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Predicting the Grounding Topology Based on

Grounding Impedance and the Pattern Recognition

Framework: A case study on one to four ground

rods in straight line
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Felipe Bandeira Silva and Ricardo Silva Thé Pontes

Abstract—This paper presents a system which predicts the
grounding topologies of grounding systems (GS) with one, two,
three or four ground rods in straight line, when no prior infor-
mation about the grounding topology, soil or rod properties is
given. This is achieved trough the exploration of the information
contained into the impulse response of the GS together with
the pattern recognition framework. The proposed system is
composed by four main elements, an excitation system, a high-
speed data acquisition system, a feature extraction and a pattern
recognition model. Experimental setup comprises the evaluation
of the accuracy of the proposed system in discriminating among
four grounding configurations, composed by the topologies of one,
two, three and four ground rods in straight line. This paper also
proposes a new data driven approach to improve the classification
performance, in pattern classification models, when dealing with
undersampling problem in the acquired signal used to extract
the features.

Index Terms—grounding electrodes, lightning, transient re-
sponse, pattern recognition

I. INTRODUCTION

Grounding systems (GS) plays a vital role in electrical

network. The correct design of GS are of vital importance for

safety and protection of personnel, equipments and facilities,

as well to the correct operation of the electricity supply

network, etc. The selection of correct GS topology (i.e. number

and disposition of rods) is dependent on several factors, which

includes the soil resistivity, the available area to install the GS,

the season-weather characteristics of the region, the demands

of the project, etc [1]. Once the GS topology is defined,

its installation should be properly implemented. However, in

some cases, this does not happen, mainly because of errors

during the project execution, such as installing an incorrect

number of rods (usually less than specified a priori) and/or by

improperly connecting the rods (e.g. bad clamping or broken

connections).

There are two possible ways to minimize this issue. The

first one is based on the visual inspection of the installed GS,

under the drawback that the visual inspection does not allow
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the analysis of the buried part. Moreover, there is also the

possibility that the GS have already been covered or cemented,

thereby making impossible the visual inspection of the GS.

The second one is based on the value of GS resistance. Having

the GS resistance and the information on the soil resistivity,

defined as ρ, it is possible to infer the GS topology. However,

this information on the soil properties is not always available,

mainly in GS systems of transmission poles where the GS

topology is kept fixed. For example, in Brazilian utilities a

single ground rod 2.4m long, with 0.0150m diameter, is

frequently applied throughout medium-voltage lines at the

service entrances of low-voltage consumers. For pole-mounted

distribution transformers protected by surge arresters, the

typical grounding configurations applied are three 2.4m long

parallel rods in straight line, with 0.0150m diameter, spaced in

intervals of 3m [2]. Then, under this kind of situation it would

be beneficial to have a method/system to check whether the

configuration of GS is arranged properly or not, by indicating

the exact or at least the approximated GS under the soil, and

with no prior information on the soil characteristics. Thus,

to tackle this problem, a new system for inspecting GS is

proposed in this paper. The proposed system is composed

by four other subsystems: a excitation, acquisition, feature

extraction and pattern recognition subsystems. The core of the

proposed system is based on the modeling of GS topology

based on the GS impedance. Moreover, the proposed system

does not requires any prior information on the soil and/or

rod properties, and the proposed system requires only two

auxiliary electrodes to be composed.

Several works attempted to study the behavior of the GS

impedance when submitted to a lightning strike [3]–[9]. The

objective in all of these works were very clearly, model/predict

the performance of a GS topology having as input the char-

acteristics of the soil under consideration, the characteristic

of the GS topology and the lightning strike current curve. In

all these works, the objective was to find a appropriate way

to model the harmonic grounding impedance Z(jω), or the

grounding impedance in time z(t) = F−1 {Z(jω)}, where

F−1 is the discrete inverse Fourier transform, by setting the

following function f( · ):

Z(jω) = f(ω,∆,Θ) (1)

where j =
√
−1, ω = 2πf , ω is the angular frequency and f
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is the frequency (in hertz), ∆ represents the soil properties,

which usually are given by ρ, ǫ and µ, the resistivity (in

ohms · meter), permittivity (in farads per meter) and perme-

ability (in henry per meter) of the soil, respectively. The

parameter Θ accounts for the GS topology characteristics,

which usually are given by the following parameters, l the

grounding rod length (in meters), a the rod radius (in meters),

d is the depth of burial of horizontal rods (in meters), D is the

distance between vertical grounding electrodes and the number

of ground rods, represented by s. Thus, ∆ = {ρ, ǫ, µ} and

Θ = {l, a, d,D, s}. Another two important aspects which

are also taken into consideration while modeling Eq. (1) are

the effects of soil ionization [10] and the dependence of soil

parameters ρ and ǫ, over frequency, as detailed described in

[9], [11] (see [12] for further understanding on implications

of frequency dependence of soil parameters in real case

situations, e.g. short circuits in transmission line caused by

lighting strikes). The most common approaches to model

f( · ) are based on the on circuit theory, transmission line

theory, full wave models based on field equations and the

Numerical Electromagnetic Code [3]–[9], [13]–[15] or hybrid

time-frequency approaches to deal with the soil ionization and

dependence of soil parameters over frequency [10], [11].

From the knowledge about Z(jω) several quantities related

to the performance of a GS in high frequencies are computed,

usually the impulse impedance Z and the impulse coefficient

A. Moreover, it is already know that the transient response

(high frequency signal) has several characteristics on the rod

properties and soil properties [16], [17].

Instead of modeling the GS impedance, given by Eq.

(1), as a function of soil and GS topology parameters, the

objective here is to model the GS topology, described by the

parameter Θ, in function of the GS impedance (without lack of

generality the grounding impedance will refereed in this work

as the harmonic impedance Z(jω) or time impedance z(t)).
Assume that Θ1, . . . ,ΘC are the representation of different

GS topologies, then to compose the proposed system it is

necessary to find the following map function h( · )

Θ∗ = h(x) (2)

which maps the characteristics/features x extracted from the

impedance Z(jω) signal to the GS topology domain Θ, where

Θ∗ ∈ {Θ1, . . . ,ΘC}. As can be seen in Eq. (2), the only

information provided to predict the GS topology is the GS

impedance, no prior information on soil properties, described

by the parameter ∆, is utilized.

Modeling h( · ) based on first-principle models can be

difficult and so far it has not been investigated yet. In this

work, to overcome the complexity and the time demanding of

first-principle models, a black-box/data-driven model, based

on pattern recognition framework is going to be employed to

model the function h( · ). The pattern recognition framework

requires a set of N examples Φ = {(xi,Θi)|i = 1, . . . , N}
to learn the function h( · ), where xi are the features extracted

from the GS impedance Zi(jω) of a GS topology with

characteristics given by Θi ∈
{

Θ1, . . . ,ΘC
}

, in a soil with

properties described by ∆i. There are several applications of

pattern recognition framework in the power systems field, e.g.

power system disturbance classification [18], [19], detection of

power islands [20], [21] and prediction of seasonal variation

of ground resistance [22]. In all the applications it is clear

the lack of physical modeling between the output of interest

and the characteristics (features) which describe the output.

Then, given a set of data, the pattern recognition framework

is capable to find the mapping function between the input and

output to perform the required task.

However, despite the advantages of black-box modeling

over the physical modeling, the accuracy of Eq. (2) is highly

dependent on the amount of examples N and the number C
of different GS topologies to discriminate. In the case of this

work, the collection of data set Φ requires the mounting of

the different grounding topologies (the ones to be predicted
{

Θ1, . . . ,ΘC
}

) in different soils, which is costly due the

necessity to mount and unmount the different GS’s, where

N = ns ·C with ns being equal to the number of soils/places

where the GS topologies
{

Θ1, . . . ,ΘC
}

were mounted and

C the total number of GS topologies to be predicted, then

the number of collected points tends to be small. Thus, to

increase the accuracy of modeling (2), a special case in the

experimental part was considered. Instead of predicting the

exact GS topology, the special case predicts the approximated

GS topology. This is done by grouping GS topologies which

are similar to each other (this similarity is defined by the

user, for example, in the experimental part the GS topologies

with one and two ground rods were considered as a group

and the GS topologies with three and four ground rods were

considered as a other group). This simplification reduces the

number C of GS topologies to be predicted, then reducing

the complexity of the learning and increasing the accuracy in

modeling h( · ). The objective of this approach can be defined

as:

Λ∗ = g(x), (3)

where Λ∗ ∈ {Λ1, . . . ,ΛJ} is the predicted approximated GS

topology, where Λj ⊂
{

Θ1, . . . ,ΘC
}

\
∑j

i=1
∪Λi−1 with

Λ0 = ∅ and j = 1, . . . , J , with J < C. Instead of predicting

the exact topology, the proposed system will also predict the

approximated GS topology. In a practical perspective it is

enough for the authors to discriminate among topologies with

one or two ground rod/s and three or four ground rods.

The proposed system also should be able to extract the GS

impedance and then, based on the GS impedance, predict the

exact or approximated GS topology which that impedance

belongs by using Eqs. (2) and (3). The proposed system is

subdivided in four subsystems: excitation, acquisition, feature

extraction and pattern recognition subsystems. The excitation

system is responsible to inject a impulse voltage signal, similar

to a lightning stroke, into the installed GS. The acquisition

system is responsible to acquire the response signals (voltage

and current, trough two auxiliary electrodes) at a high sample

rate rate. The transient part of voltage and current signals

are acquired with undersampling (the transient part contains

the most information on the GS properties Θ [8]), and to

reduce the impact of undersampling problem in modeling

(2) and (3) a data-driven approach is proposed in this work.

The feature extraction module is responsible to extract the
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features x from the acquired signal of the GS impedance,

determined through the voltage and current responses. The

extracted features are used as input of a pattern recognition

model in the classification system, that outputs the information

regarding the topology of the GS. To model the functions h( · )
and g( · ) in Eqs. (2) and (3) the following pattern recognition

models were evaluated in the experimental part, the Naive

Bayes, Adaptive Boosting (Adaboost) [23], Decision Trees

(DT) [24], and Random Forest Classifiers (RF) [25] and a

method based on l-2 norm.

In order to evaluate the proposed system, a set of 26
controlled experiments, in distinct soils were conducted and

the configurations with one, two, three and four ground rods in

horizontal line were mounted and the impedance Z(jω) for

each of these configurations were extracted and stored (i.e.

ns = 26 and C = 4). All the ground rods are cooper made

and have l = 2.4m length with a = 0.0150m diameter, and

for the configurations with two, three and four rods, the rods

were spaced in intervals of D = 3m. The data collection was

done in different seasons and in different locations.

This paper is organized as follows. Section II describes the

proposed methodology. Section III presents the experimental

results. Finally, Section V gives the conclusion remarks.

II. PROPOSED SYSTEM

The objective of this paper is to build a system to predict

the exact and approximated GS topology by using Eqs. (2)

and (3). For that purpose, the proposed system was designed

based on four other subsystems: excitation, acquisition, feature

extraction and pattern recognition subsystems. The excitation

subsystem is responsible to apply a impulse voltage signal

similar to a lightning stroke in the installed GS (this enable the

acquisition of high frequency components of impedance). The

acquisition subsystem is responsible to acquire the response

signals (voltage and current). The feature extraction subsystem

is responsible to extract the features from the impedance

signal Z(jω). The extracted features are used as input of

a pattern recognition subsystem, that outputs the prediction

regarding the exact and approximated GS topology. All of

these subsystems are managed by a dedicated computer. Each

of these subsystems are detailed described as follows.

A. Excitation Subsystem

The objective of excitation system is to enable the acquisi-

tion of the impedance Z(jω) of the installed GS.

The impedance Z(jω) is extracted by applying a voltage

signal similar to a lighting strike to the GS. According to [26,

Chapter 6] the lighting stroke waveform can be approximated

by a double exponential as follows:

vin(t) = V0

(

e−αt − e−βt
)

, (4)

where V0 is the peak value and α and β are constants

that define the front time tf and tail time tt, respectively.

According to [26], the following approximations can be used:

tf ≈ 1

β
, (5)

tt ≈ 1

α
. (6)
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Fig. 1. Lighting stroke waveform for different value of β and α.

R1 D5 G2G1

D1 D3

D2D4

Clink

220V Z1

Charge

Cout

TR

1000V

Pulse

Vsupply

Excitation System

Grounding 

System

Fig. 2. Architecture of the proposed excitation system.

The common values of the front time of a lighting strikes is

between 0.5µs to 10µs, while its peak value decays to 50%
after 30µs to 200µs. Fig. 1 shows the lighting strike waveform

for different values of α and β and V0 = 1000V, the values

of α and β range in the common values of a lighting stroke.

The excitation system circuit, proposed in this paper, is

depicted in Fig. 2. This circuit can approximate the typical

waveform of lighting stroke, given by (4). The system of

Fig. 2 can be described by two main steps. The first one

is the capacitor charging Cout step and the second one is

the application of the capacitor voltage into the GS. In the

first step, the MOSFET G1 is closed and G2 is kept open.

The transformer TR step-up the voltage from 220V to 1 kV,

approximately. Then, the voltage is rectified, by the full

bridge rectifier composed by the diodes D1, D2, D3, D4

and capacitor Clink , so that the output capacitor Cout is

charged, the role of resistor R1 is to limit the current to the

capacitor Cout. In the second step, the MOSFET G1 is opened

and MOSFET G2 is closed, then the output capacitor Cout

(charged before in the first step), will generate an impulse

voltage over the GS impedance Z1 through the MOSFET G2

that is closed.

As can be seen in Fig. 3, the output of the proposed exci-

tation system has a similar behavior of a double exponential,

given by (4) and illustrated by Fig. 1. As the output voltage of

the excitation system, Fig. 2, is uncontrolled, the parameters

tf and tt of the double exponential waveform are dependent

of the soil and rod properties. The peak of voltage applied to

the GS in all experiments is in the order of 1 kV.
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Fig. 3. Experimental results of the voltage waveform applied in different soils
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B. Acquisition Subsystem

The data acquisition system is responsible to acquire the

data necessary to compute the impedance Z(jω).
The scheme of the experimental setup, to acquire the

impedance Z(jω), is shown in Fig. 4. As can be seen, two

signals are acquired as responses, the voltage signal vr(t) and

the current signal ir(t). After the voltage vr(t) and current

ir(t) responses are acquired, by the data acquisition system,

the time domain impedance of the GS, given by

z(t) =
vr(t)

ir(t)
, (7)

is determined. These signals are collected by two auxiliary

electrodes, in line, placed from distances dv and di from the

GS under test. This is based on the 3-point method fall of

potential test for measuring the resistivity of the soil, but dif-

ferently of this methodology the value of dv is kept fixed in all

experiments. In this paper, the distances dv and di were defined

as dv = 12.5m and di = 20m. The current and voltage

electrodes were disposed in straight line in all experiments.

These distances were defined empirically. However, others can

use different values for these distances, under the constraint

that it should keep it fixed for all experiments.

The transient response, which is assumed to contain the

majority of information necessary to predict the GS topology,

is in the order of micro seconds (µs). To allow the acquisition

of the transient signal, this work acquires the data at a sample

rate of 2MSa/s. and sample interval ∆t = 0.5µs under

this acquisition rate, by using the data acquisition system

U2531A from Agilent. The measurement period was set to

T = 25ms. To capture the voltage and current signals two

Hall Effect transducers from LEM were used, the sample rate

of voltage and current sensors are equal to 500 kHz and 1MHz,

respectively. However, as it is going to be discussed as follows,

there are some issues regarding the frequency of operation of

the voltage and current sensors. The maximum acquisition-

rate of the voltage is 500 kHz and the current 1MHz. The

experimental results suggests that the transient part of both the

voltage ans current signals are acquired with undersampling,

this can be visualized in Figs. 5(a) and 5(b), respectively.

This figure shows four acquired voltage and current signals

of a GS topology composed by one ground rod. Each of these

curves of vr(t) and ir(t) were acquired sequentially and in the

same soil during the experiments. The first line figure shows

that the first five samples of both, voltage and current have

a heavy variation in their values. Figs. 5(c) and 5(d) shows

the mean and standard deviation values of vr(t) and ir(t),
respectively, of thirty acquired signals of the GS topology

with one ground rod. As can be seen, the first samples have

a large variance, indicating the undersampling problem and

increasing the uncertainty on the acquired transient signal.

To overcome this issue during the modeling of Eqs. (2) and

(3), a data-driven approach was adopted. For each acquired

voltage vr(t) and ir(t) signals, in a sequence of nr acquired

data, represented by
{(

vrj(t), irj(t)
)}nr

j=1
, applied in Eq. (2),

there will be {Θ1, . . . ,Θnr
} predicted GS topologies, where

{Θ∗

1, . . . ,Θnr
} ⊆ {Θ1, . . . ,ΘC}. Then, the predicted GS

topology will be given the majority vote rule, as follows:

Θ∗ = mode
(

{Θ1, . . . ,Θnr
}
)

(8)

In other words, the predicted GS topology is the one that ap-

pears most frequently in the predicted GS topologies from nr

runs (the same was applied in Eq. (3)). This approach has show

to reduce the uncertainty associated with the undersampling

characteristics of the acquired current and voltage signals.

The experimental results will discuss this issue, exhibiting that

this strategy increases the accuracy-rate due to the reduce of

the uncertainty associated with the transient undersampling

problem.

C. Feature Extraction Subsystem

The objective of the feature extraction is to define the

features x extracted from the impedance signal Z(jω) to be

used in the models h( · ) and g( · ) in Eqs. (2) and (3). In this

work, several features are going be extracted from the acquired

data and evaluated later regarding its accuracy in modeling the

GS topologies.

As discussed before, the pattern recognition models are

black-box models, thus they lack on the explicit formulation

of the features x to model the exact and the approximated GS

topology Θ and Λ. However, from the grounding theory it is

known that many information, regarding the rod and soil prop-

erties, are contained in the impedance signal z(t). Thus two

characteristic/features are going to be extracted from the DFT
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Fig. 5. Four acquired voltage (a) and current (b) signals of a GS topology composed by one ground rod. Mean and variance of discrete acquired values of
voltage (c) and current (d), for thirty acquired signals.

of impedance signal z(t), where t = 0,∆t, 2∆t, . . . , nt∆t,
where nt = 50000 and T = nt∆t = 25ms. Let the DFT of

the impedance signal be equal to

Z(n) =

Nf−1
∑

k=0

z(k∆t)e
−j 2π

Nf
nk

(9)

for n = 1, . . . , Nf , where Nf is the total number of data points

of impedance signal where the DFT is going to be applied. The

features extracted from the impedance signal are the amplitude

(refereed here as F.1) and the phase angle (refereed here as

F.2). The features F.1 can be defined as x = [x1, . . . , xNf
]T ,

where xj = |Z(j)|, and similarly the features F.2 can be

defined as x = [x1, . . . , xNf
]T , where xj = arg (Z(j)), where

j = 1, . . . , Nf .

The number of elements in Z(n) is equal to Nf . The time

covered by the Nf samples is equal to t = 0,∆t, . . . , Nf∆t
seconds (under the sample rate of 2MSa/s). As the values

of Nf which gives the most informative Fourier coefficients

are unknown, different values of Nf will be evaluated in the

experimental part.

D. Pattern Recognition Subsystem

The objective here is to solve the Eq. (2) (the remain of

section is similarly valid for Eq. (3)) by means of the pattern

recognition framework. It means to find a mapping function

(classification model):

h(x, ζ) : X → Θ, (10)

that maps the input domain X into the output domain Θ (GS

topologies). An element of X is represented by the vector

x ∈ ℜNf , and the Θ is given by Θ = {Θ1,Θ2, . . . ,ΘC},

where C represents the number of classes (number of ground-

ing topologies to discriminate). If C = 2 it is considered as a

binary problem and if C > 2 it is considered as a multiclass

problem. The major issue of pattern recognition framework

is to select the parameters ζ of the classification model

appropriately. This is done by training the model h with a set

of N examples Φ = {(xi,Θ
c
i)|i = 1, . . . , N , c = 1, . . . , C}.

The selection of the best value of ζ is done in the model

learning phase.

There are different algorithms to compose the model h( · )
by using the pattern recognition framework. However, the

models used in this paper were limited to following clas-

sification models, Naives Bayes (NB), Decision Tree (DT),

Adaptive Boosting (Adaboost) and Random Forest Classifiers

(RF) classifiers. Each of the pattern classification models are

described as follows.

1) Naive Bayes: Naive Bayes (NB) is a simple clas-

sification technique with many applications in the pattern

recognition field. The objective of the classification procedure

is to assign a feature x to one of C predefined classes

Θ = {Θ1, . . . ,ΘC}. Using the Bayesian framework, this

problem can be solved by finding the solution of following

equation:

p = argmax
c=1,...,C

P (x|Θc)P (Θc), (11)
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where p is the index class to be assigned, P (x|Θc) is the

conditional probability of sample x given the class Θc, and

P (Θc) is the a priori probability of class Θc.

In the NB classifier it is assumed the independence of

input features. Assuming features independence, the term

P (x|Θc)P (Θc) becomes P (x1|Θc)×
P (x2|Θc)× . . .×P (xn|Θc)×P (Θc), and (11) can be written

as

p = argmax
c=1,...,C

n
∏

i=1

P (xi|Θc)P (Θc). (12)

This expression is referred to as Naive Bayes classifier and the

predicted GS topology is given by Θp. The parameters ζ are

pdf parameters choose to represent the P (x|Θc) distribution.

In this paper a Gaussian distribution was considered and the

mean and standard deviation values are the parameters ζ to

be tuned.

2) Decision Tree: The DT divides the feature space into

sets of disjoint rectangular regions, defined as A1, A2, . . . , Aj ,

and learns a simple model for each these regions.

h(xi) =

j
∑

i=1

cjI(xi ∈ Aj) (13)

where I(xi ∈ Aj) = 1, I(xi /∈ Aj) = 0 and cj are

the estimated values of the output class in region Aj . The

parameters ζ (the disjoint regions) of DT classifier are going

to be learned by using the C4.5 learning algorithm [24].

3) Adaboost: The AdaBoost (Adaptive Boosting) model,

proposed in [23], is a pattern recognition model algorithm

that combines weak classifiers to form a strong classifier. The

output h( · ) of Adaboost is given by

h(xi) = sign

(

T
∑

k=1

akhk(xi, θk)

)

, (14)

where hk are the weak classifiers, T are the number of weak

classifiers, and ζ = {ak, θk}Tk=1
, are the set of parameters

of the Adaboost model. After defining the number of weak

classifiers, the learning step is responsible to tune the pa-

rameters ζ. There are plenty of algorithms used to learn the

parameters ζ, the classical one is given in [23]. Recently,

an approach based on the gradient descent algorithm was

proposed in [27]. The Adaboost is primary designed to deal

with binary classification problems, the extension of Adaboost

for multiclass classification is done can be done using the max-

wins rule [28].

4) Random Forests: The Random Forests (RF), proposed

by [25], can be seen as a generalization of decision trees (DT).

The RF grows T DT’s, where for each tree the training samples

and features are randomly assigned. This strategy wants to

reduce the variance of the classifier and make it more robust.

The output of the RF is given by

h(xi) = mode {Tk(xi)}Tk=1
, (15)

where Tk(xi) is the output of DT k for the input xi. The

majority vote operand outputs the value that appears in the

major number in (Tk(xi))
T

k=1
. It means that means that forest

chooses the classification having the most votes (over all the

trees in the forest). The number T of DT should be set. Then,

each of parameters ζ of DT’s can be learned by using the C4.5

learning algorithm [24].

III. EXPERIMENTAL RESULTS

In order to evaluate the proposed, a set of 26 controlled

experiments, in distinct soils and in different locations were

conducted. In all the soils, the configuration with one, two,

three and four ground rods in straight line were mounted, and

these configurations are represented by the following labels

Θ1,Θ2,Θ3 and Θ4, where all the ground rods have 2.4m

length with 0.0150m diameter, and for the configurations with

two, three and four ground rods, the rods were spaced in inter-

vals of 3m. For each soil and each GS topology thirty nr = 30
signals of voltage and current responses were acquired with

the purpose to reduce the uncertainty associated with the

transient data, as described in Section II-B. The total number

of samples is equal to N = nº classes×nº experiments×nr =
4× 26× 30 = 3120 samples. To avoid interference in results,

the leads used in experimental setup were stretched along the

soil to avoid coil formation and to avoid crossed leads.

In the experimental results, the prediction of exact and

approximated GS topologies were evaluated (Eqs. (2) and (3))

by using the features described in Section II-C. In all the

experiments, the predicted topology is the one given by Eq.

(8). The influence of nr on the accuracy of modeling Eqs. (2)

and (3) is also discussed. Moreover, to show the superiority of

the pattern classification models, described in Sec. II-D, over

conventional or intuitive approaches, the following engineering

approach was also evaluated in the experimental part. This

approach is based on the comparison of the impedance curve

under test with the existing ones of the respective topology to

be evaluated. This was done by measuring the l2-norm distance

between the test data xtest and the train data of the respective

topology to be evaluated. Define the Ltest(Θ
j) as the sum of

l2-norm between the test data sample xtest and the train data

samples of the topology Θj , defined as x
Θ

j

i :

Ltest(Θ
j ,xtest) =

25 ·nr
∑

i=1

||xtest − x
Θ

j

i ||
2

(16)

where 25 ·nr is the number of training data points for topology

Θj . Then, the topology to be assigned to the test data sample

xtest is given by:

p = argmin
c=1,...,C

Ltest,(Θ
c,xtest), (17)

where, the predicted topology is given by Θp. This strategy

assigns the xtest sample to the topology who has the most

similar samples. This approach is refereed as l2-norm in the

remaining of the paper.

A. Experimental Settings

In the experimental evaluation, all the models, NB, DT, Ad-

aboost, and RF were evaluated in predicting the GS topology

based on the input features described in Section II-C. The

features extracted from the DFT of impedance signal (defined

in Eq. (9)) are the amplitude F.1 and the phase angle F.2,
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Fig. 6. Representation of the adopted training and test strategy.

respectively. The parameter Nf defines the number of data

points used to compute the DFT. As discussed before, the value

of Nf which gives the most accurate model is unknown, then

different values of Nf will be evaluated in the experimental

part. However, as it is known in advance, the transient part

of the signal (up to 250µs) contains the majority information

the GS topology, and high values of Nf will suppress the

high frequency impedance signal, thus the range of Nf = 26
(the first 12µs), Nf = 50 (the first 25µs), Nf = 76 (the

first 25µs), Nf = 100 (the first 50µs), Nf = 250 (the first

125µs), Nf = 500 (the first 250µs) are going to be evaluated

in the experimental part.

The following methodology was applied to evaluate the

proposed system in therms of its classification accuracy. From

the 26 experiments, where each one has nr collected data

of voltage vr(t) and current ir(t) from each GS topology
(

Θ1,Θ2,Θ3,Θ4
)

, 25 were used to train the pattern recognition

model (in a total of 4 · 25 ·nr samples), and the remaining one,

which is not part of the training set, was used to evaluate the

prediction accuracy of the trained model (4 ·nr samples). The

trained model was used to predict the four GS topologies in

the test soil. This was repeated such that all the soils were

used as the test set, so that the information of test set is

not included in the training set. This approach simulates a

practical application of the proposed system, where there is

no information regarding the soil where the GS is going to be

inspected. This approach is illustrated in Fig. 6.

Regarding the tunning of parameters of the pattern recogni-

tion models ζ, they were selected based on the same procedure

as above; for the Adaboost the number of weak classifiers T ,

and the number of DT in the RF classifiers.

As discussed in Section II-B, to reduce the effect of the

undersampling problem, each predicted GS topology is going

to have nr predictions, the selected one, defined as by Θ∗ is

given by Eq. (8), Section II-B.

The performance of each model is going be evaluated based

on its rate of accuracy (ACC).

ACC =

∑N

i=1
I(h(xi), yi)

N
, (18)

where Λ∗ is defined in (8) and I( · ) is defined as:

I(h(xi), yi) =

{

1 if h(xi) = yi,
0 if h(xi) 6= yi,

(19)

TABLE I
RATE OF ACCURACY OF ALL PATTERN RECOGNITION MODELS IN

SOLVING EQ. (2) WITH DIFFERENT SCENARIOS OF INPUT FEATURES.

Features Nf l2-norm NB DT Adaboost RF

F.1

26 0.250 0.298 0.664 0.337 0.712

50 0.260 0.308 0.635 0.356 0.731

76 0.260 0.308 0.606 0.327 0.664

100 0.260 0.308 0.606 0.327 0.702

250 0.250 0.279 0.558 0.308 0.673

500 0.250 0.289 0.519 0.317 0.664

F.2

26 0.404 0.394 0.500 0.385 0.615

50 0.404 0.414 0.548 0.394 0.596

76 0.433 0.423 0.539 0.385 0.567

100 0.404 0.433 0.596 0.365 0.615

250 0.442 0.433 0.539 0.442 0.635

500 0.433 0.423 0.577 0.414 0.625

F.1+F.2

26 0.423 0.423 0.596 0.346 0.664

50 0.404 0.462 0.539 0.414 0.577

76 0.414 0.404 0.567 0.375 0.625

100 0.414 0.414 0.558 0.414 0.587

250 0.442 0.433 0.548 0.414 0.567

500 0.452 0.423 0.539 0.433 0.596

The ACC measures the rate of correctness of the model and

it is calculated as the sum of correct classifications divided by

the total number of classifications.

B. Modeling the Exact GS Topology

The objective in this section is to evaluate the proposed

system regarding its capability in modeling Eq. (2), i.e. predict

the exact GS topology. To evaluate the accuracy of modeling

Eq. (2), several classification models were trained according

with the experimental settings (Section III-A). The results are

given in therms of rate of accuracy and they are described in

Table I. The left part of the Table I indicated the input features

used in the modeling of Eq. (2), which are the F.1 (amplitude

of DFT of the impedance signal), F.2 (phase angle of DFT

of the impedance signal) and F.1+F.2 (both, amplitude and

phase angle DFT of the impedance signal). The parameter Nf

indicates the number of data points used to compute the DFT.

From the results, the best model is the RF classifier which

reached a rate of accuracy of 0.73 when using the feature

F.1 as input and a window of Nf = 50 for the DFT.

This result reinforce the fact that the transient part (high

frequency signal) contains the most information on the GS

topology. On the other hand, the performance of l2-norm, NB,

DT, Adaboost classifiers were not comparable with the RF

classifier. As can be noticed, the performance of all classifiers

tends to deteriorate with the increase of Nf ; large values of

Nf suppresses the information contained in the high frequency

signal, and this can be one reason that causes this performance

deterioration.

In a overall analysis, the performance of the classifiers were

not satisfactory. This is probably, due the fact that only few

numbers of soils were used for training the pattern recognition

classifiers (only 25 different soils) and with a large number of
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TABLE II
RATE OF ACCURACY OF ALL PATTERN RECOGNITION MODELS IN

SOLVING EQ. (3) WITH DIFFERENT SCENARIOS OF INPUT FEATURES.

Features Nf l2-norm NB DT Adaboost RF

F.1

26 0.500 0.539 0.865 0.856 0.885

50 0.500 0.529 0.904 0.894 0.894

76 0.500 0.529 0.904 0.894 0.894

100 0.500 0.529 0.827 0.875 0.904

250 0.500 0.529 0.817 0.856 0.885

500 0.500 0.529 0.827 0.875 0.894

F.2

26 0.654 0.740 0.875 0.837 0.875

50 0.673 0.721 0.837 0.846 0.856

76 0.692 0.721 0.837 0.846 0.856

100 0.702 0.731 0.837 0.837 0.865

250 0.721 0.740 0.827 0.827 0.856

500 0.721 0.721 0.875 0.837 0.856

F.1+F.2

26 0.664 0.548 0.865 0.894 0.885

50 0.702 0.539 0.894 0.894 0.894

76 0.702 0.539 0.894 0.894 0.894

100 0.721 0.529 0.838 0.894 0.885

250 0.721 0.529 0.827 0.875 0.894

500 0.721 0.529 0.808 0.875 0.885

classes C = 4. To alleviate this issue, the next section will

discuss the prediction of the approximated GS topology.

C. Modeling the Approximated GS Topology

The accuracy of Eq. (2) achieved only 0.73 (out of 26) in

predicting the exact GS topology, probably motivated by the

small number of soils to train the models, and the large number

of classes C = 4. Differently of the previous approach, in this

section the objective is to evaluate the equation Eq. (3), which

will predict the approximated GS topology. By predicting

the approximated GS topology, the number of classes is

reduced to C = 2, then making the problem easier from the

pattern recognition point of view. For that purpose, the GS

topologies were grouped in two sets, Λ1 = {Θ1,Θ2} and

Λ2 = {Θ3,Θ4}. Then, the multiclass classification problem,

was transformed in a binary classification problem, which

is much easier to be solved. The results of predicting the

approximated GS topology is shown in Table II

As can be seen in Table II, the Adaboost and RF classifiers

have similar performance values, where both reached an accu-

racy of 0.904, which is satisfactory from a practical point of

view. The feature F.1 provided the best prediction performance

with the Adaboost and RF classifier and when Nf = 50 and

Nf = 100, respectively.

D. Dependence of prediction performance on nr

The objective of this section is to discuss the importance of

Eq. (8), Section II-B, in improving the classification accuracy

in the prediction of the exact and approximated GS topologies.

For that purpose, the number of nr was set to 1, . . . , 30 and

the accuracy was determined. For all values of nr, the soil

samples were selected randomly in 20 runs and the mean and

standard deviation were considered for analysis.

0 5 10 15 20 25 30

nr

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
a

te
o

f
A

c
c
u

ra
c
y

Approximated Topology

Exact Topology

Fig. 7. Performance of RF classifier when using different values of nr

The Fig. 7 shows the accuracy of RF classifier, with

Nf = 50, regarding the number nr to compose Eq. (8). As can

be seen in Fig. 7, the proposed scheme reduces the effect of

undersampling in the prediction performance with large values

of nr. In the case where nr = 1, the average in prediction

performance is around 0.5 for the case of prediction of exact

GS topology and 0.75 for the case of prediction of approx-

imated GS topology. These performances are improved with

the increase of nr, reaching its maximum value when nr = 30,

with the prediction of exact and approximated topology equal

to 0.70 and 0.90, which considerably reduces the effect of the

noisy due to the undersampling issue. Then, it is possible to

conclude that the strategy proposed in Section II-B is efficient

while dealing with the undersampling acquisition of voltage

and current signals.

IV. DISCUSSION

The proposed approach is based on the pattern recognition

framework, then it lacks the exact physical relation between

the grounding impedance and the grounding topology, and

conclusions can only be drawn based on available data; despite

it is known in advance that the transient signal of grounding

impedance contains information on ground rods. In this sense,

experimental data provides strong evidence that grounding

impedance can be employed to discriminate among one to

four ground rods in straight line, when no information on soil

is given. However, it is important to point out that limitation

on acquisition data system, which collect part of transient

signal with undersampling, plays a vital role in experimental

results; Section II-B describes the adopted strategy to alleviate

the undersampling problem on the classification results and

Section III-D shows the effectiveness of the proposed strategy

in the presented case study.

Moreover, the way the features x are extracted from Z(jω)
have direct influence on the results, i.e. novel strategies for

feature extraction can be adopted to minimize the issues re-

lated with intrinsic characteristics of GS, such as the frequency

dependence of soil parameters and the soil variation along

the grounding area. In the proposed system, the features are

extracted based on the DFT of impedance signal, which has
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show to perform well in the case study, even when dealing

with a different number of soils.

V. CONCLUSIONS

In this work a system was proposed to predict the exact

and approximated GS topology based on the pattern recogni-

tion framework. The proposed system is based in four main

systems: excitation, data acquisition, feature extraction and

pattern classification systems. In this work each of these

components were detailed described.

The proposed system was evaluated in a set of controlled

experiments conducted in 26 soils and with GS configurations

with one, two, three and four rods in straight line. Three

classification models, NB, DT, Adaboost and RF models were

evaluated regarding its classification accuracy. The RF model

reached the highest rate of accuracy, with the value of 0.73 for

the exact topology and 0.90 for the approximated GS topology.

The results in the case study provides strong evidence that

different GS’s can be discriminated using the information from

grounding impedance, even with the undersampling issue of

acquisition system. Furthermore, further investigation, in the-

oretical and practical level, should be performed to assure that

the GS impedance can be used to discriminate for moderate

difference among grounding systems (e.g. three interconnected

rods, but with different topologies: triangle, in line; grounding

systems composed by only (horizontal) conductors; etc.) or

more complex GS topologies. In this context, the authors

expects that by acquiring the exact transient signal it is

going to be possible to discriminate among other different

GS topologies, even for moderate difference among grounding

systems or even more complex topologies.

From the pattern recognition point of view, the problem of

predicting the exact GS topology can be seen as a multiclass

problem with few numbers of samples and high dimensional

data, which is very challenging. The accuracy of the proposed

system can be further improved by getting experimental data

in more soils and/or by improving the feature extraction step.
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