
On-line Sequential Extreme Learning Machine Based on Recursive Partial Least

Squares

Tiago Matiasa,∗, Francisco Souzaa, Rui Araújoa, Nuno Gonçalvesa, João P. Barretoa

aInstitute of Systems and Robotics (ISR-UC), and

Department of Electrical and Computer Engineering (DEEC-UC),

University of Coimbra, Pólo II, PT-3030-290 Coimbra, Portugal

Abstract

This paper proposes the online sequential extreme learning machine algorithm based on the recursive partial least-

squares method (OS-ELM-RPLS). It is an improvement to the online sequential extreme learning machine based on

recursive least-squares (OS-ELM-RLS) introduced in [1]. Like in the batch extreme learning machine (ELM), in OS-

ELM-RLS the input weights of a single-hidden layer feedforward neural network (SLFN) are randomly generated,

however the output weights are obtained by a recursive least-squares (RLS) solution. However, due to multicollinear-

ities in the columns of the hidden-layer output matrix caused by presence of redundant input variables or by the large

number of hidden-layer neurons, the problem of estimation the output weights can become ill-conditioned. In order

to circumvent or mitigate such ill-conditioning problem, it is proposed to replace the RLS method by the recursive

partial least-squares (RPLS) method. OS-ELM-RPLS was applied and compared with three other methods over three

real-world data sets. In all the experiments, the proposed method always exhibits the best prediction performance.

Keywords: Single-hidden layer feedforward neural networks, Least-squares, Partial least-squares, Latent variables.

1. Introduction

Multilayer feedforward neural networks (FFNN) have

been used as universal approximators [2, 3] for system

identification. However, the training time of FFNN has

been the bottleneck of the use of these networks in in-

dustrial applications, being the linear models often pre-

ferred in comparison to multilayer FFNN [4]. In order

to overcome this problem in the construction of FFNN

models, a new method called extreme learning machine

(ELM) was proposed in [5]. These improvements pro-

vided by ELM make these models a valuable tool in in-

dustrial processes.

ELM is a batch learning algorithm for single hidden-

layer FFNN (SLFN) where the input weights (weights

of connections between the input variables and the neu-

rons in the hidden-layer) and the bias of neurons in

the hidden-layer are randomly assigned. The output
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weights (weights of connections between the neurons in

the hidden-layer and the output neuron) are obtained us-

ing the Moore-Penrose (MP) generalized inverse, con-

sidering in the output neuron a linear activation func-

tion. However, in some applications a sequential learn-

ing should be preferred over the batch learning. One

example of sequential learning application is in the on-

line modeling of a process with a time-varying behavior.

In this case, collecting a training data set that would be

representative of all possible states and conditions of the

process can be very difficult. These conditions include

different intrinsic states in which the process can be op-

erated, and also different states related to environmen-

tal changes, changes of the process input materials, etc.

Due to this difficulty, an online adaptation tool should be

used in order to construct a SLFN model that has the ca-

pability to self-adjust its parameters in order to provide

a good estimation in each operation scenario.

In [1, 6] an online sequential extreme learning ma-

chine based on the recursive least-squares (RLS) algo-

rithm called OS-ELM-RLS was presented. In both pa-

pers, it was shown that OS-ELM-RLS runs much faster

than other popular sequential algorithms and provides

better generalization performances on many benchmark

problems in the regression. However, in the applica-
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tion of OS-ELM-RLS the outputs of hidden neurons can

have strong multicollinearities due to a large number of

hidden nodes or due to redundancy in input variables.

In such situations the output matrix of the hidden-layer,

corresponding to a set of data samples, may have not

full rank, which can result in an ill-conditioned problem

to be solved by the least-squares solution, and in an un-

stable solution. In order to circumvent or mitigate the

ill-condition problem, the RLS method can be replaced

by the recursive partial least-squares (RPLS) method.

In this paper, a new SLFN learning method using an

online sequential extreme learning machine algorithm

based on RPLS (OS-ELM-RPLS) is proposed. In the

proposed methodology, the output weights of the SLFN

are updated when a new data sample is available us-

ing a RPLS method, and the number of latent vari-

ables is adapted using a leave-one-out validation: for

each new sample, before updating the output weights

vector, the preceding data sample is used to select the

best number of latent variables. OS-ELM-RPLS was

applied and compared with OS-ELM-RLS, RPLS, and

OS-ELM-RPLSM over three real-world data sets. The

OS-ELM-RPLSM is a modified version of OS-ELM-

RPLS method, where the number of RPLS latent vari-

ables is not adapted online, but is selected by a 10-fold

cross-validation procedure on the training data set. In all

the experiments, the proposed OS-ELM-RPLS method

always exhibits the best prediction performance.

The paper is organized as follows. The SLFN archi-

tecture is overviewed in Section 2. Section 3 gives a

brief review of the back-propagation algorithm. A re-

view of the batch and sequential ELM is given in Section

4. The proposed method is presented in Section 5. Sec-

tion 6 presents experimental results. Finally, concluding

remarks are drawn in Section 7.

2. Single Hidden-Layer Feedforward Network Ar-

chitecture

The neural network considered in this paper is a sin-

gle hidden-layer feedforward neural network (Fig. 1)

with n input variables, h hidden-layer neurons, and one

neuron in the output layer. The output of the SLFN at

time-instant k is given by:

ŷ(k) = g
(

vT sk

)

, (1)

where g(·) represents the activation function of the out-

put neuron, v = [βO, v1, . . . , vh]T is the vector of output

weights and bias, sk = [1,σT
k

]T is the vector of inputs to

the output node (the first element is for the output bias),

and σk = [s1(k), . . . , sh(k)]T is the vector of the outputs
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Figure 1: Single hidden-layer feedforward network with adjustable

architecture.
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(3)

is the matrix of first level weights and biases, b j is the

bias of hidden neuron j, and wi j is the weight between

the i-th input variable and the j-th hidden-layer neuron.

xk = [1, x1(k), x2(k), . . . , xn(k)]T is the vector of inputs

where the first element is for the bias of each hidden

neuron, Γ(ξ) = [ f (ξ1), . . . , f (ξh)]T for ξ = [ξ1, . . . , ξh]T ,

where f (·) represents the activation function of the neu-

rons of the hidden layer, and ξ1, . . . , ξh are general vari-

ables used for defining Γ(ξ).

3. Conventional Gradient-Based Training

Assuming the availability of N input-output data sam-

ples, the objective of conventional gradient-based train-

ing algorithms is to find the weights W, and v that min-

imize the following cost function:

e =

N
∑

k=1

(

g
(

vT sk

)

− y(k)
)2
, (4)

where y(k) is the desired output at time instant k.
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Generally, gradient-based training algorithms, like

backpropagation of the error, are used to minimize (4).

In the first step, W and v are randomly obtained, and in

next steps W and v are iteratively adjusted as follows:

Wi = Wi−1 − η
∂e

∂W
, (5)

vi = vi−1 − η
∂e

∂v
, (6)

where η is a learning rate. However, there are some is-

sues in the training of the SLFN using gradient-based

training algorithms:

1. The training requires a large amount of data;

2. The convergence to the global minimum can be

very slow if the learning rate η is too small. How-

ever if η is too large, the algorithm can become

unstable and may not be able to reach the global

minimum;

3. They are very time-consuming in most applica-

tions;

4. The training is prone to local minima and overfit-

ting;

In order to overcome these problems, the batch ELM

was proposed in [5]. This method randomly gener-

ates the weights and bias of the first level of the SLFN

and obtains the output weights using a MP general-

ized inverse, improving the generalization capability

and decreasing both the number of parameters to be ad-

justed by the user and the computational costs, allowing

the implementation in common automation equipment

such as programmable logic controllers or microcon-

trollers. However, in processes with time-varying be-

haviors, sequential learning algorithms may be preferred

over batch learning algorithms as they do an incremen-

tal learning, not requiring a complete batch retraining

whenever new data is received.

4. Extreme Learning Machine

The batch ELM was proposed in [5]. In [7] it is

proved that a SLFN with randomly chosen weights be-

tween the input layer and the hidden layer, and ade-

quately chosen output weights are universal approxima-

tors for any bounded non-linear piecewise continuous

function. In ELM, the input weights and bias matrix W

are randomly assigned and, considering an output neu-

ron with a linear activation function, the SLFN network

can be regarded as a linear regression model between

the output vector of the hidden layer and the output of

the SLFN. Therefore, the output weights vector v can be

estimated as:

v̂ = S
†

N
yN , (7)

Algorithm 1 On-line sequential ELM based on RLS.

1. Initialize the covariance matrix M0 =
(

ST
N0

SN0

)−1
,

and the output weights estimate v̂0 =M0ST
N0

yN0
.

2. For each newly available data sample k, the output

weights estimate, and the covariance matrix can be

recursively obtained by [8]:

v̂k = v̂k−1 +Mk−1sk

y(k) − sT
k

v̂k−1

λ + sT
k

Mk−1sk

, (11)

Mk =
1

λ













Mk−1 −
Mk−1sksT

k
Mk−1

λ + sT
k

Mk−1sk













, (12)

where λ is a forgetting factor. Lower values of λ

indicate that the recent data will influence more the

new model.

where S
†

N
is the Moore-Penrose generalized inverse of

the output node input matrix

SN = [s1, . . . , sN]T , (8)

and yN = [y(1), . . . , y(N)]T is the vector of the target

outputs.

Considering that SN ∈ R
N×h with N ≥ h and

rank (SN) = h the Moore-Penrose generalized inverse

of SN can be given by:

S
†

N
=
(

ST
NSN

)−1
ST

N . (9)

Substituting (9) into (7), the estimate v̂ of v can be ob-

tained by the following least-squares solution:

v̂ =
(

ST
NSN

)−1
ST

NyN . (10)

The sequential implementation of the ELM results in

the application of recursive least-squares (RLS) to esti-

mate the output weights vector [1]. Considering that N0

(N0 ≥ (h + 1)) initial data samples are available and that

rank(SN0
) = h, the estimate v̂ of v can be obtained by

Algorithm 1.

Despite of the fast ELM training time, and regard-

less of using either batch or sequential/recursive ELM

implementation, the solution obtained by least-squares

may be not the most robust solution. The columns of

the output node input matrix SN can have strong mul-

ticollinearities due to large number of hidden nodes or

due to redundancy in the input variables, which can re-

sult in an ill-conditioned term
(

ST
NSN

)−1
and in an un-

stable least-squares solution [9]. In order to circumvent

or mitigate the ill-condition of the output node input ma-

trix, the partial least-squares (PLS) can be used to obtain

the output weights.
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5. On-line Sequential ELM Based on Recursive Par-

tial Least-Squares

If matrix
(

ST
NSN

)−1
is well-conditioned, the best esti-

mate of v in a least squares sense is given by (10). How-

ever, if
(

ST
NSN

)−1
is ill-conditioned, an alternative to the

Moore-Penrose generalized inverse should be used. Us-

ing a PLS method, the data are projected into a space

spanned by a number of latent variables (factors), and

SN and yN are then represented by:

SN = TPT + E, (13)

yN = UqT + f, (14)

where T = [t1, . . . , tl] ∈ R
N×l and U = [u1, . . . ,ul] ∈

R
N×l are the latent score matrices, and P = [p1, . . . ,pl] ∈

R
h×l and q = [q1, . . . , ql] ∈ R

1×l are the loading matri-

ces. E ∈ R
N×h and f ∈ R

N×1 are the input and output

data residuals, and l is the number of latent variables

used in the model.

The data matrices SN and yN can also be iteratively

decomposed as follows. First, let:

SN = t1pT
1 + E1, (15)

yN = u1q1 + f1, (16)

where t1 and u1 are the first column of the latent score

matrices T and U, and p1 and q1 are the first column of

the loading matrices P and q. E1 and f1 are the input

and output data residuals in the first iteration. The latent

score vectors are related by a linear inner model:

u1 = b1t1 + r1, (17)

where b1 is a coefficient which is determined by min-

imizing the residual r1. After going through the first

latent score vectors calculation, the second vectors are

calculated by decomposing the residuals E1 and f1 as

follows:

E2 = E1 − t1pT
1 , (18)

f2 = f1 − b1t1q1, (19)

being the t
1

score vector orthogonal to E1 and f1. This

procedure is repeated until all the T, P, U, q matrices are

calculated. The overall PLS algorithm is summarized

in Algorithm 2 [9]. This algorithm is derived with the

assumption that the data SN and yN are scaled to zero

mean and unit variance. However, if the levels of the

signals at the outputs of the neurons are comparable, the

scaling may be unnecessary [10].

Using this algorithm, the matrices T, P, q, I, and B

can be constructed, where:

I = [i1, . . . , il], (20)

B = diag{b1, . . . , bl}. (21)

Algorithm 2 Traditional batch-wise PLS algorithm with

N available data samples.

Inputs: Output node input matrix, SN ; the vector of tar-

get outputs, yN ; and the number of latent variables l;

1. Set E0 = SN , f0 = yN , and k = 0;

2. Let k ← k + 1 and uk ← fk−1;

3. Compute the latent scores and the loading factors:

(a) ik = ET
k−1u

k
/uT

k
u

k
;

(b) tk = Ek−1ik/‖Ek−1ik‖;

(c) qk = fT
k−1t

k
/‖fT

k−1t
k
‖;

(d) uk = fk−1q
k
;

(e) pk = ET
k−1t

k
;

4. Compute the coefficient bk:

(a) bk ← uT
k

t
k
;

5. Compute the residuals Ek and fk:

(a) Ek = Ek−1 − t
k
pT

k
,

(b) fk = fk−1 − bkt
k
qk;

6. Repeat Steps 2) to 6) until all l principal factors are

calculated.

Consider the following Lemma [9]:

Lemma 1. If rank(SN) = l and l ≤ (h + 1), then

El = El+1 = . . . = Eh+1 = 0. (22)

In matrix form, using Lemma 1 and equations (15)-

(17), SN and yN can be decomposed as:

SN = TPT + El = TPT , (23)

yN = TBqT + fl. (24)

Consider the following Lemma [9], which shows that

fl is orthogonal to the latent score vector tl:

Lemma 2. The output residual fi is orthogonal to the

previous latent score vector t j, i.e.

tT
j fi = 0, for i ≥ j. (25)

As the latent score vectors are orthogonal and have

unit length (Algorithm 2, Step 3b), all the columns of

T are mutually orthonormal. So, the following relation

can be derived using (23), (24) and Lemma 2,

ST
NSN = PTT TPT = PPT , (26)

ST
NyN = PTT TBqT + PTT fl = PBqT . (27)

In order to minimize the square residuals ‖yN−SNv‖2,

using (26)-(27) the LS solution (10) can be transformed

into the following PLS solution:

v̂ = (PPT )−1PBqT . (28)
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This solution is designed for the offline case (batch

learning). However, when dealing with time-varying en-

vironments, and when the samples are delivered sequen-

tially over the time, the solution is achieved by merging

the old model, represented by matrices P,B, and q, with

the new sample. In the recursive PLS (RPLS), at each

time instant k, the data is represented by:

SPLS
k =

[

λPT

sT
k

]

; yPLS
k =

[

λBqT

y(k)

]

, (29)

where λ is the forgetting factor, which has a role similar

to the role it has in the LS estimator. Then, SPLS
k and

yPLS
k

can be applied as inputs SN , yN in Algorithm 2 to

find the new PLS parameters.

The method proposed in this paper is based on the use

of the recursive partial least-squares method to estimate

the output weights of a SLFN (considering an output

neuron with a linear activation function) and is called

OS-ELM-RPLS.

A set of initializations is performed before the online

operation of OS-ELM-RPLS. In the first step of OS-

ELM-RPLS initialization, a training data set with size

N0 is collected, where N0 must be at least equal to the

number of neurons in the hidden layer. In the next steps,

the input weights and bias are randomly assigned, and

the outputs of the hidden neurons are obtained. Using

these outputs and considering that the number of latent

variables l is equal to the rank of the SN0
, the matrices T,

P, q, I, and B are obtainded using the Algorithm 2. In

the last step of the initialization stage, the output weights

vector v̂0 is estimated using (28).

The proposed OS-ELM-RPLS method is summarized

in Algorithm 3. In the online operation of the algo-

rithm, first, in each time instant k, the output of the

network is estimated. After this, the number of RPLS

latent variables is selected using a leave-one-out valida-

tion methodology: before updating the output weights

vector, the number of latent variables is selected based

on the performance of the SLFN using the samples SPLS
k−1

and output weights vector v̂k−1 obtained until time in-

stant (k − 1). After having selected the number of latent

variables, the matrices SPLS
k and yPLS

k
are recursively up-

dated using (2) and (29), and the matrices T, P, q, I, and

B are obtained using Algorithm 2. At last, the output

weights vector of the network is estimated.

6. Results

This section presents experimental results in three

real-world data sets. Table 1 describes the data sets,

and parameters used in the experiments. For compari-

son purposes, the proposed OS-ELM-RPLS method is

Algorithm 3 On-line sequential ELM based on RPLS

with adaptive number of latent variables.

1. For each newly available data sample [xk, y(k)], at

instant k do:

(a) Compute the estimated output ŷ(k) using (1).

(b) To prepare the selection of the number of la-

tent variables, for j = 1, . . . , rank(SPLS
k−1 ), us-

ing the previous matrix SPLS
k−1 and vector yPLS

k−1
,

do:

i. Compute the matrices T, P, q, I, and B,

using Algorithm 2 with l = j latent vari-

ables;

ii. Cumpute the output weights estimation

v̂k−1 using (28);

iii. Compute the estimated output ŷ j(k − 1)

using (1);

iv. Obtain the error e j = ŷ j(k − 1) − y(k − 1)

between the estimated and real outputs;

(c) Select the number of latent variables as

l = arg min
j=1,...,rank(Sk−1)

(e j);

(d) Obtain SPLS
k and yPLS

k
using (2) and (29);

(e) Compute the matrices T, P, q, I, and B using

Algorithm 2;

(f) Compute the output weights estimation v̂k us-

ing (28);

Table 1: Data sets description and model parameters: Samples indi-

cates the number of exemplars in the data set; architecture indicates

the number of input, hidden, and output nodes used in the SLFN; λ

indicates the forgetting factor used in the RPLS and in the RLS.

Data set Samples Architecture λ

Debutanizer 2394 7 − 15 − 1 0.98

Polymerization 647 12 − 20 − 1 0.98

Burning Temp. 1000 7 − 10 − 1 0.99

compared with (i) OS-ELM based on RLS proposed in

[1] (OS-ELM-RLS), and (ii) RPLS method proposed

in [9]. The OS-ELM-RPLSM is a modified version of

OS-ELM-RPLS method, where the number of RPLS la-

tent variables l is not adapted online. Thus, OS-ELM-

RPLSM does not perform Steps 1b and 1c of Algorithm

3. In the OS-ELM-RPLSM and RPLS methods, the

number of latent variables used was determined by a 10-

fold cross-validation procedure applied on the training

data set.

For each data set, 30 trials were performed using a

kind of 30-fold cross-validation. The used method, in-

stead of using 29/30 of the data set as the training set

and the remaining data set as the testing set, like in the
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traditional 30-fold cross-validation, in order to simulate

an online learning method, 1/30 of the data is used as

initialization part and the remaining is used as testing-

set.

All the input and output variables have been normal-

ized to zero mean and unit variance. The training data

set was used to initialize/train the estimators and the

approximation performance was evaluated on the test-

ing data set. SLFNs with sigmoidal activation func-

tions in the hidden-layer neurons, and a linear activation

function in the output neuron were used. The optimal

number of hidden neurons h and the forgetting factor λ

used in all data sets were determined by means of ex-

perimentation. At each time instant k, the estimation

of the output is performed before the estimator adapta-

tion. The approximation performances of the estimators

were evaluated using the average of the mean square er-

ror (MSE) between the predicted and desired outputs in

the 30 trials. The computational time results refer to the

mean time taken by all methods to predict y and per-

form the SLFN model adaptation for all the samples of

the testing data set, over the 30 trials

A statistical paired Student t-test using MSE was

also conducted for all data sets (for further details see

[11], [12]). Specifically, paired t-test between OS-ELM-

RPLS and each one of the other methods was conducted

using the 30 trials realized in each data set. In this test

it is considered that the null hypothesis is that the mean

MSE of the two tested methods in the 30 trials is the

same, and that the significance level is 0.05 for all exper-

iments. So, if a p-value is under the significance level, it

means that the observed difference is “very significant”.

The symbols “(+)” and “(−)” are used to indicate bet-

ter or worse performances of OS-ELM-RPLS over the

other tested method, respectively.

All the simulation experiments have been made in the

Matlab environment running on a PC with 2.20 [GHz]

CPU with 4 cores and 4GB RAM.

6.1. Experiment I - Debutanizer Process

The first case study consists of the prediction of the

butane (C4) concentration at the bottom flow of a debu-

tanizer column. This case study was introduced in [13]

and an associated data set is available for download in

the book website. The data set of plant variables that

is available for learning consists of 7 input variables,

xk = [x1(k), . . . , x7(k)]T , and one target output variable

to be estimated, y(k). The variables correspond to tem-

peratures, pressures, flows, and the output concentra-

tion. See Table 2 for further details.

The results of application of all methods are presented

in Table 3 and Figure 2. Figure 3 shows the number

Table 2: Variables of the debutanizer data set.

Variables Description

x1 Top temperature

x2 Top pressure

x3 Reflux flow

x4 Flow to next process

x5 6th tray temperature

x6 Bottom temperature

x7 Bottom temperature

y Butane (C4) concentration

Table 3: Performance results of the four methods in the testing data

set of the debutanizer process.

Method
Mean Testing Mean

p-value
MSE Time [s]

OS-ELM-RPLS 0.240 11.58 -

OS-ELM-RPLSM 0.647 11.36 0.00(+)

OS-ELM-RLS 0.384 0.27 0.00(+)

RPLS 0.618 6.13 0.00(+)

0 200 400 600 800 1000 1200 1400 1600

Sample, k

−4

−2

0

2

4

6

8

10

O
u
tp

u
ts

OS-ELM-RPLS

OS-ELM-RPLSM

OS-ELM-RLS

RPLS

Desired Output

Figure 2: Predicted and desired outputs using the four methods in the

debutanizer data set in the first trial.

of latent variables in the testing data set chosen by the

proposed method for all the samples in the first trial.

Analyzing the results, it can be verified that the per-

formance of the proposed OS-ELM-RPLS method is

statistically better that the performance of the other three

methods, followed by the OS-ELM-RLS. It can also be

seen that the performance of the RPLS, which gener-

ates a linear model, is better than the performance of

the OS-ELM-RPLSM. Comparing the results of the OS-

ELM-RPLSM and the OS-ELM-RPLS, it can be veri-

fied the importance of the adaptation of the number of

latent variables performed by the OS-ELM-RPLS dur-

ing the estimation. With respect to the computational

time, the OS-ELM-RLS is the fastest method. However,
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Figure 3: Number of latent variables used by the OS-ELM-RPLS in

the debutanizer testing data set.

Table 4: Performance results of the four methods in the testing data

set of the polymerization process.

Method
Mean Testing Mean

p-value
MSE Time [s]

OS-ELM-RPLS 0.085 1.36 -

OS-ELM-RPLSM 0.108 1.33 0.00(+)

OS-ELM-RLS 0.109 0.06 0.00(+)

RPLS 0.1442 2.53 0.00(+)

the time taken by OS-ELM-RPLS in each iteration is ap-

proximately 11.58/(2394 ∗ 29/30) ≈ 10 [milliseconds],

which is a good time for real applications.

6.2. Experiment II - Polymerization Process

The polymerization data set is a benchmark for adap-

tive soft sensors introduced in [14, 15]. This data set de-

scribes a polymerization reactor and the objective is the

prediction of the catalyst activity in the multitube. The

data set covers 1 year of acquisition with 8687 available

samples and is composed by 15 input variables.

This paper follows the same pre-processing procedure

as was done in [15]: downsampling of the first 5800

samples by a factor of 10 to restrict the available infor-

mation in the training set, the removal of variables 3, 4,

and 15, and removing all samples which have missing

values. The preprocessing results on a data set with 647

data samples.

The results of application of all methods are presented

in Table 4 and Figure 4. Figure 5 shows the number of

latent variables in the testing data set chosen by the pro-

posed OS-ELM-RPLS method in the first trial. As in

the previous experiment, the prediction performance of

the proposed method in the testing data set is statisti-

cally the best, however now followed by the OS-ELM-

RPLSM. Once again, it is shown the importance of the
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Figure 4: Predicted and desired outputs using the four methods in the

polymerization data set in the first trial.
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Figure 5: Number of latent variables used by the OS-ELM-RPLS in

the polymerization testing data set.

online adaptation of the number of the latent variables.

In this data set, the RPLS is the method with worst per-

formance.

6.3. Experiment III - Estimation of the Burning Zone

Temperature on a Cement Kiln

Inside a rotary cement kiln, temperatures in the range

of 1200-1700◦C heat a mixture of limestone, shale, clay,

sand, and smaller quantities of other substances, result-

ing in small black nodules called clinkers. Outside the

kiln these clinkers are cooled and grounded to produce

cement [16]. The control of the temperature inside the

kiln is crucial: insufficiently high maximum tempera-

tures in the kiln result in incompletely reacted prod-

ucts and poor-quality cement, while excessive maxi-

mum temperatures waste energy and propitiate the for-

mation of NOx pollutant compounds that have several

negative environmental impacts [17].

As temperature measurement is impossible using

contact, the measurement is made using a pyrometer.
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However, due to the flying dust inside the kiln system

that blocks the sensor after some time in operation, it

has to be removed and cleaned by an operator, which

can take a long time. It is therefore desirable to develop

a model that is able to replace the pyrometer in the mea-

surement of the burning zone temperature.

In this work, the experiments are made in a simula-

tion environment using a real-world data set1 obtained

in a cement kiln plant. This data set is composed by

194 monitored variables, recorded with a sampling in-

terval of T = 1 [min]. The monitored variables refer

to several system variables from the preheater (cyclone)

tower until the chimney and cement mill, and include,

for example, temperatures, and pressures. Most vari-

ables are online measured, but there are also some man-

ual entries and laboratory entries. The used data has a

total of 10000 samples which represent approximately

one week.

Due to the large number of input variables, the se-

lection of the most relevant variables for the estimation

of the burning zone temperature was performed. As a

first step the selection of the initial set of input vari-

ables was based on knowledge about the process. From

the 193 available input variables, 17 variables were se-

lected. Some of the variables represent certain temper-

atures and pressures in the input and output of the kiln,

fuel flows (coal and alternative fuels), temperatures in

the coal mill and in the cooler, etc. In a second step,

the set of input variables was refined using the sequen-

tial backward search (SBS) approach proposed in [18].

After this procedure, the following set of input variables

was obtained:

• Temperature of the clinker at the output of the kiln;

• Pressure of the air inside of the kiln in the burner

area;

• Speed of the fan responsible for the return from the

kiln to cyclone (tertiary air);

• Flow of alternative fuels;

• Flow of the fuel in the central burner;

• Flow of the fuel in the radial burner;

• Temperature of the air at the input of the kiln.

The results of application of all the prediction meth-

ods are presented in Table 5 and Figure 6. Figure 7

shows the number of latent variables in the testing data

1Provided by “Acontrol - Automação e Controle Industrial, Lda”,

Coimbra, Portugal.

Table 5: Performance results of the four methods in the testing set for

the estimation of the burning zone temperature.

Method
Mean Testing Mean

p-value
MSE Time [s]

OS-ELM-RPLS 0.568 2.14 -

OS-ELM-RPLSM 0.587 2.07 0.00(+)

OS-ELM-RLS 0.617 0.09 0.00(+)

RPLS 0.606 2.58 0.00(+)
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Figure 6: Predicted and desired outputs using the four methods in the

estimation of the burning zone temperature in the first trial.

set chosen by the proposed OS-ELM-RPLS method in

the first trial.

From the analyses of the results it can be veri-

fied again that the proposed method is, statistically,

the method with best estimation performance, followed

again by the OS-ELM-RPLSM. In this data set, the

OS-ELM-RLS method is the method with worst perfor-

mance.

7. Conclusion

A novel learning algorithm for SLFNs called on-line

sequential extreme learning machine based on recursive

partial least-squares with adaptation of the number of

the latent variables (OL-ELM-RPLS) is presented. The

proposed method is an improvement of the OS-ELM-

RLS method proposed in [1], where RLS is used to up-

date the estimation of the output weights. Due to the

multicollinearities that can exist in the hidden-layer out-

put matrix columns caused by the excessive number of

hidden neurons or redundant input variables, the esti-

mation of the output weights by LS can result in an ill-

conditioned problem and therefore in an unstable solu-

tion. Therefore, in the proposed methodology the RLS

method was replaced by a RPLS method. Furthermore,
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Figure 7: Number of latent variables used by the OS-ELM-RPLS in

the testing set for the estimation of the burning zone temperature.

an online adaptation of the number of RPLS latent vari-

ables was introduced in the proposed algorithm.

To validate and demonstrate the performance and ef-

fectiveness of the proposed method, it was applied on

three real-world data sets. The performance of the pro-

posed method was better than the performance of OS-

ELM-RPLSM, OS-ELM-RLS, and RPLS in all data

sets. The results also show that the adaptation of the

number of latent variables leads to an improvement of

the performance of the proposed method and that the

time taken in each iteration of the method allows its on-

line implementation in real-world applications.
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