# Parametric Face Alignment: Generative and Discriminative Approaches

Pedro Alexandre Dias Martins

http://www.isr.uc.pt/~pedromartins



PhD Thesis Faculty of Sciences and Technology University of Coimbra Portugal



Universidade de Coimbra

# Acknowledgements

- Advisor: Dr. Jorge Batista
- Institute of Systems and Robotics (ISR) University of Coimbra <a href="http://www.isr.uc.pt/">http://www.isr.uc.pt/</a>



- Department of Electrical and Computer Engineering (DEEC) from Faculty of Sciences and Technology of the University of Coimbra (FCTUC) <u>http://www.uc.pt/fctuc/deec/</u>
- Research supported by the Portuguese Science Foundation (*Fundação para a Ciência e Tecnologia* FCT) under the PhD grant SFRH/BD/45178/2008
  <a href="http://www.fct.pt/">http://www.fct.pt/</a>



### Introduction

- Goal: Non-Rigid Face Registration
- Model based approaches Parametric Models of Shape and Appearance



### Parametric Image Alignment

#### Generative / Holistic Appearance Model





Point Distribution Model (PDM)





#### Discriminative / Patch Based Appearance Model







### Overview

#### (1) Generative 2.5D AAM



#### (2) Discriminative ASM



#### (3) Identity / Facial Expression



- Extension of the original 2D AAM that to deals with a <u>full perspective</u> <u>projection model</u>.
- New Bayesian global optimization strategy that infers the overall alignment using a <u>second order</u> estimate of the PDM parameters.
- Identity and facial expression recognition using facial geometry.



# (1) Generative 2.5D Active Appearance Models

- The 2.5D Active Appearance Models (AAM) combines a 3D PDM and a 2D appearance model.
- Extension of the original 2D AAM that deals with a <u>full perspective projection</u> model.
- Model fitting algorithms:
  - Simultaneous Forwards Additive (SFA).
  - Normalization Forwards Additive (NFA).
  - Efficient Approximations (ESFA, ENFA).
  - Robust to partial and self occlusions.
- Larger convergency radius.
- 3D shape from single images.
- (-) Slower than 2D methods.



- Previous Work:
  - Active Appearance Models (AAM) ECCV 1998
  - Active Appearance Models Revisited IJCV 2004
  - Generic vs Person Specific AAMs BMVC 2004
  - Real Time Combined 2D+3D AAMs CVPR 2004



### Parametric Models of Shape and Appearance

**Raw Data** 





#### 'Aligned' Data

#### **Shape Model**





Shape Parameters

**Appearance Model** 



m+2 $\mathbf{A}(\mathbf{x}_{\mathbf{p}}) = \mathbf{A}_0(\mathbf{x}_{\mathbf{p}}) + \sum_{i=1}^{m-1} \lambda_i \mathbf{A}_i(\mathbf{x}_{\mathbf{p}}), \ \mathbf{x}_{\mathbf{p}} \in s_{0\mathbf{p}}$ 

**Appearance Parameters** 

Piecewise Affine Warp



 $\mathbf{W}(\mathbf{x_p},\mathbf{p},\mathbf{q})$ 



 $\mathbf{I}(\mathbf{W}(\mathbf{x_p},\mathbf{p},\mathbf{q}))$ 

 $\mathbf{I}(\mathbf{x_p})$ 

7



### The Shape Model



#### **Full Perspective Projection**

**3D Point Distribution Model (PDM)** 

$$\begin{bmatrix} w(x_{1}\cdots x_{v})\\ w(y_{1}\cdots y_{v})\\ w\cdots w \end{bmatrix} = \underbrace{\begin{bmatrix} f_{x} & \alpha_{s} & c_{x}\\ 0 & f_{y} & c_{y}\\ 0 & 0 & 1 \end{bmatrix}}_{\mathbf{K}} \begin{bmatrix} \mathbf{R}_{0} \mid \mathbf{t}_{0} \end{bmatrix} \begin{bmatrix} s^{x_{1}}\cdots s^{x_{v}}\\ s^{y_{1}}\cdots s^{y_{v}}\\ 1\cdots 1 \end{bmatrix} \xrightarrow{\mathbf{S}_{v}} \mathbf{S} = s_{0} + \sum_{i=1}^{n} p_{i}\phi_{i} + \sum_{j=1}^{6} q_{j}\psi_{j}^{(t)} + \underbrace{\int_{0}^{t-1}\sum_{j=1}^{6} q_{j}\psi_{j}^{(t)}\partial t}_{s_{\psi}} \underbrace{\mathbf{Pose}}_{\mathbf{Parameters}} \underbrace{\mathbf{Pose}}_{\mathbf{Parameters}} \underbrace{\mathbf{Pose}}_{\mathbf{Pose updates}} \mathbf{Pose updates}$$



# Model Fitting

$$\begin{split} & \arg\min_{\mathbf{p},\mathbf{q},\lambda}\sum_{\mathbf{x}_{\mathbf{p}}\in s_{0\mathbf{p}}} \left[ \begin{array}{c} & & & & & & \\ & & & & & \\ \end{array} \right]^{2} \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$



### Simultaneous Forwards Additive (SFA)





# Normalization Forwards Additive (NFA)



• Project Error Image into Appearance Basis

$$\begin{split} \lambda_i = \sum_{\mathbf{x_p} \in s_{0\mathbf{p}}} \mathbf{A}_i(\mathbf{x_p}) \underbrace{(\mathbf{I}(\mathbf{W}(\mathbf{x_p},\mathbf{p},\mathbf{q})) - \mathbf{A}_0(\mathbf{x_p}))}_{\mathbf{E}(\mathbf{x_p})_{lk}} \\ \text{Error Image} \end{split}$$

• Normalize the Error Image

$$\mathbf{E}_{\text{nfa}}(\mathbf{x}_{\mathbf{p}}) = \mathbf{E}(\mathbf{x}_{\mathbf{p}})_{\text{lk}} - \sum_{i=1}^{m+2} \lambda_i \mathbf{A}_i(\mathbf{x}_{\mathbf{p}})$$





### **Robust Fitting**









#### **Convergency Frequency Rate of Convergency Fitting Performance Curve** IMM Fitting Performance 100 **Convergency Frequency** Rate of Convergency 100 12 1 PO 2D SIC 2D 90 Percentage of Trials Converged 10 PO 2D+3D 0.8 **RMS Point Location Error** SIC 2D+3D 80 Proportion of Images 9.0 NFA 2.5D 8 ENFA 2.5D 70 SFA 2.5D ESFA 2.5D 60 6 PO 2D PO 2D SIC 2D SIC 2D 50 PO 2D+3D PO 2D+3D 4 SIC 2D+3D SIC 2D+3D 40 NFA 2.5D NFA 2.5D 0.2 ENFA 2.5D ENFA 2.5D 2 30 SFA 2.5D SFA 2.5D ESFA 2.5D ESFA 2.5D 20<sup>L</sup> 0 0<sup>L</sup> 0 0 2 20 25 1 3 4

#### Amount of Perturbation (k x Sigma)

5 10 15 20

Iteration

#### 5 10 15 **RMS Error**

#### **Tracking Performance - FGNET Talking Face**

| <b>RMS Error</b>      | PO  | PO 2D+3D | NFA 2.5D | ENFA 2.5D | SIC 2D | SIC 2D+3D | SFA 2.5D | ESFA 2.5D |
|-----------------------|-----|----------|----------|-----------|--------|-----------|----------|-----------|
| Mean                  | 7.4 | 7.0      | 6.6      | 6.2       | 7.1    | 6.6       | 6.4      | 6.0       |
| Standard<br>Deviation | 3.4 | 2.5      | 2.1      | 1.3       | 3.3    | 3.2       | 1.4      | 1.2       |



# (2) Discriminative Bayesian Active Shape Models

- Related to CLM and/or ASM, where a set of local detectors is constrained to lie in the subspace spanned by a PDM.
- Two step model fitting approach:
  - (1) Local search using the detectors.
  - (2) Global optimization strategy that finds the PDM parameters that jointly maximize all the detections.
- New Bayesian global optimization strategy that infers the overall alignment using a <u>second order estimate</u> of the PDM parameters.
- Extension that models the prior distribution.
- Performance in unseen data
- Efficient and simple approach.
- Fusion of multiple detectors.



#### Previous Work:

- Active Shape Models (ASM) CVIU 1995
- Constrained Local Model (CLM) BMVC 2006
- Convex Quadratic Fitting (CQF) CVPR 2008
- Subspace Constrained Mean-Shifts (SCMS) ICCV 2009



### Local Landmark Detectors





# The Alignment Goal

Given a shape observation vector (y), find the optimal set of shape (and pose) parameters (b) that maximize the posterior probability

$$\mathbf{b}^* = \arg\max_{\mathbf{b}} p(\mathbf{b}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{b})p(\mathbf{b})$$

- Assuming:
  - Conditional independence between landmarks
  - Close to a solution



Likelihood from the local detectors

**Prior** on how parameters change







# The Likelihood Term

Convex energy function:



![](_page_19_Picture_0.jpeg)

### Local Optimization Strategies

![](_page_19_Figure_2.jpeg)

![](_page_20_Picture_0.jpeg)

# MAP Global Alignment (DBASM)

![](_page_20_Figure_2.jpeg)

![](_page_21_Picture_0.jpeg)

# MAP Global Alignment (BASM)

![](_page_21_Figure_2.jpeg)

Observable vector **b** 

$$p(\mu_{\mathbf{b}}, \Sigma_{\mathbf{b}} | \mathbf{b}) \propto p(\mathbf{b} | \mu_{\mathbf{b}}, \Sigma_{\mathbf{b}}) \ p(\mu_{\mathbf{b}}, \Sigma_{\mathbf{b}})$$

Joint Posterior Normal Inverse-Wishart Joint Prior Normal Inverse-Wishart

 $p(\mu_{\mathbf{b}}|\mathbf{b}) \propto rac{\mathsf{Multivariate}}{\mathsf{Student t}}$  $p(\Sigma_{\mathbf{b}}|\mathbf{b}) \propto \mathsf{Inv-Wishart}$ 

$$\mu_{\mathbf{b}_k} = E(\mu_{\mathbf{b}}|\mathbf{b}) = \theta_k$$

$$\Sigma_{\mathbf{b}_k} = E(\Sigma_{\mathbf{b}}|\mathbf{b}) = (v_k - n - 1)^{-1} \Lambda_k$$

**Conjugate Prior** for a Gaussian with unknown mean and covariance is a Normal Inverse-Wishart distribution

The Prior distribution is continuously kept up to date

![](_page_23_Picture_0.jpeg)

### **Evaluation Results**

| Real Provide American Science Provide American | Image: With State of the s |                                                                                                                                                                                | BioID Fitting Performa | nce    |                                                                                          | BioID Fitting F                                                                                                                                                    | Performance          | - C |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----|
| 1<br>8.0<br>6.0 dages<br>4.0 Ludion of Images<br>9.0<br>2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AVG<br>AVG<br>AVG<br>AVG<br>AVG<br>CQF<br>GMM3<br>GMM3<br>SCMS<br>BASM-KDE<br>BASM-KDE-H<br>BASM-KDE-H<br>BASM-KDE-H<br>BASM-KDE-H<br>BASM-KDE-H<br>BASM-KDE-H<br>BASM-KDE-H<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.8<br>0.6<br>0.6<br>0.4<br>0.2<br>0.2<br>0.2<br>0.5<br>10<br>15<br>20<br>25<br>0.0<br>0.0<br>0.0<br>0.4<br>0.2<br>0.2<br>0.5<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 |                        |        | 1<br>0.8<br>-<br>8.0<br>-<br>0.0<br>-<br>-<br>0.4<br>-<br>0.4<br>-<br>0.2<br>-<br>0<br>0 | AVG<br>AVG<br>AVG<br>AVG<br>AVG<br>AVG<br>AVG<br>AVG<br>AVG<br>AVG<br>BASM<br>BASM-KDE<br>BASM-KDE<br>BASM-KDE-H<br>BASM-KDE-H<br>BASM-KDE Fusion<br>5 10 15 20 25 |                      |     |
| Г                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RMS Error<br>Reference 7.5 RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IMM (24                                                                                                                                                                        | RMS Error              | XM2VTS | (2360 images)                                                                            | RMS I<br>BioID (1                                                                                                                                                  | Error<br>521 images) |     |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ASM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50.0                                                                                                                                                                           | 10 11110g(00)          | 30.7   | (2000 magos)                                                                             | $\frac{D101D}{70.0}$                                                                                                                                               |                      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DBASM-WPR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 56.7                                                                                                                                                                           | (+6.7)                 | 45.1   | (+14.4)                                                                                  | 75.4                                                                                                                                                               | (+5.4)               |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BASM-WPR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                | (+8.4)                 | 47.4   | (+16.7)                                                                                  | 77.1                                                                                                                                                               | (+7.1)               |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CQF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.4                                                                                                                                                                           | ( ' /                  | 10.9   |                                                                                          | 47.0                                                                                                                                                               |                      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GMM3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40.8                                                                                                                                                                           | (-4.6)                 | 10.4   | (-0.5)                                                                                   | 51.7                                                                                                                                                               | (+4.7)               |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BCLM-GR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48.3                                                                                                                                                                           | (+2.9)                 | 15.9   | (+5.0)                                                                                   | 54.2                                                                                                                                                               | (+7.2)               |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DBASM-GR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.4                                                                                                                                                                           | (+5.0)                 | 18.0   | (+7.1)                                                                                   | 62.2                                                                                                                                                               | (+15.2)              |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BASM-GR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51.8                                                                                                                                                                           | (+6.4)                 | 19.7   | (+8.8)                                                                                   | 63.5                                                                                                                                                               | (+16.5)              |     |
| ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SCMS-KDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 54.6                                                                                                                                                                           |                        | 35.7   |                                                                                          | 69.0                                                                                                                                                               |                      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BCLM-KDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 57.1                                                                                                                                                                           | (+2.5)                 | 43.4   | (+7.7)                                                                                   | 71.9                                                                                                                                                               | (+2.9)               |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DBASM-KDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 64.6                                                                                                                                                                           | (+10.0)                | 54.5   | (+18.8)                                                                                  | 76.5                                                                                                                                                               | (+7.5)               |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DBASM-KDE-H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 64.6                                                                                                                                                                           | (+10.0)                | 53.5   | (+17.8)                                                                                  | 76.5                                                                                                                                                               | (+7.5)               |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BASM-KDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 65.4                                                                                                                                                                           | (+10.8)                | 57.0   | (+21.3)                                                                                  | 80.3                                                                                                                                                               | (+11.3)              |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BASM-KDE-H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 64.0                                                                                                                                                                           | (+9.4)                 | 56.6   | (+20.9)                                                                                  | 79.9                                                                                                                                                               | (+10.9)              |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BASM-KDE Fusion of 2 Detectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 72.5                                                                                                                                                                           | (+17.9)                | 58.7   | (+23.0)                                                                                  | 88.2                                                                                                                                                               | (+19.2)              |     |

![](_page_24_Picture_0.jpeg)

# **Tracking Performance - FGNET Talking Face**

![](_page_24_Picture_2.jpeg)

![](_page_24_Figure_3.jpeg)

| RMS<br>Error          | ASM  | CQF  | GMM3 | SCMS-KDE | BCLM-KDE | DBASM-<br>KDE | DBASM-<br>KDE-H | BASM-KDE | BASM-<br>KDE-H | BASM-KDE<br>Fusion |
|-----------------------|------|------|------|----------|----------|---------------|-----------------|----------|----------------|--------------------|
| Mean                  | 10.5 | 10.6 | 11.1 | 8.2      | 9.5      | 7.0           | 7.2             | 6.4      | 6.3            | 5.9                |
| Standard<br>Deviation | 6.4  | 3.9  | 4.3  | 2.6      | 3.6      | 2.1           | 2.2             | 1.7      | 1.5            | 1.5                |

![](_page_25_Picture_0.jpeg)

# (3) Identity and Facial Expression Recognition

- Six basic emotions (happiness, sadness, surprise, anger, fear, disgust) plus the neutral expression.
- Identity and facial expression recognition using facial geometry (captured by the AAM).
- Low dimensional manifolds derived using Laplacian EigenMaps
  - Identity
  - Person-dependent expression
- Two step recognition approach.

![](_page_25_Figure_8.jpeg)

![](_page_26_Figure_0.jpeg)

# Conclusions

#### • (1) Generative Face Alignment (2.5D Active Appearance Models)

- Extension of the standard 2D Active Appearance Models to deal with a full perspective projection model.
- Two model fitting algorithms (SFA, NFA) and their efficient approximations.
- Robust solutions account for partial and self occlusions.

#### • (2) Discriminative Face Alignment (Bayesian Active Shape Models)

- New Bayesian formulation for aligning faces in unseen images.
- New global optimization strategy that infers both shape and pose parameters, in MAP sense, using second order statistics.
- Extension that models the prior distribution.

#### • (3) Identity and Facial Expression Recognition

 Two step recognition approach (identity then expression) using low dimensional representations of face geometry.

### Future Work

- Unconstrained Non-Rigid Registration
  - 3D Point Distribution Model.
  - Extend the likelihood term to a non-parametric distribution.
  - Shape representation (non-parametric shape model).
  - Constrain model fitting using 3D depth data.
  - 3D dynamic recognition (identity and facial expression).

# The End

![](_page_29_Picture_1.jpeg)

### **Additional Slides**

- Linear Pose Updates
- Efficient Approximations (ESFA, ENFA)
- Combined 2D+3D AAM
- MOSSE Filters
- KDE Landmark Updates
- BASM The Algorithm
- Hierarchical Search (KDE-H)
- Tracking Performance FGNET Talking Face (Video)
- The Recognition Approach (Overview)

![](_page_31_Picture_0.jpeg)

### Linear Pose Updates

32

 $\mathbf{q}$ 

![](_page_32_Picture_0.jpeg)

# Efficient Approximations (ESFA, ENFA)

$$\mathbf{A}_{0}(\mathbf{x}_{\mathbf{p}}) + \sum_{i=1}^{m+2} \lambda_{i} \mathbf{A}_{i}(\mathbf{x}_{\mathbf{p}})$$

$$\begin{pmatrix} \mathbf{A}_{0}(\mathbf{x}_{\mathbf{p}}) + \sum_{i=1}^{m+2} \lambda_{i} \mathbf{A}_{i}(\mathbf{x}_{\mathbf{p}}) \end{pmatrix} \approx \mathbf{I}(\mathbf{W}(\mathbf{x}_{\mathbf{p}}, \mathbf{p}, \mathbf{q})) \\ \mathbf{V} \\ \begin{pmatrix} \mathbf{V} \mathbf{A}_{0}(\mathbf{x}_{\mathbf{p}}) + \sum_{i=1}^{m+2} \lambda_{i} \nabla \mathbf{A}_{i}(\mathbf{x}_{\mathbf{p}}) \end{pmatrix} \approx \nabla \mathbf{I}(\mathbf{W}(\mathbf{x}_{\mathbf{p}}, \mathbf{p}, \mathbf{q})) \\ \mathbf{V} \\ \mathbf$$

![](_page_32_Picture_4.jpeg)

$$\mathbf{I}(\mathbf{W}(\mathbf{x}_{\mathbf{p}},\mathbf{p},\mathbf{q}))$$

$$\mathbf{SD}(\mathbf{x}_{\mathbf{p}})_{\text{enfa}} = \begin{bmatrix} \nabla \mathbf{A}_0(\mathbf{x}_{\mathbf{p}}) \frac{\partial \mathbf{W}}{\partial \mathbf{p}_1} & \dots & \nabla \mathbf{A}_0(\mathbf{x}_{\mathbf{p}}) \frac{\partial \mathbf{W}}{\partial \mathbf{p}_n} & \nabla \mathbf{A}_0(\mathbf{x}_{\mathbf{p}}) \frac{\partial \mathbf{W}}{\partial \mathbf{q}_1} & \dots & \nabla \mathbf{A}_0(\mathbf{x}_{\mathbf{p}}) \frac{\partial \mathbf{W}}{\partial \mathbf{q}_6} \end{bmatrix}$$

$$\mathbf{SD}(\mathbf{x}_{\mathbf{p}})_{\text{esfa}} = \begin{bmatrix} \nabla \mathbf{A}_{i}(\mathbf{x}_{\mathbf{p}}, \boldsymbol{\lambda}) \frac{\partial \mathbf{W}}{\partial \mathbf{p}_{1}} & \dots & \nabla \mathbf{A}_{i}(\mathbf{x}_{\mathbf{p}}, \boldsymbol{\lambda}) \frac{\partial \mathbf{W}}{\partial \mathbf{p}_{n}} & \nabla \mathbf{A}_{i}(\mathbf{x}_{\mathbf{p}}, \boldsymbol{\lambda}) \frac{\partial \mathbf{W}}{\partial \mathbf{q}_{1}} & \dots & \nabla \mathbf{A}_{i}(\mathbf{x}_{\mathbf{p}}, \boldsymbol{\lambda}) \frac{\partial \mathbf{W}}{\partial \mathbf{q}_{6}} & -\mathbf{A}_{1}(\mathbf{x}_{\mathbf{p}}) & \dots & -\mathbf{A}_{m+2}(\mathbf{x}_{\mathbf{p}}) \end{bmatrix}$$

#### Combined 2D+3D AAMs

$$\sum_{\mathbf{x}\in\mathbf{s}_{0}} \left[ \mathbf{A}_{0}(\mathbf{x}) + \sum_{i=1}^{m} \lambda_{i} \mathbf{A}_{i}(\mathbf{x}) - \mathbf{I}(\mathcal{S}(\mathbf{W}(\mathbf{x},\mathbf{p}),\mathbf{q}))) \right]^{2} + K. \left\| \mathbf{P}(\mathbf{s}_{0}^{3d} + \sum_{i=1}^{n3D} p_{i}^{3d} \phi_{i}^{3d}) + \begin{pmatrix} o_{x} & \dots & o_{x} \\ o_{y} & \dots & o_{y} \end{pmatrix} - \mathcal{S}(s_{0} + \sum_{i=1}^{n} p_{i} \phi_{i},\mathbf{q}) \right\|^{2}$$

 $\mathbf{x} = \underbrace{\begin{pmatrix} i_x & i_y & i_z \\ j_x & j_y & j_z \end{pmatrix}}_{\mathbf{P}} \begin{pmatrix} X_i \\ Y_i \\ Z_i \end{pmatrix} + \begin{pmatrix} o_x \\ o_y \end{pmatrix}$ 

$$\begin{pmatrix} \Delta \mathbf{p} \\ \Delta \mathbf{q} \\ \Delta \mathbf{p}^{3d} \\ \Delta \mathbf{P} \\ \Delta o_x \\ \Delta o_y \end{pmatrix} = -\mathbf{H}_{3D}^{-1} \begin{pmatrix} \begin{pmatrix} \Delta \mathbf{p}_{SD} \\ \Delta \mathbf{q}_{SD} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix} + K. \ \mathbf{SD}_F^T \ F(\mathbf{p}, \mathbf{q}, \mathbf{p}^{3D}, \mathbf{P}, o_x, o_y)$$

 $\mathbf{SD}_{F} = \left(\begin{array}{ccc} \frac{\partial F}{\partial \mathbf{p}} \mathbf{J}_{\mathbf{p}} & \frac{\partial F}{\partial \mathbf{q}} \mathbf{J}_{\mathbf{q}} & \frac{\partial F}{\partial \mathbf{p}^{3d}} & \frac{\partial F}{\partial \sigma} & \frac{\partial F}{\partial \Delta \theta_{x}} & \frac{\partial F}{\partial \Delta \theta_{y}} & \frac{\partial F}{\partial \Delta \theta_{z}} & \frac{\partial F}{\partial \Delta o_{x}} & \frac{\partial F}{\partial \Delta o_{y}} \end{array}\right)$ 

34

![](_page_34_Picture_0.jpeg)

### Local Landmark Detectors - MOSSE Filters

![](_page_34_Figure_2.jpeg)

D.Bolme, J.Beveridge, B.Draper, Y.Lui, CVPR 2010

![](_page_35_Picture_0.jpeg)

# **KDE Landmark Updates**

![](_page_35_Picture_2.jpeg)

# **BASM - The Algorithm**

**Precompute:** 

PDM:  $\mathbf{s}_0, \Phi, \Psi, \Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ 

**Initial estimate** 

$$(\mathbf{b}_0, \Sigma_0), (\mathbf{q}_0, \Sigma_0^q)$$

![](_page_36_Picture_5.jpeg)

Warp Image to the base mesh, using the current pose parameters

```
Generate current shape \mathbf{s} = \mathcal{S} \left( \mathbf{s}_0 + \Phi \mathbf{b}_k; \mathbf{q}_k \right)
```

```
for i=1:1:Landmarks
```

end

end

```
Evaluate detectors response
```

```
Find the likelihood parameters \mathbf{y}_i, \Sigma_{\mathbf{y}_i}
```

Estimate the shape/pose parameters:

Update the parameters of Normal Inv-Wishart distribution  $\rightarrow v_k, \kappa_k, \theta_k, \Lambda_k$ Expectation of the prior shape parameters Evaluate the **global** shape parameters and the covariance  $\rightarrow \mu_k, \Sigma_k$ 

 $\mathbf{H}_{i}^{*}$ MOSSE Filters: i = 1, ..., v

![](_page_36_Picture_14.jpeg)

![](_page_36_Picture_15.jpeg)

|    | 1.11 |
|----|------|
|    |      |
| •• |      |

# Hierarchical Search (KDE-H)

When response maps are approximated by KDE representations.

![](_page_37_Figure_2.jpeg)

![](_page_38_Picture_0.jpeg)

# Tracking Performance - FNET Talking Face

![](_page_38_Picture_2.jpeg)

![](_page_39_Picture_0.jpeg)

# The Recognition Approach

![](_page_39_Figure_2.jpeg)