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Online Mixture of Univariate Linear Regression
Models for Adaptive Soft Sensors
Francisco Souza, Student Member, IEEE, and Rui Araújo, Member, IEEE

Abstract—This paper proposes a mixture of univariate linear
regression models (MULRM) to be applied in time-varying
scenarios, and its application to soft sensor problems. Offline
and online solutions of MULRM will be obtained using the
Expectation-Maximization Algorithm. A forgetting factor will be
introduced in the online solution to discount the information
of already learned data, so that it can be applied in time
varying settings. The solution of the proposed method allows
its online and recursive application in any regression problem,
without the necessity of storing any past value of data. The
recursive solution of the MULRM will then be applied in
two time-varying real-world prediction problems. The proposed
method is compared with four state of art algorithms. In all
the experiments, the proposed method always exhibits the best
prediction performance.

Index Terms—adaptive soft sensors, prediction, regression,
expectation-maximization, mixture of models, univariate models

I. INTRODUCTION

M
ULTIVARIATE statistical techniques are being widely
employed in industry, where their most common ap-

plications are in the soft sensors context. Basically, the soft
sensor is a tool which integrates the available information
coming from the hardware sensors and laboratory analysis into
multivariate techniques to perform a specific task, such as the
prediction of critical process variables, process monitoring and
other tasks which are related to process control [1]–[6].

Most soft sensor applications concern the prediction of
critical variables that cannot be determined directly with
hardware sensors, and can be determined only by laboratory
analysis, thus lacking the information of what happens in real
time on such variables. In this context, a soft sensor comes
as a tool which enables the acquisition of critical variables in
real-time, by simulating a hardware sensor. This is done by
learning a regression model using the sensors of the process as
input of the model (easy-to-measure variables), and the critical
variable as the target (hard-to-measure variable) [7]–[9].
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Soft sensor development has four main steps [1], [10]: 1)
data acquisition and selection of historical data; 2) data pre-
processing; 3) model selection, training and validation; 4) soft
sensor maintenance. In the first stage, data is selected for
training and evaluation of the model. Then data is submitted to
pre-processing. The goals of this second stage are the handling
of missing data and outliers and, if necessary the selection
of most relevant variables. The model selection, training and
validation phase requires the correct selection and learning
of the model, so that it can correctly reproduce the hard-to-
measure variable. The last step is soft sensor maintenance,
where the goal is to maintain a good soft sensor response
under the presence of process variations or some data change.

The mostly used models in soft sensors applications are
based on multivariate statistical methods or artificial intelli-
gence techniques [10], most of them use the multiple linear
regression model (MLRM) of the form fL(x,θ) = θ0 +
∑

j θjxj , with Least Squares (LS) or Partial Least Squares
(PLS) estimation methods [11], [12], Principal Component
Analysis (PCA) [13] in combination with a prediction model,
Artificial Neural Networks (ANN) [1], [14], or Fuzzy or
Neuro-Fuzzy Systems (NFS) [15]–[17].

In time-varying processes, a good soft sensor maintenance
strategy is necessary to maintain a good response over time.
Generally, this is done by updating the soft sensor model
online/recursively, in batch or sample wise mode, using the
incoming samples of the process (in this context the soft
sensors are called “adaptive soft sensors” [3]). Usually, a
forgetting factor 0 < λ ≤ 1 is employed in the soft sensor
model learning approach, such that the model could capture
the information of the recent data [3], [18].

The most established and popular method for adaptive
soft sensors is the PLS algorithm, with many applications in
literature [3], [4], [19]–[27]. The PLS solution is the preferred
and mostly applied solution of MLRM when comparing to
LS, since it can handle data-collinearity, which is a common
characteristic in industrial applications. When it comes to
adaptive soft sensors, they are implemented with recursive
online forms of the above methods, such as in recursive LS
(RLS) [11], [12], and the recursive PLS (RPLS) [28].

Looking to reduce the dimensionality of the learning pro-
cess, this work proposes a mixture of univariate linear re-
gression models (MULRM), where the individual models
are combined such that the prediction error is minimized.
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Specifically, the MULRM has the following form:

fM (x,Υ,Θ) =

D
∑

j=1

υjfj(xj ,θ
(j)), with:

D
∑

j=1

υj = 1, (1)

where fj(xj ,θ
(j)) = θ

(j)
0 + θ

(j)
1 xj is a univariate linear

regression model of variable xj , θ
(j) = [θ

(j)
0 , θ

(j)
1 ]T , Θ =

{θ(j)| j = 1, . . . , D} denotes the set of all weight parameters,
and Υ = {υj | j = 1, . . . , D} denotes the set of mixing
coefficients. The individual models are then combined, and
the Expectation-Maximization (EM) algorithm [29], [30] is
employed to jointly estimate the model parameters Υ and Θ.
The recursive solution for the MULRM parameters, Θ,Υ will
be derived in the next sections. A forgetting factor will be
introduced in the online solution to discount the information
coming from the already learned data, so that it can be applied
in time varying scenarios. The solution of the proposed method
allows its online and recursive application in any regression
problem, without the necessity to store any past value of data.

In the experimental part, the recursive solution of the
MULRM is then applied in two time-varying real-world
prediction problems: a polymerization data set [21], and a
problem for fluorine estimation in a wastewater treatment
system. Moreover, the proposed MULRM method is com-
pared in these problems with four state of art algorithms:
the RLS, the RPLS, the online sequential extreme learning
machine (OS-ELM) [14], a fast learning algorithm for single
layer feedforward ANN, with offline and online solutions and
the recently proposed incremental local learning soft sensing
(ILLSA) algorithm for adaptive soft sensors [21]. Regarding
the comparison with the remaining methods, the PLS and
the PCR in combination with a linear model have similar
prediction accuracy in most of the cases [31]. The NFS are
widely applied for prediction [10], [16], but their parameters
are usually learned offline. Online tuning of NFS can be
done by Evolving Fuzzy Systems (EFS) [32]. However, the
implementation of such methods is very complex and time
demanding. By this reason, this work will not compare the
proposed approach with the NFS.

All the methods (RLS, RPLS, ILLSA, OS-ELM and
MULRM) were tested for different percentages of availability
of target data. The experimental results suggest that the
recursive MULRM outperforms the RLS, RPLS, OS-ELM and
ILSSA, when predicting in time-varying scenarios.

The paper is organized as follows. Section II presents
background and notation. The proposed method is presented in
Section III. Section IV presents experimental results. Finally,
Section VI gives concluding remarks.

II. BACKGROUND

The notation used here is defined as follows, x(i) =
[x1(i), . . . , xD(i)]T and y(i) are the vector of input variables
and the output target at instant i, X, with elements Xij =
xj(i), and y, with elements yi,1 = y(i) are the input matrix
and output vector containing all the k examples. Moreover,
X = X1×. . .×XD, and Y , denote the space of input variables
values and the space of output values, respectively, where

X ⊂ R
D and Y ⊂ R. A subscript k will be used to denote

the value of the corresponding variable after k samples.
In regression tasks, the objective is to make use of an

input vector x to describe/approximate a target variable y,
where a set of examples Φ = {(x(i), y(i)); i = 1, . . . , k} is
used to train a model to do this. It is assumed that y can
be approximated by a deterministic function ŷ = f(x,θ),
governed by a parameter vector θ, so that:

y = f(x,θ) + ǫ, (2)

where ǫ, the approximation error, is a zero mean Gaussian
random variable with variance ω. Under the assumption of
Gaussian noise, the conditional probability of y given the input
x can be represented by the normal distribution p(y|x,θ, ω) =
N (y|f(x,θ), ω).

III. MIXTURE OF UNIVARIATE LINEAR REGRESSION

MODELS

In this section, the formulas for the offline and online
learning of the MULRM will be derived. In the offline
solution, the parameters in (1) are found using a set of
observations Φ. In the online solution the parameters in (1)
are learned online and updated recursively when a new sample
data becomes available. In the online learning, an exponential
sample weighting strategy on the samples will be used to
update the model parameters in (1), so that the model can
represent the most recent data, allowing its application in time-
varying scenarios.

Regarding the learning of parameters using exponential
weighting of samples [28], it is important to note that the
amount of data used to construct the multivariate model,
represented here as p(y|x), (i.e. the effective number of obser-
vations being used, defined as d), is related to the forgetting
factor λ as d = 1/(1− λ). Then, assuming that d plays a
similar role as the number of training samples in the static
case, it can be concluded that in time-varying scenarios small
values of d (or small values of λ) lead to the same problems
faced by learning a static model with small number of training
samples, such as overfitting or poor generalization on the test
set [33], mainly if d < D. Thus, from this assumption, then
during learning in time-varying scenarios, the value of λ not
only interferes in the speed of the model adaptation, but it
also has influence in the model learning (i.e. in the recursive
parameters learning) and its problems.

Then, the motivation behind the use of MULRM in time-
varying scenarios, is that this approach has the benefit of
separately estimating the pdf of y conditioned to each in-
dividual input variable, p(y|xj), rather than estimating the
conditional pdf p(y|x) with all variables. Normally, such
estimate of p(y|xj) is more accurate than the estimate of
p(y|x) [34], mainly when d is small or d < D. The amount of
data needed to obtain an accurate estimate increases with the
dimensionality of the problem. Then, in some cases p(y|xj)
can be estimated more reliably than p(y|x). Moreover, this
dimensionality reduction, while estimating p(y|xj), makes the
learning problem much easier. However, for representing y,
p(y|xj) is less representative than p(y|x). To overcome this
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effect, MULRM merges all the individual p(y|xj) models to
estimate p(y|x).

Moreover, due to the characteristics discussed above, the
MULRM can be considered a good option for prediction in
two possible scenarios. The first is when the input space is
larger than the number of samples; i.e. in situations where
k < D (some regularization techniques such as elastic net
[35] can also be employed in this case). The second situation
(which is the main target of this work), is in soft sensor
applications in time-varying scenarios. In these later scenarios,
the forgetting factor λ employed to weight the samples is
related to the effective number of samples by d = 1/(1− λ),
and the value chosen for λ can be small, leading to d < D,
i.e. MULRM is a good option when the effective number of
samples is less than the number of input variables.

A. MULRM - Offline Solution

The MULRM is based on the additive assumption [36].
More specifically, it is assumed that f(x,θ) in (2) is ap-
proximated by (1). In the Bayesian framework, the MULRM
approximates the true pdf p(y|x) with the following superpo-
sition of individual pdfs:

p(y|x,Θ,Υ,Ω) =

D
∑

j=1

υjp(y|fj(xj ,θ
(j)),Ω), (3)

where p(y|fj(xj ,θ
(j)),Ω) is the pdf describing y given xj ,

with mean fj(xj ,θ
(j)) and additional pdf parameters Ω.

fj(xj ,θ
(j)) : Xj → Y is a linear model from input variable

xj , θ(j) is the vector of parameters of model j, υj is the mix-
ing coefficient for model j (j = 1, . . . , D), and

∑D
j=1 υj = 1.

From (3), prediction equation (1) is obtained as the following
conditional mean of y given x [30, ch. 1], yielding a mixture
of linear univariate models:

E[y|x] = fM (x,Θ,Υ)

=

∫

yp(y|x,Θ,Υ,Ω)dy

=

∫

y

D
∑

j=1

υjp(y|fj(xj ,θ
(j)),Ω)dy

=
D
∑

j=1

υjfj(xj ,θ
(j)). (4)

fM (x,Θ,Υ) is the function which minimizes the expected
squared loss E =

∫ ∫

(fM (x,Θ,Υ)− y)
2
p(x, y)dxdy [30].

In this paper, it is assumed that each individual pdf
p(y|fj(xj ,θ

(j)),Ω) in (3) is described by a Gaussian distri-
bution. Then, (3) can be rewritten as:

p(y|x,ϑ) =
D
∑

j=1

υjN (y|fj(xj ,θ
(j)), ω(j)), (5)

where ω(j) is the variance of model j, and ϑ denotes the set
of all adaptive parameters in (5). Specifically, ϑ includes the
parameters of Θ, Υ, and Ω = {ω(j)| j = 1, . . . , D}. From (5),

the log likelihood of a given set of observations Φ is given
by:

ln p(y|X,ϑ)

= ln

(

k
∏

i=1

p(y(i)|x(i),ϑ)
)

=

k
∑

i=1

ln





D
∑

j=1

υj N
(

y(i)
∣

∣fj
(

xj(i),θ
(j)
)

, ω(j)
)



 . (6)

In order to maximize the likelihood function (6) the
Expectation-Maximization (EM) algorithm will be employed.
The EM algorithm is a general method for finding the
maximum-likelihood estimate of the parameters of an underly-
ing distribution from a given data set when the data has latents,
unknown variables [29], [30]. In this work, a set of latent
variables Z = {zj(i)| j = 1, . . . , D, i = 1, . . . , k} is defined,
where zj(i) ∈ {0, 1}, and for each sample i, all variables
zj(i) are zero, except for a single value of zj(i) = 1, for
some j. The hidden variable zj(i) indicates which model j is
responsible for generating the data sample i. In this context,
the log likelihood of the complete joint conditional distribution
with the observed and latent variables is given by [30, ch. 9]:

ln p(y,Z|X,ϑ)

=

k
∑

i=1

D
∑

j=1

zj(i) ln
(

υj N
(

y(i)
∣

∣fj
(

xj(i),θ
(j)
)

, ω(j)
))

. (7)

The EM algorithm starts with an initial value for the
model parameters ϑ, called here as ϑ

old. Then, ϑold is used
to compute the responsibility of model fj and sample i,
γj(i) = E[zj(i)], which accounts for the probability of model
j in generating the data sample i. Using Bayes’s Theorem
[30]:

γj(i) = E[zj(i)]

= p
(

zj(i) = 1|fj
(

xj(i),θ
(j)
)

,ϑold
)

,

=
υj N

(

y(i)
∣

∣fj
(

xj(i),θ
(j)
)

, ω(j)
)

∑D
d=1 υd N

(

y(i)
∣

∣fd
(

xd(i),θ
(d)
)

, ω(d)
) . (8)

Then, the responsibilities (8) are used to determine the
expectation (E) of the complete data log likelihood (7) with
respect to Z , which is equal to:

Q(ϑ,ϑold) = EZ

(

ln p(y,Z|X,ϑ)
)

=

k
∑

i=1

D
∑

j=1

γj(i)
[

ln(υj)

+ ln
(

N
(

y(i)|fj(xj(i),θ
(j)), ω(j)

))]

. (9)

In the maximization step, function Q(ϑ,ϑold) is maximized
with respect to ϑ, using the responsibilities (8) computed in
the expectation step. The parameters in ϑ are θ(j), υj , and ω(j)

for all models fj . Then, maximizing Q(ϑ,ϑold) with respect
to ϑ, i.e. solving equations (∂Q(ϑ,ϑold))/(∂θ(j)) = 0,
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(∂Q(ϑ,ϑold))/(∂υj) = 0, and (∂Q(ϑ,ϑold))/(∂ω(j)) = 0,
gives the following maximizing solution parameters:

θ
(j) = ((A(j))TΓ(j)(A(j)))−1(A(j))TΓ(j)y, (10)

υj =

∑k
i=1 γj(i)

k
, (11)

ω(j) =

∑k
i=1 γj(i)

(

y(i)− fj(xj(i),θ
(j))
)2

∑k
i=1 γj(i)

, (12)

where A(j) is the design matrix of model j, and Γ(j) =
diag(γj(1), γj(2), . . . , γj(k)) is a diagonal matrix.

The MULRM offline learning by the EM algorithm can then
be summarized as follows:

1) Initialize ϑ equal to some initial ϑold;
2) Repeat 3) and 4) until the EM algorithm converges;
3) E step:

a) Compute the responsibilities (8) using ϑ
old;

b) Compute the expectation Q(ϑ,ϑold) using (9);

4) M step:

a) Compute the values of ϑ which maximize
Q(ϑ,ϑold) using (10)-(12):

i) ϑ
∗ = argmaxϑ Q(ϑ,ϑold);

ii) ϑ
old := ϑ

∗;

5) Return ϑ
∗.

The convergence of the EM algorithm can be verified
by analyzing the convergence of the expectation Q(ϑ,ϑold).
It is also possible to set a pre-specified maximum number
of iterations. Equations (11)-(12) are the solutions of the
maximization step in the EM algorithm, for the combination
of the univariate models in the form of (1). However, this
solution is limited to the offline case. The next section will
provide an online algorithm for the learning of (1), with a
sample weighting adaptation approach.

B. MULRM - Recursive/Online Solution

In the online learning of ϑ, each available sample corre-
sponds to an iteration in the EM algorithm. The parameters
computed by the offline equations (11)-(12) of the EM al-
gorithm maximization step should be learned recursively, at
each new sample. In the solution derived here, a forgetting
factor λ will be employed to weight more recent data, making
the MULRM able to be applied in time varying scenarios.
0 < λ ≤ 1, so that the smaller the λ parameter, the larger is
the weight of the recent data, as in the traditional RLS.

From (11) it is possible to note that υj is given by the
average over the samples of the responsibilities γj(i) of model
fj . Then, υj can be learned using the adaptive recursive mean.
Specifically, the mean of γj(i) among k values, indicated
by υj(k), can be updated when a new sample γj(k + 1) is
available using the following adaptive mean formula, where λ
is used to discount the information coming from the already
learned data:

υj(k + 1) = λυj(k) + (1− λ)γj(k + 1). (13)

Using the same idea, equation (12) can be seen as a ratio
between two means over the samples k:

ω(j) =

∑k
i=1 γj(i)(y(i)−fj(xj(i),θ

(j)))
2

k
∑

k
i=1 γj(i)

k

, (14)

where the denominator is equal to υj (11), and
the numerator is equal to the weighted error
Ej = (

∑k
i=1 Eγj

(i))/k of model fj in predicting y,

where Eγj
(i) = γj(i)

(

y(i)− fj(xj(i),θ
(j))
)2

. Similarly to
(13), the recursive formula for Ej is given by:

Ej(k + 1) = λEj(k) + (1− λ)Eγj
(k + 1). (15)

Then, the value of ω(j) when a new sample is available is:

ω(j)(k + 1) =
Ej(k + 1)

υj(k + 1)
. (16)

When a new sample aj(k + 1) = [1, xj(k + 1)]T is
available, the closed form solution for θ(j) (10) is represented
in expanded form in equation (17), where γj(k + 1) and
Γ
(j)
k represent the values of the responsibilities of the current

sample aj(k + 1) and of the previous samples, respectively.
However, in time-varying systems, the update formula for
the weights θ

(j) of each model fj , should also take into
consideration the forgetting factor λ. Thus, a matrix of weights
W = diag(λk−1, λk−2, . . . , 1) is designed to affect the sam-
ples, so that the model could take into consideration recent
data with more weight. Then, the full update equation for θ(j),
taking into consideration the forgetting factor is given by (18).
The recursive formulas for computing (10) are as follows:

P
(j)
k+1 = λ−1

(

P
(j)
k −

γj(k + 1)P
(j)
k aj(k + 1)aTj (k + 1)P

(j)
k

λ+ γj(k + 1)aTj (k + 1)P
(j)
k aj(k + 1)

)

,

(19)

g(j)(k + 1) = P
(j)
k+1aj(k + 1), (20)

e(j)(k + 1) = γj(k + 1)
(

y(k + 1)− aTj (k + 1)θ(j)(k)
)

,

(21)

θ
(j)
k+1 = θ

(j)
k + g(j)(k + 1)e(j)(k + 1). (22)

The MULRM online learning by the EM algorithm is then
summarized as follows:

1) Initialize P
(j)
k , and ϑ equal to some initial ϑold;

2) For each newly available sample (x(k + 1), y(k + 1)):
3) E step:

a) Compute the responsibilities (8) of sample (k+1)
using ϑ

old;
b) Compute the expectation of sample (k + 1),

Q(ϑ,ϑold)(k + 1) using (9);

4) M step:

a) Update the values of ϑ which maximize
Q(ϑ,ϑold):

i) For each model, update υj using (13);
ii) For each model, update ω(j) using (16);

iii) For each model, update θ
(j) using (19)-(22);

5) Return the updated parameters.
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θ
(j)
k+1 =





[

A
(j)
k

aT
j (k + 1)

]T [

Γ
(j)
k

0
0 γj(k + 1)

]

[

A
(j)
k

aT
j (k + 1)

]





−1 [

A
(j)
k

aT
j (k + 1)

]T [

Γ
(j)
k

0
0 γj(k + 1)

] [

yk

y(k + 1)

]

(17)

θ
(j)
k+1 =





[

A
(j)
k

aT
j (k + 1)

]T [

λWΓ
(j)
k

0
0 γj(k + 1)

]

[

A
(j)
k

aT
j (k + 1)

]





−1 [

A
(j)
k

aT
j (k + 1)

]T [

λWΓ
(j)
k

0
0 γj(k + 1)

] [

yk

y(k + 1)

]

(18)

The parameter P
(j)
k should be initialized as: P

(j)
(k) = ϕI2,

where I2 is the identity matrix with size 2× 2, and ϕ should
be set as a large value.

The experimental results suggest that the online learning
of the MULRM approximates to offline solution for a static
case, when λ = 1, for a large number of samples. Since
the MULRM will be applied in real time, then after some
operating time a large number of samples will be under
consideration.

C. Remarks on MULRM

1) Collinearity: The objective of the proposed method is on
prediction rather than explaining the underlying relationships
among the variables, i.e. the MULRM is to be applied on
prediction problems and not explanation ones. When working
with explanation, the problem of collinearity becomes a prob-
lem of understanding the relationships among the variables
[37], and when working with prediction, the problem becomes
to predict an output given a random input. According with
Hocking [37], the collinearity among input variables is not
necessarily harmful when working with prediction problems.
Additive models are an example of prediction models which
ignore the collinearity among the input variables, while pro-
viding good results in some applications [36].

The proposed method can be applied for prediction in the
presence or absence of collinearity in input data. Also, the
MULRM cannot identify the joint effect among the variables
(i.e. interaction terms of input variables are not considered in
the MULRM), since in the MULRM the effects of the input
variables on the output variables are individually assessed.
However, this model formulation facilitates estimation since
each component of the model can be addressed separately
using (10)-(12). A special case of the proposed MULRM
occurs when γj(i) = 1/k, j = 1, . . . , D , i = 1, . . . , k, which
reduces to the LS solution in the case where the input variables
are mutually independent. Moreover, it is not possible to
assure the physical meanings for the slopes and intercepts in
univariate linear regression models, then we assume that the
slopes and intercepts does not have physical meaning at all.

2) Candidate models: The choice of linear form of fj(·)
during the development of MULRM lies on the good results
provided by the predictor in our scenarios of interest. However,
there is no restriction in the form of fj(·), it can take any form,
e.g:

1) Linear: fj(xj) = θ
(j)
0 + θ

(j)
1 xj ;

2) Polynomial: fj(xj) =
∑n

l=0 θ
(j)
l xl

j ;

3) Other non-linear forms: e.g. fj(xj) = θ
(j)
0 + θ

(j)
1 ln(xj)

or fj(xj) = θ
(j)
0 + θ

(j)
1

√
xj .

3) Dealing with outliers: If a variable xj is affected by
an outlier at sample i, and such sample is used to update
the parameters, the responsibility γj(i) in (8) will take a
small value. This happens because if the value of xj(i) is an

outlier, the value of N
(

y(i)
∣

∣fj(xj(i),θ
(j)), ω(j)

)

in (8) will
be small. This can affect the performance of MULRM whether
variable xj is relevant to predict the target or not. If xj is
relevant to predict the target and λ < 1 with γj(i) being small,
then, with the update for sample i, the parameters of model
j, θ

(j) (22), ω(j) (14), and υj (13) will loose information
learned from the previous samples and will not gain the
information from the current sample, since it is an outlier. This
can decrease the performance of the overall method. However,
if variable xj is not relevant, then the effect of the outlier on
the overall performance will not be significant. Moreover, in
any case, outlier detection is an essential step while building
soft sensors, and this step is encouraged when applying the
MULRM model in real time applications. See [3] for a review
about methods to deal with outlier detection in soft sensors
applications.

4) Accuracy, bias and precision from the measurement

point of view: All data-driven soft sensors, as well as the
proposed method, are data dependent; i.e. they perform the
task of being a sensor, based on the learning of a model
using the gathered data of the process, represented by Φ =
{(x(i), y(i)); i = 1, . . . , k}. The precision, accuracy and bias,
of the soft sensor, from the measurement point of view, are
directly related to the representativeness of Φ with respect to
the future samples. After the data driven soft sensor is learned
using Φ, and deployed for real operation, it is possible to
affirm that the soft sensor is always precise, since the same
input will always generate the same output. However, this
does not mean that the soft sensor is accurate or not biased.
In practice, due to the time-varying characteristics of most
industrial processes, the soft sensor tends to deteriorate its
accuracy over the time and also have the presence of bias.
This happens because the data set Φ used for the learning
is no longer representative when the time passes. However,
this situation motivates the update of the soft sensor model
with the most recent data, which is performed online on
the proposed MULRM method, increasing its accuracy and
reducing its bias. From the measurement point of view the
sensor calibration of the soft sensor is done by updating the
model using the most recent samples of the process.

5) Selecting λ: The value of λ can be fixed to a pre-
specified value or its value can vary iterativelly in real time
by using the following gradient descent method proposed in
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[38]:

λk+1 = λk + cλsign

(

∂RSS

∂λk

)

, (23)

where cλ is a small constant. In the above equation the value
of λ is moved in the direction in which the move minimizes
the residual sum of squares (RSS). If λ is to be fixed, then it
can be selected by a K-fold cross-validation procedure applied
on the training set.

IV. EXPERIMENTAL RESULTS

The online version of the proposed method was applied in
two time-varying real-world data sets. The proposed recursive
MULRM method will be compared with the RLS, RPLS
solutions of the multivariate linear model, and with the OS-
ELM [14] and ILLSA [21]. In all experiments, the values
of both the training samples, and the testing samples, were
normalized to be mean centered, and with unit variance, using
the information of the sample mean and sample variance of
the training samples. The original variables were used as input
of all models: RLS, RPLS, MULRM, ILLSA and OS-ELM.
Moreover, outliers detection was not considered. It has been
assumed that data in both experiments were free of outliers.

In both data sets the normalized root mean square error
(NRMSE) was used as a performance measure to compare
the results of the methods:

NRMSE =

√

1
k

∑k
i=1

(

y(i)− ŷ(i)
)2

max (y)−min (y)
, (24)

where y(i), ŷ(i) are the observed and predicted target, the
quantities max (y), and min (y) are the maximum and min-
imum values of the observed target. This value is often
expressed in percentage. The closer to 0 is the NRMSE the
better is the quality of prediction. In a practical prediction
perspective, a NRMSE value of less than 10% is acceptable.

A. Polymerization Data Set

The polymerization data set is a benchmark for adaptive
soft sensors introduced in [21], [22], where the state of the art
ensemble adaptive soft sensor method called ILLSA is also
proposed. This data set describes a polymerization reactor.
The objective is to predict the activity of the catalyst in the
multitube. There are 15 input variables available, and some of
them suffer from outliers, missing values, noise and automatic
value interpolation by the data acquisition system. The data
set covers 1 year of acquisition with 5800 available samples.
In this data set, the degree of collinearity among the input
variables, measured using the largest variance inflate factor
(VIF) criterion, is equal to 91.19, which indicates a high
degree of multicollinearity [37], [39].

This paper follows the same pre-processing procedure done
in [21]: downsampling of the first 5800 samples by a factor of
10, the removal of variables 3, 4, 15, and removing all samples
which have missing values. This pre-processing resulted in
a data set with 647 data points, where 194 are used for
offline training and the remaining 457 are used to simulate
the online data. To verify the performance of the soft sensor

TABLE I
NRMSE VALUES ON THE POLYMERIZATION AND WWTP DATA SETS FOR

DIFFERENT FORGETTING FACTORS, λ, AND DIFFERENT PERCENTAGES OF

TARGET DATA.

Polymerization WWTP

Up. λ, d RLS RPLS OS-ELM Prop. RLS RPLS OS-ELM Prop.

0
%

0.50, 2 70.41 79.89 24.99 19.00 24.55 23.63 16.43 13.43

0.80, 5 70.41 79.89 24.99 19.00 24.55 23.63 16.43 13.43

0.95, 20 70.41 79.89 24.99 19.00 24.55 23.63 16.43 13.43

0.98, 50 70.41 79.89 24.99 19.00 24.55 23.63 16.43 13.43

0.99,100 70.41 79.89 24.99 19.00 24.55 23.63 16.43 13.43

1,∞ 70.41 79.89 24.99 19.00 24.55 23.63 16.43 13.43

ILLSA: 28.74 ILLSA: 14.59

1
0
%

0.50, 2 42.84 11.65 47.17 11.65 46.83 10.18 17.31 9.40

0.80, 5 26.17 13.85 14.02 7.78 19.83 11.39 10.51 9.65

0.95, 20 19.05 18.83 13.67 10.62 19.24 16.38 10.53 11.60
0.98, 50 22.63 23.60 13.14 12.31 20.06 18.06 11.01 12.48
0.99,100 24.19 26.80 14.44 13.75 20.43 19.58 10.74 12.86
1,∞ 25.91 24.59 15.13 16.28 20.83 20.40 11.20 13.30

ILLSA: 9.47 ILLSA: 11.30

2
5
%

0.50, 2 20.82 6.31 46.03 4.54 30.63 8.77 16.10 9.93

0.80, 5 20.83 9.91 16.14 5.83 18.49 9.47 10.54 8.22

0.95, 20 15.72 12.02 13.07 8.31 12.57 11.43 9.90 9.51

0.98, 50 18.31 17.16 12.87 10.52 15.39 15.26 10.28 10.92
0.99,100 20.19 19.23 12.26 12.10 16.37 15.20 10.79 11.77
1,∞ 22.91 22.98 13.57 16.54 17.51 17.39 11.25 12.90

ILLSA: 8.94 ILLSA: 10.01

5
0
%

0.50, 2 30.73 4.68 100.4 2.90 ∞ 7.91 19.28 30.73
0.80, 5 10.17 5.92 16.16 3.59 13.89 8.33 9.80 7.66

0.95, 20 15.55 11.00 10.36 6.71 9.12 9.07 8.74 8.59

0.98, 50 14.80 12.10 11.31 8.80 10.74 10.53 9.45 9.62
0.99,100 16.38 17.07 12.24 10.24 12.34 11.83 10.09 10.66
1,∞ 20.66 20.55 12.60 16.28 14.41 17.52 11.04 12.53

ILLSA: 6.81 ILLSA: 9.18

1
0
0
%

0.50, 2 20.92 3.58 6.54 2.14 ∞ 7.79 38.40 ∞

0.80, 5 7.85 4.14 10.29 2.57 ∞ 8.00 9.85 7.05

0.95, 20 9.27 7.23 8.83 5.12 8.62 8.06 8.37 7.77

0.98, 50 12.02 11.48 8.75 7.20 9.59 9.50 8.85 8.68

0.99,100 12.26 12.17 10.15 8.54 9.59 10.06 9.69 9.49

1,∞ 18.31 18.64 12.49 15.38 12.33 14.71 11.03 12.28
ILLSA: 5.51 ILLSA: 9.60

with respect to the availability of the target data, it was
tested in the cases where 0%, 10%, 25%, 50%, and 100%
of the available target values were made available. In these
situations, the two extreme cases (i.e., 0% and 100%) represent
a non-adaptive/static scenario, and a scenario where all the
target values are used for the adaptation purposes, respectively.
For evaluation purposes, if a new valid input-output pair
(x(n), y(n)) is available for update, then the output y(n) will
be first predicted using the input x(n), and then the model
parameters will be updated. Moreover, the number of latent
variables used in the RPLS algorithm and the number of
neurons in the OS-ELM were respectively chosen to be 6 and
5, by applying a 10-fold cross validation scheme in the training
set and selecting the number of latent variables and neurons
which produced the averaged smallest error in all folds. The
ILLSA algorithm was applied as in the original paper [21].

The results are summarized in Table I. The proposed
MULRM method, the RLS, RPLS and the OS-ELM methods
were applied for different values of λ (the corresponding value
of d = 1/(1− λ) is also indicated), and for different scenarios
of availability of target data. By analyzing the performance of
the models with different percentages of updates, it is possible
to note the possibility of reducing, by using a soft sensor,
the number of measurements of the hard to measure output
variable that need to be obtained by real-sensors or laboratory
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Fig. 1. Activity of catalyst prediction output of all models for the first 100
samples. The frequency of updates is 100% for all models. The value of λ
for each model was chosen based on the best results of the respective model
in Table I

analysis.
As can be noticed λ was set to be greater than or equal to

0.5. This was motivated by the physical meaning/interpretation
of λ, since it is related with the effective number of samples.
For example, assuming that the considered values of λ are less
than 0.5, then d will lie between 1 ≤ d < 2 in the real interval,
which does not have physical meaning or logic interpretation.
Moreover, in our experiments, values of λ less than 0.5 did
not provide any improvement to the experimental results.

As can be noticed, for the polymerization, the proposed
MULRM method has the best results in almost all scenarios.
In the case where the availability of target data is 0%, the non-
adaptive scenario, the performance of the proposed method
reached a NRMSE value of 19%, the smallest if compared
with the other methods, but still larger than 10%, which, as
mentioned before, is not an acceptable value in a practical
application. Better results are reached with the increase of
availability of target data. In the case where 100% of target
data is used to update, the proposed MULRM method reached
its smallest NRMSE value of 2.14% (with λ = 0.50),
which is much better than the state of art methods. In the
polymerization data set, the MULRM method seems to provide
the best results when the values of λ, d, are small (which is
the main motivation of the proposed approach), on the other
hand, when d = ∞ (i.e. without forgetting the already learned
data), the OS-ELM provides the best results, but they are not
satisfactory. The prediction results of all models are exhibited
in Figure 1.

B. Wastewater Treatment Plant

In this experiment the objective is to estimate the flour
concentration in the effluent of a real-world urban wastewater
treatment plant (WWTP). The data set of plant variables
that is available for learning consists of 11 input variables,
and one target output variable to be estimated. The variables
correspond to physical values, such as pH, turbidity, color of
the water and others. Table II presents further details about the
variables. In this data set, the degree of collinearity among the

TABLE II
VARIABLES OF THE WASTEWATER TREATMENT PLANT DATA SET.

Var. Description Var. Description

x1 Chlorine in the influent; x2 Chlorine in the effluent;
x3 Turbidity in the raw water; x4 Turbidity in the influent;
x5 Turbidity in the effluent; x6 Ph in the raw water;
x7 Ph in the influent; x8 Ph in the effluent;
x9 Color in the raw water; x10 Color in the influent;
x11 Color in the effluent; y Flourine in the effluent.

input variables, measured using the largest VIF value, is equal
to 6.19, which is considered an acceptable value for VIF [37],
[39], and it indicates that the collinearity will not interfer in
the LS solution.

The methodology used in the WWTP experiment was the
same as the one used in the polymerization experiment (Sec.
IV-A). The available data set was split into 30% for training,
and the remaining 70% of data was used to simulate the online
data, and it is delivered as a stream of samples. The scenarios
of availability of target data were 0%, 10%, 25%, 50%, and
100%.

The historical data set comprises 3 years of acquisition,
with 13512 data samples, with a sample rate of 2 [h], for the
variables acquired by sensors (input variables). The target vari-
able, the fluorine, is laboratory measured at every 24 [h]. The
samples with missing fluorine data were removed, resulting
in a data set with 1002 samples, where 294 were used for
training, and the remaining 708 were used to simulate the
online data.

The number of latent variables for the RPLS model, and
the number of neurons in the OS-ELM model, as result of
the 10-fold cross-validation on the training data set, were
4, and 7, respectively. The parameters used in the ILLSA
algorithm, found by a 10-fold cross-validation (check [21]
for more details), were: 11 receptive fields, σ = 10−3, and
σadapt = 10−6.

Table I shows the results regarding the WWTP data set.
In the non-adaptive scenario, 0%, the results of the proposed
MULRM method are the best among all, with a NRMSE =
13.43%. Despite these results the values of NRMSE are still
larger than 10%, which are not acceptable values. The results
of all methods get better with the increase in the number of
updates, and all methods reach their minimum NRMSE when
100% of target data is used to update the model, and the
proposed method reaches a NRMSE of 7.05 with λ = 0.80.

For all percentages of availability, when d ≤ 20, the best
results are obtained by the MULRM method, in most of the
cases. When d > 20, and for updates between 10% and 50%,
OS-ELM is the method with the best results. It is important to
also note that, motivated by the small values of VIF, the LS
solution provides good results in some experiments, which in
some cases is even better than the PLS regression.

In the WWTP experiment, the MULRM produced large
values of NRMSE when λ = 0.5, d = 2, in the case where
50% and 100% of data are used to update the model. This
happened because some variables in the WWTP data set are
very noisy, and with frequencies of updates of 50% and 100%
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Fig. 2. Fluorine prediction output of all models for the first 100 samples.
The frequency of updates is 100% for all models. The value of λ for each
model was chosen based on the best results of the respective model in Table
I.

more samples of these variables are used in the updates. Thus,
in these scenarios it is not advisable to use d = 2, since it can
lead to the learn the noise. Values of λ > 0.8, and d > 5,
seem to be more appropriate. Another alternative to set λ is
to use the systematic procedure discussed in Section III-C5.

The proposed method also reaches acceptable values of
NRMSE for 25% and 50% of target data available for update.
This suggests that the frequency of laboratory measurements
can be reduced by a half or less, if this soft sensor is
going to be applied, reducing the costs associated with the
laboratory measurements. The predictions of all models are
exhibited in Figure 2, validating and showing the effectiveness
of the proposed method to perform prediction in time-varying
environments.

V. DISCUSSION

Both data sets are time-varying real world data sets, then to
track the time-varying parameters of each model a forgetting
factor was used in the recursive learning of the parameters.
For both data sets, it is possible to see that the best results, in
almost all models (the OS-ELM seems to be the most constant
among the other models), are achieved when d = 2, d = 5
and d = 20 (small values of λ); i.e. the results mean that the
best performances are achieved when the most recent samples
are used to compose the learning of the models parameters.
Moreover, the best prediction performance achieved by the
proposed MULRM method, is in general better when using
small values of (λ, d). However, although these results are
representative, they are also conditioned by the problems under
study, i.e. it is not possible to assure that they are general for
all other conceivable problems. Nevertheless, MULRM can
be a good option for soft sensor applications in time-varying
scenarios. In some experiments, the proposed method still does
not satisfy the requirement for NRMSE < 10%. This happens
mainly when the updating of the model does not occur (0%)
or when the frequency of model updating is low (10% and
25%).

The advantage of MULRM on the presented experiments, in
comparison with the other methods, is mainly on the prediction

performance, since the execution times for all methods are
similar (except ILLSA, which is much more time demanding).
The major drawback of MULRM is that it cannot identify the
joint effect among the variables, thus it cannot be used as an
explanation method.

VI. CONCLUSIONS

This paper proposed the use of a mixture of univariate
linear models for adaptive regression, in a new method called
MULRM. The formulas for the offline and online learning
were derived based on the EM algorithm. Furthermore, in this
work the proposed method has been evaluated and compared
with the current state of art methods on two real world data
sets.

On the polymerization data set, the proposed MULRM
method was compared with the RLS, RPLS, OS-ELM and
ILLSA methods, with better results in the almost all ex-
periments. On the WWTP data set, the performance of the
proposed method was much better, in the cases where d < D,
when compared with the other state of the art RLS, RPLS, OS-
ELM and ILLSA methods. Moreover, the application of the
proposed method on the WWTP plant, to predict the fluorine,
will allow the reduce of costs associated with the laboratory
analysis, since it has been verified that the rate of model
updates can be reduced by a half or more, while still attaining
good prediction results.
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