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Abstract. We present as a contribution to the field of human-machine
interaction a system that analyzes human movements online, based on
the concept of Laban Movement Analysis (LMA). The implementation
uses a Bayesian model for learning and classification, while the results
are presented for the application to gesture recognition. Nowadays tech-
nology offers an incredible number of applications to be used in human-
machine interaction. Still, it is difficult to find implemented cognitive
processes that benefit from those possibilities. Future approaches must
offer to the user an effortless and intuitive way of interaction. We present
the Laban Movement Analysis as a concept to identify useful features
of human movements to classify human actions. The movements are ex-
tracted using both, vision and magnetic tracker. The descriptor opens
possibilities towards expressiveness and emotional content. To solve the
problem of classification we use the Bayesian framework as it offers an
intuitive approach to learning and classification. It also provides the pos-
sibility to anticipate the performed action given the observed features.
We present results of our system through its embodiment in the social
robot ’Nicole’ in the context of a person performing gestures and ‘Nicole’
reacting by means of audio output and robot movement.

1 Introduction

Nowadays, robotics has reached a technological level that provides a huge number
of input and output modalities. Apart from industrial robots, also social robots
have emerged from the universities to companies as products to be sold. The
commercial success of social robots implies that the available technology can be
both, reliable and cost efficient. Surprisingly, higher level cognitive systems that
could benefit from the technological advances in the context of human-robot
interaction are still rare. Future approaches must offer an effortless and intuitive
way of interacting with a robot to its human counterpart. One can think of the
problem as a scenario where a robot is observing the movement of a human
and is acting according to the extracted information (see Fig. 1). To achieve
this interaction we need to extract the information contained in the observed
movement and relate a appropriate robot action to it.

J. Neves, M. Santos, and J. Machado (Eds.): EPIA 2007, LNAI 4874, pp. 530–541, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Human Robot Interaction Based on Bayesian Analysis of Human Movements 531

Fig. 1. Nicole in position to interact

Our ultimate goal is to provide the robot with a cognitive system that mim-
ics human perception in terms of anticipation and empathy. Towards the latter
requirement this article will present the concept of Laban Movement Analysis
(LMA) [1] as a way to describe intentional content and expressiveness of a hu-
man body movement. Two major components of LMA (i.e. Space and Effort)
are described in detail. We show the technical realization of LMA for the cogni-
tive system of the embodied agent which is based on a probabilistic (Bayesian)
framework and a system for tracking of human movements. The system uses
both a magnetic tracker and a visual tracker. The visual tracker extracts the
movement-features of a human actor from a series of images taken by a single
camera. The hands and the face of the actor are detected and tracked auto-
matically without using a special device (markers) [2]. This work presents the
Bayesian approach to LMA through the problem of learning and classification,
also treating the system’s online characteristic of anticipation. The probabilistic
model anticipates the gesture given the observed features using the Bayesian
framework. The system has been implemented in our social robot, ’Nicole’ to
test several human-robot interaction scenarios (e.g. playing).

If the perceptual system of a robot is based on vision, interaction will involve
visual human motion analysis. The ability to recognize humans and their ac-
tivities by vision is key for a machine to interact intelligently and effortlessly
with a human-inhabited environment [3]. Several surveys on visual analysis of
human movement have already presented a general framework to tackle this
problem [4], [3], [5] and [6] usually emphasizing the three main problems: 1.
Feature Extraction, 2. Feature Correspondence and 3. High Level Processing.
One area of high level analysis is that of gesture recognition applied to control
some sort of devices. In [7] DBNs were used to recognize a set of eleven hand
gestures to manipulate a virtual display shown on a projection screen . Surveys
specialized on gesture interfaces along the last ten years reflect the development
and achievements [8], [9]. The most recent survey [10] is once more included
in the broader context of human motion analysis emphasizing, once more the
dependencies between low level features and high level analysis.

Section 2 presents the concept of LMA and its two major components (i.e.
Spaceand Effort). Section 3 presents the system for tracking of human
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movements. Section 4 describes the Bayesian framework that is used to learn
and classify human movements and presents the. Section 5 presents the results.
Section 6 closes with a discussion and an outlook for future works.

2 Laban Movement Analysis (LMA)

Laban Movement Analysis (LMA) is a method for observing, describing, notat-
ing, and interpreting human movement. It was developed by a German named
Rudolf Laban (1879 to 1958), who is widely regarded as a pioneer of European
modern dance and theorist of movement education [11]. While being widely ap-
plied to studies of dance and application to physical and mental therapy [1], it
has found little application in the engineering domain. Most notably the group
of Norman Badler, who recently proposed a computational model of gesture
acquisition and synthesis to learn motion qualities from live performance [12].
Also recently, researchers from neuroscience stated that LMA is quite useful to
describe certain effects on the movements of animals and humans. In [13] LMA
was adapted to capture the kinematic and non-kinematic aspects of movement
in a reach-for-food task by human patients whose movements had been affected
by stroke.

The theory of LMA treats five major components shown in Fig. 2 of which
we adopted three. Space treats the spatial extent of the mover’s Kinesphere (of-
ten interpreted as reach-space) and what form is being revealed by the spatial
pathways of the movement. Effort deals with the dynamic qualities of the move-
ment and the inner attitude towards using energy. Like suggested in [13] we have
grouped Body and Space as kinematic features describing changes in the spatial-
temporal body relations, while Shape and Effort are part of the non-kinematic
features contributing to the qualitative aspects of the movement.

Fig. 2. Major components of LMA with the bipolar Effort factors as a 4-D space
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Fig. 3. The concepts of a) Levels of Space, Basic Directions, Three Axes, and b) Three
Planes and Icosahedron

2.1 Space

The Space component addresses what form is being revealed by the spatial path-
ways of the movement. The actor is actually ”carving shapes in space” [1]. Space
specifies different entities to express movements in a frame of reference deter-
mined by the body of the actor. Thus, all of the presented measures are relative
to the anthropometry of the actor. The concepts differ in the complexity of
expressiveness and dimensionality but are all of them reproducible in the 3-D
Cartesian system. The most important ones shown in Fig. 3 are: 1) The Levels
of Space - referring to the height of a position, 2) The Basic Directions - 26
target points where the movement is aiming at, 3) The Three Axes - Vertical,
horizontal and sagittal axis, 4) The Three Planes - Door Plane πv, Table plane
πh, and the Wheel Plane πs each one lying in two of the axes, and 5) The Icosa-
hedron - used as Kinespheric Scaffolding. The Kinesphere describes the space of
farthest reaches in which the movements take place. Levels and Directions can
also be found as symbols in modern-day Labanotation [1]. Labanotation direc-
tion symbols encode a position-based concept of space. Recently, Longstaff [14]
has translated an earlier concept of Laban which is based on lines of motion
rather than points in space into modern-day Labanotation. Longstaff coined
the expression Vector Symbols to emphasize that they are not attached to a
certain point in space. The 38 Vector Symbols are organized according to Proto-
types and Deflections. The 14 Prototypes divide the Cartesian coordinate system
into movements along only one dimension (Pure Dimensional Movements) and
movements along lines that are equally stressed in all three dimensions (Pure Di-
agonal Movements) as shown in Fig. 3 a). Longstaff suggests that the Prototypes
give idealized concepts for labeling and remembering spatial orientations. The
Vector Symbols are reminiscent of a popular concept from neuroscience, named
preferred directions, which are the directions that trigger the strongest response
from motion encoding cells in visual area MT of a monkey [15].
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2.2 Effort

The Effort component consists of four motion factors: Space, Weight, Time, and
Flow. As each factor is bipolar and can have values between two extremities one
can think of the Effort component as a 4-D space as shown in Fig. 2. A movement
(M) can be described by its location in the Effort -space. Exemplary movements
where a certain Effort -value is predominant are given in table 1. It is important
to remember, that a movement blends during each phase all four Effort-value.
Most of the human movements have two or three Effort -values prominently high.
In fact, it seems difficult even for a trained Laban performer (i.e. Laban notator)
to perform single-quality movements [11].

Table 1. Effort qualities and exemplary movements

Effort Movement
Space Direct Pointing gesture
- Indirect Waving away bugs
Weight Strong Punching,
- Light Dabbing paint on a canvas
Time Sudden Swatting a fly
- Sustained Stretching to yawn
Flow Bound Moving in slow motion
- Free Waving wildly

3 Tracking of Human Movements

For the tracking of human movements we use sensory data from a camera, which
is mounted on our social robot, Nicole and a magnetic tracker as shown in
Fig. 4. From the camera we collect 2-D position data of the hands and head
with 15Hz. The magnetic tracker produces 3-D position and orientation data
with 50Hz for each sensor. The number of sensors and their location depends
on the performed action (e.g three sensors on hands and head for gestures). We
have created a database of human movements, called HID-Human Interaction
Da ase which is publicly accessible through the internet [16]. HID is organized in
three categories of movements: 1. Gestures (e.g waving bye-bye), 2. Expressive
movements in terms of LMA as presented in Table 1 (e.g. performing a punch)
and 3. Manipulatory movements performing reaching, grasping and placing of
objects (e.g. drinking from a cup). Figure 4 indicates some of the frames of
references involved: The camera referential C in which the image is defined, the
inertial referential I allowing us to register the image data in the vertical and
the robot referential R which defines the position and orientation of the visual
system relative to some world coordinate system W . In the current situation the
frame of reference of the world W coincides with the on of the magnetic tracker
M and the one we contribute to the human H .



Human Robot Interaction Based on Bayesian Analysis of Human Movements 535

Fig. 4. The components and the frames of reference for tracking human movements

3.1 Tracking Using 6-DoF Magnetic Tracker

Using a 6-DoF magnetic tracker provides 3-D position data with a sufficiently high
accuracy and speed. We use a Polhemus Liberty system with sensors attached
to several body parts and objects. From the tracker data set of features is calcu-
lated and related to the Laban Movement Parameters (LMP). Figure 5 a) shows
some sample images from the expressive movement “Stretching to yawn” and in
Fig. 5 b) the trajectories for both hands. The tracker data is used to

Fig. 5. Tracking of hands movement. a) Sample images b) Data from the magnetic
tracker c) ... and the vision tracker.
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learn the dependencies of the features from the LMPs. Subsets (e.g. 2-D vertical
plane) are used to test the expressiveness in lower dimensionality like vision.

3.2 Tracking Using Vision

Using cameras as the basic input modality for a robot provides the highest
degree of freedom to the human actor but also poses the biggest challenge to
the functionality of detecting and tracking of human movements. To collect the
data we use the gesture perception system (GP-System) described in [17] for
our social robot Nicole. The system performs skin-color detection and object
tracking based on the CAMshift algorithm presented in [18]. From the position
data the displacement vectors dP between each frame are calculated. The spatial
concept of Laban’s Vector Symbols is implemented by defining a finite number
of discrete values for the direction and calculating what we call Vector Atoms
or simply Atoms A.

4 Bayesian Framework for Movement Classification

The classification of human movements is done with a probabilistic model using
a Bayesian framework. The Bayesian framework offers a broad range of possi-
ble models (HMMs etc.) and has proven successful in building computational
theories for perception and sensorimotor control of the human brain [19]. These
models have already shown their usability in gesture recognition [20, 7].

The model for Laban Space uses as input (evidences) the Atoms A. Our so-
lution assumes that the probability distribution for all possible values of atom
A given all possible gestures G and frames I ,which is P(A|G, I) can be deter-
mined. As both, the gestures and the frame index are discrete values we can
express P (A|G, I) in form of a conditional probability table. The probabilities
can be learned from training data using a certain number of atom-sequences
for each gesture. A simple approach is the one known as Histogram-learning. It
counts the number of different atom-values that appear for a gestures along the
frames. To overcome the problem of assigning zero probabilities to events that
have not yet been observed an enhanced version often uses learning of a family
of Laplace-distributions. Currently we are using a le that is of size 18 x 31 x
6, that is 18 discrete values for the atom (9 for each hand), 31 frames and 6
gestures. Figure 6 shows a fraction of the table which is the 9 atoms of the right
hand for the first 11 frames and the Bye-Bye gesture.

It represents the ’fingerprint’ of the gesture prototype for waving Bye-Bye.
Knowing the gesture we assume this sequence of distributions of the random
variable atom to extracted. The table represents an intuitive way to distinguish
two gestures from each other.

Applying Bayes rule we can compute the probability distribution for the ges-
tures G given the frame I and the atom A expressed as P(G|I, A), which is the
question the classification as based upon. P(G) represents the prior probabilities
for the gestures. Assuming the the observed atoms are independently and iden-
tically distributed (i.i.d.) we can compute the probability that a certain gesture
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Fig. 6. a) Bayesian Net for the gesture model b) Learned Table P (A|GI avg) for
gesture ‘Bye-Bye’

has caused the whole sequence of atoms P (a1:n|g, i1:n) by the product of the
probabilities for each frame. Where a1:n represents the sequence of n observed
values for atom and g a certain gesture from all gestures G. The jth frame of
a sequence of n frames is represented by ij . We are able to express the prob-
ability of a gesture g that might have caused the observed sequence of atoms
a1:n in a recursive way. Assuming that each frame a new observed atom arrives
we can state and expressing the real-time behavior by using the index t. We
model the variance and mean speed of a performance by a Gaussian distribution
N(i obs, σ) expressed the probability that an observed frame i obs maps to an
average frame iavgP (iobs|iavg).

Our Bayesian model is shown in (1). We see that the probability distribution
of the gestures G at time t + 1 knowing the observed atoms a until t + 1 is
equal to the probability distribution of G at time t times the probabilities of the
current observed atom given the gestures G and frame i at t+1. The probability
distribution of G for t = 0 is the prior.

P(Gt+1|i1:t+1, a1:t+1)
= P(Gt)P (i obst+1|i avgt+1)P(at+1|G, it+1)

(1)

We can likewise express our model in a Bayesian Net shown in Fig. 6. It shows
the dependencies of the above mentioned variables including the displacement
dP from the previous section. The rule for classification is based on the high-
est probability value above a minimum threshold, also known as maximum a
posteriori estimation (MAP).

5 Results and Discussion

For this experiment we have used 15 video sequences from each human actor
for each of 6 distinct gestures as shown in table 2. Figure 7 illustrates how
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Table 2. Characteristics of out gesture-set

No. Gesture Hands Level
1 Sagittal Waving Two High
2 Waving to Left Two Medium
3 Waving to Right Two Medium
4 Waving Bye-Bye One High
5 Pointing One High
6 Draw Circle One Medium

Fig. 7. Probability evolution for a Bye-Bye gesture input

the gesture-hypothesizes, evolve as new evidences (atoms) arrive taken from
the performance of a Bye-Bye gesture. After twelve frames the probabilities
have converged to the correct gesture-hypothesis (No. 4). After four frames the
probabilities of the two-hand gesture-hypothesis have reached nearly zero. (No. 1,
2, and 3). Until the sixth frame the probabilities of both High-Level gestures grow
(No. 4 and 5) indicating what is called pre-stroke phase in gesture analysis [21].
Conversely the probability of the Medium-Level gesture (No. 6) drops slowly
towards zero. After the sixth frame the oscillating left-right movement (and its
associated atoms) makes the probability of the Bye-Bye-gesture hypothesis rise
and the Pointing-NW-gesture hypothesis drop. A similar behavior was revealed
when the remaining five gestures were performed. An unknown gesture, i.e. an
unknown sequence of atoms produced more than one gesture-hypothesizes with
a significant probability.

For the Bye-Bye gesture (see Fig. 6) we can see, that during the first frames
the most likely atom to be expected is the one that goes Up-Right (UR). This
is similar for the Pointing gesture (see fig. 8) reflecting the already mentioned
Pre-Stroke phase. The number of atoms during Pre-Stroke also reflect the Levels
of Space in which the following Stroke [21] will take place. In our example we can
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Fig. 8. Learned Table P (A|GI avg) for gesture ‘Pointing NW’

distinguish the two gestures during Stroke as the Bye-Bye gesture has a roughly
equal distribution along the line of oscillation (e.g. left-right), while the Pointing
gesture produces mainly zero-motion atoms (O).

6 Conclusions and Future Works

This work presented the application of the Space component of Laban Move-
ment Analysis (LMA) to the Human-Robot Interface of the social robot, Nicole.
It showed that trajectories of human movements can be learned and recognized
using the concept of Vector Symbols. This work demonstrates that the Bayes-
ian approach for movement classification provides a robust and reliable way to
classify gestures in real-time. Using naive Bayesian classification we are able to
anticipate a gesture from its beginning and can take decisions long before the
performance has ended. We have shown that through Bayesian Learning the
system memorizes learned data in an intuitive way which gives the possibility to
draw conclusions directly from the look-up tables. In several trials the system
was successfully performing Human-Robot Interaction with guests and visitors.

We are currently implementing the Bayesian models for the Effort and Shape
component of the LMA. With a growing database (HID) we can evaluated clas-
sification and anticipation of expressive movements. Once evaluated, we want to
put our attention to manipulatory movements and the use of LMA as a cue to
describe objects properties. A parallel path follows the goal to improve visual
tracking by high level knowledge derived from the LMA Space component. For
the application we aim at shifting the scope of Nicole towards socially assistive
robots that can be used in rehabilitation.
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