performed using

several performance measurements between the predicted

and the real targets. Moreover, to verify the sensitivity of

the proposed method to irrelevant variables, the method

was tested in two problems: with and without the pres-

ence of irrelevant variables in the dataset. Afterwards, the

proposed method was successfully applied in a real sce-

nario for free lime estimation in a cement kiln process,

where the available input data is composed by 130 vari-

ables. In constrast with the proposedmethod, the standard

RLS method did not converge in the free lime estimation

problem, due to the presence of irrelevant and redundant

variables in the dataset.

This paper is organized as follows. Section 3 presents

the description of the recursive least squares algorithm.

The new adaptive variable selection and model learning

algorithm proposed in this paper is presented in Section 4.

Section 5 presents experimental results. Finally, Section 6

gives concluding remarks.

2 Notation

The notation used here is as follows, x(k) =
[x1(k), . . . , xD(k)]T and y(k) are the vector of input vari-
ables and the output target at instant k. Moreover, X =
X1 × . . . × XD, Y , denote the space of input variables

values and the space of output values, respectively, where

X ⊂ R
D and Y ⊂ R.

3 Recursive Least Squares

The simplest linear regression model is composed by a

linear combination of the input variables, as follows:

y(x,β) = β0 + β1x1 + β2x2 + . . .+ βDxD, (1)

where x is the input vector and β = [β0, β1, . . . , βD]T is

the vector of model parameters. Given a training set with

k examples, denoted by Γ = {(x(i), y(i)); i = 1, . . . , k},
the parameters β can be found using the least squares es-

timator:

β = (AT
A)−1

A
T
Y, (2)

where A is a k × (D + 1) matrix, called design matrix,

andY is a k × 1 matrix, called output matrix, where:

A =







1 x
T (1)

.

..
.
..

1 x
T (k)






; Y =







y(1)
.
..

y(k)






(3)

However, instead of using the closed form (2), an in-

cremental learning method [6] can be employed to find

the weights vector β as follows. When a new sample

(a(k + 1), y(k + 1)) is available, where a(k + 1) =

[1,x(k + 1)]
T
, the weight vector β can be incrementally

updated as follows:

β(k + 1) = (AT
k+1Ak+1)

−1(Ak+1)
T
Yk+1, (4)



β(k + 1)=

(

[

Ak

a
T (k+1)

]T [

Ak

a
T (k+1)

]

)

−1 [
Ak

a
T (k+1)

]T [

Yk

y(k+1)

]

.

(5)

Reorganizing equation (5) the new weight matrix

β(k + 1) becomes:

β(k + 1) = β(k)+Pk+1a
T (k+1)

(

y(k + 1)− a
T (k + 1)β(k)

)

,

(6)

where Pk+1 =
(

A
T
k+1Ak+1

)

−1
is given by:

Pk+1 = Pk −
Pka(k + 1)aT (k + 1)Pk

1 + aT (k + 1)Pka(k + 1)
. (7)

However, equation (7) goes to zero as the number

of samples increases [6], and also the adaptation gain

Pk+1a
T (k + 1) in (6) decreases to zero when the num-

ber of samples goes to infinite, so that after several it-

erations, the new samples have little contribution to the

model. Thus, this approach is not suitable for learning

non-stationary systems.

Therefore, in non-stationary systems it is necessary to

introduce a forgetting factor λ in the examples so that the

model could take into consideration recent data. This can

be done by adding a forgetting factor λ in the recursive

least squares estimator, which takes the following form:

β = (AT
WA)−1

A
T
WY, (8)

whereW = diag(λk−1, λk−2, . . . , 1), and 0 < λ ≤ 1, so
that the smaller the λ parameter, the more the recent data

is weighted, and the more the RLS estimator can track

the time-varying parameters, more specfically, according

with [2] the effective lenght of data, (i.e the number of

observations being used) is equal to (1−λ)−1. Rewriting

equation (8) in a forma similar to (5), the following update

rule for Pk+1 is obtained:

Pk+1 =
1

λ

(

Pk −
Pka(k + 1)aT (k + 1)Pk

λ+ aT (k + 1)Pka(k + 1)

)

, (9)

4 Proposed Method

The objective of the proposed method is to select the

variables and learn the model recursively, without the ne-

cessity of storing the input data. Moreover, the proposed

method does not need any knowledge about the process

to be modeled. For future reference the method will be

called as adaptive feature selection and model learning

using RLS modeling (AdaFSML-RLS). It is described be-

low.

A linear model fj(xj |β
(j)) : Xj → Y in the form of

(1) will be constructed for each available input variable

xj(k), to predict the target y(k), where β(j) is the vec-

tor of parameters of model j, for j = 1, . . . , D. Thus,

D different models will be constructed. Whenever a new

input-output pair becomes available, theD models will be

accordingly updated using equations (6) and (9), with a

forgetting factor λ equal for all models. When a new sam-

ple k+1 is used to update the model, function fj(xj |β
(j)),

j = 1, . . . , D, takes the following form:

fj(xj |β
(j)(k+1)) = β

(j)
0 (k+1)+β

(j)
1 (k+1)xj , (10)

where similarly to (1) with D = 1, β(j)(k + 1) =

[β
(j)
0 (k + 1), β

(j)
1 (k + 1)]T .

Using this linear model (10) updated with sample k+1,
it is possible to measure the importance that each vari-

able xj has to the prediction setting through the use of

the correlation coefficient between xj and y. The correla-

tion coefficient measures the degree of correlation among

two random variables, based on the quality of a linear ad-

justment of the data. It takes values between −1 and 1,
where ρ = 1 corresponds to a positive perfect correlation

among the two variables, ρ = −1 corresponds to a perfect
negative correlation among the two variables (i.e. if one

increases, the other decreases), and ρ = 0 means that the

two variables are linearly independent. According to [9,

Chapter 5] in a linear regression of the form (10), and tak-

ing into account the samples received up to instant (k+1),
the correlation coefficient, ρxj ,y(k + 1), between xj and

y has the following form:

ρxj ,y(k + 1) =

(

σ2
j (k + 1)

σ2
y(k + 1)

)−1/2

β1(k + 1), (11)

where σ2
j (k + 1) is the variance of xj , and σ2

y(k + 1) is
the variance of y.

It is necessary to define formulas to update the variance

of xj and y when sample k + 1 becomes available. In

this work the following update equations for the variance,

σ2
j , and the mean, µj , defined in [10] were used, where a

forgetting factor λ is taken into consideration in the update

formulas:

µj(k + 1) = λµj(k) + (1 − λ)xj(k + 1), (12)

σ2
j (k + 1) =λ

(

σ2
j (k) +

(

µj(k + 1)− µj(k)
)2
)

+ (1− λ)
(

xj(k + 1)− µj(k + 1)
)2

,

(13)

where the variance of y is computed using the same update

formulas above, then considering, in this particular case,

j = y.

Using the mappings fj(xj(k+1)|β(j)(k)) of the input
variables xj(k + 1), j = 1, . . . , D, into the output space

Y , a new variable x̂(k + 1) is created as follows:

x̂(k + 1) =

∑D

j=1

[

αj(k + 1)fj
(

xj(k + 1)|β(j)(k)
)]

∑D

j=1 αj(k + 1)
,

(14)

where αj(k + 1) is is given by:

αj(k + 1) = ρ2xj,y(k + 1). (15)

x̂(k + 1) can be seen as an ensemble of all the models

fj(xj(k + 1)|β(j)(k)), j = 1, . . . , D, where the input of

model j is the input variable xj(k + 1), and the contribu-
tion of each model to the ensemble is determined by the

importance (15) of each variable at instant k + 1. As can



be noticed, the closer αj(k + 1) gets to 1, the less impor-

tant is variable xj to the prediction of the target, y, and the

less it contributes in (14) to calculate variable x̂(k + 1).
Using the new variable x̂(k + 1) a new RLS model

f(x̂|β̂) : X → Y is learned and updated iteratively.

Whenever a new sample x̂(k + 1) becomes available,

f(x̂|β̂) is learned and updated using the same method-

ology as the one that is used to learn and update the in-

dividual models fj(xj |β
(j)); And also the same value

of λ is used to update f(x̂|β̂) and the individual models

fj(xj |β
(j)), j = 1, . . . , D. Then, the final model is given

by:

ŷ(n) = f
(

x̂(n)|β̂(k)
)

, (16)

where ŷ(n) is the estimated output given input sample

x(n).

5 Experimental Results

In this section the proposed AdaFSML-RLS method is

tested in one artificial dataset and in a real-world dataset.

The artificial dataset is time dependent and has a linear

input-output relationship, with a set of relevant and non-

relevant variables in the pool of input variables. Moreover,

an experiment has been performed to verify the sensitiv-

ity of the algorithm with respect to number of irrelevant

variables.

To measure the performance of prediction setting the

correlation coefficient (CC), the normalized mean square

error (NMSE), and the root mean square error (RMSE),

between the real and predicted outputs were used. The

proposed adaptive AdaFSML-RLS method will be com-

pared with the classic RLS model method.

5.1 Artificial Dataset

The output y of the artificial model is defined as fol-

lows:

y(k) =



















































































10(πx1(k) + x2(k))− 20(x3(k)− 0.5)
+10x4(k) + 5x5(k) +N (0, 1),
if k ≤ 500,

−10(πx1(k) + x2(k)) + 20(x3(k)− 0.5)
−10x4(k)− 5x5(k) + 10x6(k) +N (0, 1),
if 500 < k ≤ 1000,

5(πx1(k) + x2(k)) + 8(x3(k)− 0.5) +N (0, 1),
if 1000 < k ≤ 1500,

−10x4 − 5x5(k) + 10x6(k) +N (0, 1),
if 1500 < k ≤ 2000,

(17)

were all variables were generated independently of each

other and uniformly distributed over [0, 1] and N (0, 1)
is a Gaussian noise with zero mean and unit variance.

Analyzing equation (17) it can be noticed that the first

500 samples of output is a linear combination of the first

five variables (x1, x2, x3, x4, x5), while for the samples

500 < k ≤ 1000 the output is composed by a lin-

ear combination of the same variables but with different

0 500 1000 1500 2000

sample (k)

−60

−40

−20

0

20

40

60

y
(k

)

Figure 1: Output y defined in equation (17).

weights plus another variable x6. For the the samples

1000 < k ≤ 1500 the variables which compose the model

are (x1, x2, x3), while for the remaining of the samples

1500 < k ≤ 2000 the variables (x4, x5, x6) are compos-

ing the model, Figure 1 shows the output y for all samples.

The objective while learning the equation (17) using

the AdaFSML-RLS and the RLS models is to predict the

next example y(k+1) using the input x(k+1) and param-

eters updated up to the k sample, and then after the pre-

dicting y(k+ 1), both models (AdaFSML-RLS and RLS)

are updated using the pair (x(k + 1), y(k + 1)).

In the first experiment, the RLS model and

the AdaFSML-RLS were learned using variables

(x1, x2, x3, x4, x5, x6), for different values of the forget-
ting factor λ, where for the x−axis is used the effective

number of data being used, i.e (1−λ)−1. Figure 2a shows

the curve indicating the correlation coefficient (CC) value

between the target and the predicted output for different

values of λ, where the |I| = 0 indicates the number of

irrelevant variables present in the set of training, and in

this first experiment is zero.

In the second experiment, the RLS model and

the AdaFSML-RLS were learned using variables

(x1, x2, x3, x4, x5, x6) and more 100 irrelevant variables

were added to the set, for different values of the forget-

ting factor λ. The irrelevant variables were generated

independently of each other and uniformly distributed

over [0, 1]. Figure 2b shows the curve indicating the

correlation coefficient (CC) value between the target and

the predicted output for different values of λ.

As can be noticed, when the correct variables are pre-

sented to the RLS and AdaFSML-RLS models, the RLS

shows better performance than the AdaFSML-RLS for

some of λ values, in terms of CC. However, the best

CC value found for the RLS and AdaFSML-RLS are

close: The CC reached 0.98 and 0.96 for the the RLS

and AdaFSML-RLS, respectively. Another point which

should be highlighted in Experiment 1 is that the RLS can

handle well irrelevant variables. In fact, for some samples

some variables become irrelevant to the model, as for ex-

ample between the sample 1500 < k ≤ 2000 the variables
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(a) Result on the artificial dataset for the RLS and AdaFSML-RLS mod-

els, without irrelevant variables |I| = 0.
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(b) Results on the artificial dataset for the RLS and AdaFSML-RLSmod-

els, in the presence of irrelevant variables |I| = 100.

Figure 2: Correlation coefficient between the predicted and real output on the artificial dataset, with and without irrelevant

variables, for different values of λ. The red line indicates the proposed method, while the blue line indicates the RLS

model.

Table 1: Summary of the results of the RLS and

AdaFSML-RLS models for the best value of λ on the ar-

tificial dataset, with and without irrelevant variables.

|I| = 0 |I| = 100
RLS AdaFSML-RLS RLS AdaFSML-RLS

RMSE 4.01 5.91 15.0 7.48

CC 0.98 0.96 0.75 0.93

NMSE 0.04 0.08 0.53 0.13

λ 0.75 0.90 0.98 0.97

(x1, x2, x3) are not part of the model, but the model still

provides good results.

However, when the number of irrelevant variables is

high, as in the second experiment, the RLS model ex-

hibits a lower prediction capability when compared with

AdaFSML-RLS. As shown in Figure 2b the best RLS per-

formance is a value of CC of 0.75. On the other hand,

the AdaFSML-RLS shows more robustness to irrelevant

variables, which makes the AdaFSML-RLS model a good

choice in the modeling of unknown systems, the best per-

formance of the AdaFSML-RLS in terms of CC is 0.93.

Table 1 presents the summary of the results measured

by the CC, NMSE, and RMSE performance indicators

for the value of λ which gave the best results of pre-

diction. The results reinforce the previous discussion

which indicated that the AdaFSML-RLS model is more

robust when irrelevant variables are present in the learning

dataset, while the RLS model decreases its performance

in such case. However, when there is no presence of ir-

relevant variables in the dataset the RLS model outper-

forms the AdaFSML-RLS model in all indicators, but the

AdaFSML-RLS still has good prediction results.

Another advantage of the AdaFSML-RLS method is

that it can evaluate directly and in real-time the correla-

tion coefficient between each input variable and the tar-

get. Figures 3a and 3b show the importance of each vari-

able for the case where there are no irrelevant variables

in the dataset. Figure 3a indicates the importance of vari-

ables x1, x2 and x3 over the time. From this figure it

is possible to note the variation of the correlation coef-

ficient of x1 with respect to the target. In the first 500
samples it shows a positive correlation coefficient of ap-

proximately 0.8. From (17) its contribution of the output

in this period is given by 10π. Between samples 500 and

1000 it has shown a negative correlation coefficient of ap-
proximately −0.8 while, consistently, its contribution in

equation (17) between these samples is of−10π. Between
samples 1000 and 1500 the contribution of x1 is reduced

to a positive value of 5π and it has show a positive cor-

relation coefficient of about 0.6. For the remaining of the

samples the contribution of x1 to the model is null, and

its correlation coefficient becomes around the 0 in Figure

3b for these samples. Thus, it is possible to conclude,

through the analysis of the correlation coefficient of vari-

able x1 with respect to the target over the time in Figure

3b that the AdaFSML-RLS method can be used to track

the correlation coefficient (i.e. the importance of variable)

between the input variables and the target in real time suc-

cessfully.

Making a similar analysis to Figures 3c, 3d taking into

acocunt the time-evolution of the correlation coefficient

values, and equation (17) that was used to generate the

dataset, it can be concluded that the importance of each

variable, as measured by the CC, follows the changes ex-

pected according to the generator equation. The given

correlation coefficient by the AdaFSML-RLS method to

irrelevant variables can be seen in Figure 3e and it could

be noted that its values are around 0.

5.2 Free Lime Estimation

This section presents experimental results of a case

study concerning the free lime estimation in a real cement

kiln plant. The free lime is one of the most important qual-
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(a) CC for variables x1, x2, x3 over the time with λ = 0.90 on the artifi-

cial dataset, without irrelavant variables |I| = 0.
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(b) CC for variables x4, x5, x6 over the time with λ = 0.90 on the artifi-

cial dataset, without irrelavant variables |I| = 0.
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(c) Correlation cofficient for variables x1, x2, x3 over the time with λ =
0.97 on the artificial dataset, with irrelavant variables |I| = 100.

0 500 1000 1500 2000

sample (k)

−1.0

−0.5

0.0

0.5

1.0

ρ
n

|I| = 100

ρ4(k)

ρ5(k)

ρ6(k)

(d) CC for variables x4, x5, x6 over the time with λ = 0.97 on the artifi-

cial dataset, without irrelavant variables |I| = 100.
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(e) CC for variables x30, x40, x100 (irrelevant variables) over the time

with λ = 0.97 on the artificial dataset, without irrelavant variables |I| =
0.

Figure 3: Correlation coefficient between the input variables and the target over the time in the artificial dataset, with and

without irrelevant variables, measured using the AdaFSML-RLS model.

ity parameter to be monitored and controlled in a cement

kiln plant, and it is normally obtained by laboratory. In

this case study, free lime is measured by laboratory analy-

sis at approximately every 15 minutes. For this study, 130
variables associated with the cement kiln were acquired

and used to build the model.

To predict the free lime only the AdaFSML-RLS will

be applied, because the RLS did not converge due the

quantity of redundant and irrelevant variables. However,

as the AdaFSML-RLS method is robust to the irrelevant

and redundant variables, it is a suitable model to be ap-

plied in the modeling of free lime.



Table 2: Summary of the results of AdaFSML-RLSmodel

for free-lime prediction.

AdaFSML-RLS

RMSE 0.34

CC 0.80

NMSE 0.39

The dataset used for this application is composed of

43469 samples, collected with a sampling interval of 1
minute for all variables. However, as the free lime is col-

lected only at every 15 minutes, the update of the model

will occur only at every 15 samples, approximately. Then,

the provided soft sensor will predict the value of the free

lime at time instants where it is not available, i.e. during

the intervals of approximately 15 minutes between lab-

oratory analysis. For evaluation purposes, if a new valid

input-output pair (x(n), y(n)) is available for update, then
the output y(n)will be first predicted using the inputx(n),
and then the model parameters will be updated. There is

more, if the number of valid samples for update is less

than the number of total samples to predict, then the real-

time correlation between each input variable and the out-

put, equation (11), will be updated just when a new valid

sample become available.

Many variables in this data-set suffers from outliers

and measurement errors, as an example, Figures 4a and

4b show the time-evolution of variables x40 and x123

on the Free-Lime dataset, it can be noted that around

the 5000, 14000, 15000, 27000th samples and between

around the 37000−38000 samples these variables have the

presence of outliers. Even having this knowledge about it,

the method was applied in this data-set without any pre-

processing, propositally, to simulate the application of the

method in unknown enviroments ans assuming no knowl-

edge about the process or the variables. A forgetting fac-

tor λ of 0.90 was chosen. The performance values for the

free lime prediction using the AdaFSML-RLS model are

indicated in Table 2

A value of correlation of 0.80 was attained between

the predicted output and the target output. The predic-

tion is exhibited in Figure 5, validating and showing the

effectiveness of the proposed method to perform predic-

tion in unknown environments. However, some spikes can

be noted in the prediction phase, which can indicate the

presence of outliers in the most important input variables.

Therefore, the presence of these spykes are pontual and

can be alleviated by application of a mean average filter in

the output prediction or it can be removed by applying an

online outlier detection and respective treatment of the in-

put data, during the application of the proposed algorithm.

6 Conclusions

This paper proposed a method for adaptive vari-

able/feature selection and model learning (AdaFSML-
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Figure 5: Free lime prediction. The sampling interval is

1 [minute].

RLS) for soft sensors applications in industrial processes

for linear modeling using the recursive least squares learn-

ing. Furthermore, the proposed method has the capability

of tracking the real time correlation coefficient between

each variable and the target, allowing the knowledge about

the importance of variables over the time, which can be

useful while design control systems.

In two experiments one in an artificial dataset and the

other with a real-world dataset, the proposed AdaFSML-

RLS method has been shown to be feasible, effective

and robust under irrelevant variables. This constrasted

with the RLS algorithm, which suffers in terms of predic-

tion performance when irrelevant variables are included

in the dataset. On the artificial dataset, the AdaFSML-

RLS has shown to have close values to the RLS algo-

rithm when there are no irrelevant variables present to the

model. In the presence of irrelevant variables, the RLS de-

creases its capability of prediction, while the AdaFSML-

RLS method maintains a good response in terms of pre-

diction performance. Moreover, the real time correlation

coefficient measured by the proposedmethod works prop-

erly and it can give a real-time insight about the impor-

tance of each process variable.

In the real application, the free lime estimation, only

the AdaFSML-RLS was applied, and it was applied with-

out any knowledge about the process or variables. The

total number of variables was 130, so that the RLS model

could not be applied, the proposed method reached good

prediction results, allowing its application in real-time.

The estimation of free-lime in the cement kiln problem,

at each 1 minute, by the proposed method, will allows the

operators to take properly actions when necessary, with-

out the necessity of waiting to the laboratorial analysis. In

future research the problem of the real time control of the

free-lime will be taken.
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