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Abstract. This work presents a simple and very efficient solution to
align facial parts in unseen images. Our solution relies on a Point Distri-
bution Model (PDM) face model and a set of discriminant local detectors,
one for each facial landmark. The patch responses can be embedded into
a Bayesian inference problem, where the posterior distribution of the
global warp is inferred in a maximum a posteriori (MAP) sense. How-
ever, previous formulations do not model explicitly the covariance of the
latent variables, which represents the confidence in the current solution.
In our Discriminative Bayesian Active Shape Model (DBASM) formu-
lation, the MAP global alignment is inferred by a Linear Dynamical
System (LDS) that takes this information into account. The Bayesian
paradigm provides an effective fitting strategy, since it combines in the
same framework both the shape prior and multiple sets of patch align-
ment classifiers to further improve the accuracy. Extensive evaluations
were performed on several datasets including the challenging Labeled
Faces in the Wild (LFW). Face parts descriptors were also evaluated,
including the recently proposed Minimum Output Sum of Squared Error
(MOSSE) filter. The proposed Bayesian optimization strategy improves
on the state-of-the-art while using the same local detectors. We also show
that MOSSE filters further improve on these results.

1 Introduction

Deformable model fitting aims to find the parameters of a Point Distribution
Model (PDM) that best describe the object of interest in an image. Several fit-
ting strategies have been proposed, most of which can be categorized as being
either holistic (generative) or patch-based (discriminative). The holistic repre-
sentations [1][2] model the appearance of all image pixels describing the object.
By synthesizing the expected appearance template, a high registration accuracy
can be achieved. However, such representation generalizes poorly when large
amounts of variability are involved, such as the human face under variations of
identity, expression, pose, lighting or non-rigid motion, due to the huge dimen-
sional representation of the appearance (learn from limited data).

Recently, discriminative-based methods, such as the Constrained Local Model
(CLM) [4][5][6][7][8], have been proposed. These approaches can improve the
model’s representation power, as it accounts only for local correlations between
pixel values. In this paradigm, both shape and appearance are combined by
constraining an ensemble of local feature detectors to lie within the subspace
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Fig. 1. Examples of the DBASM global alignment on LFW dataset [3].

spanned by the PDM. The CLM implements a two step fitting strategy: a local
search and global optimization. The first step performs an exhaustive local search
using a feature detector, obtaining response maps for each landmark. Then, the
global optimization finds the PDM parameters that jointly maximize the detec-
tion responses. Each landmark detector generates a likelihood map by applying
local detectors to the neighborhood regions around the current estimate.

Some of the most popular optimization strategies propose to replace the
true response maps by simple parametric forms (Weighted Peak Responses [4],
Gaussians Responses [8], Mixture of Gaussians [9]) and perform the global opti-
mization over these forms instead of the original response maps. The detectors
are learned from training images of each of the object’s landmarks. However,
due to their small local support and large appearance variation, they can suf-
fer from detection ambiguities. In [10] the authors attempt to deal with these
ambiguities by nonparametrically approximating the response maps using the
mean-shift algorithm, constrained to the PDM subspace (Subspace Constrained
Mean-Shift - SCMS). However, in the SCMS global optimization the PDM pa-
rameters update is essentially a regularized projection of the mean-shift vector
for each landmark onto the subspace of plausible shape variations. Since a least
squares projection is used, the optimization is very sensitive to outliers (when
the mean-shift output is very far away from the correct landmark location). The
patch responses can be embedded into a Bayesian inference problem, where the
posterior distribution of the global warp can be inferred in a maximum a poste-
riori (MAP) sense. The Bayesian paradigm provides an effective fitting strategy,
since it combines in the same framework both the shape prior (the PDM) and
multiple sets of patch alignment classifiers to further improve the accuracy.

1.1 Main Contributions

1. We present a novel and efficient Bayesian formulation to solve the MAP
global alignment problem (Discriminative Bayesian Active Shape Model -
DBASM). The main advantage of the proposed DBASM with respect to the
previous Bayesian formulations is that we model the covariance of the latent
variables, which represents the confidence in the current parameters estimate
i.e. DBASM explicitly maintains 2nd order statistics of the shape and pose
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parameters, instead of assuming them to be constant. We show that the
posterior distribution of the global warp can be efficiently inferred using a
Linear Dynamical System (LDS) taking this information into account.

2. We aim to prove that solving the PDM using a Bayesian paradigm offers
superior performance versus the traditional first order forwards additive up-
date [4][8][9][10]. We confirm experimentally that the MAP parameter up-
date outperforms the standard optimization strategies, based on maximum
likelihood solutions (least squares). See figures 5 and 6.

3. We present a comparison between several face parts descriptors, including
the recently proposed Minimum Output Sum of Squared Error (MOSSE)
filters [11]. The MOSSE maps aligned training patch examples to a desired
output, producing correlation filters that are notably stable. These filters
exhibit a high invariance to illumination, due to their null DC component.
Results show that the MOSSE outperforms the others detectors, being par-
ticularly well-suited to the task of generic face alignment (figures 2 and 4).

The remaining paper is organized as follows: Section 2 briefly explains the
shape model PDM. Section 3 presents our Bayesian global optimization ap-
proach. Experimental results comparing the fitting performances of several local
detectors (including the MOSSE filters) and several global optimizations strate-
gies are shown in Section 4. Finally, Section 5 provides some conclusions.

2 The Shape Model - PDM

The shape s of a Point Distribution Model (PDM) is represented by the 2D vertex
locations of a mesh, with a 2v dimensional vector s = (x1, y1, . . . , xv, yv)

T . The
traditional way of building a PDM requires a set of shape annotated images that
are previously aligned in scale, rotation and translation by Procrustes Analysis.
Applying a PCA to a set of aligned training examples, the shape can be expressed
by the linear parametric model

s = s0 + Φbs + Ψq (1)

where s0 is the mean shape (also referred to as the base mesh), Φ is the shape
subspace matrix holding n eigenvectors (retaining a user defined variance, e.g.
95%), bs is a vector of shape parameters, q contains the similarity pose pa-
rameters and Ψ is a matrix holding four special eigenvectors [2] that linearly
model the 2D pose. From the probabilistic point of view, bs follows a multivari-
ate Gaussian distribution bs ∝ N (bs|0, Λ), with Λ = diag(λ1, . . . , λn), where λi
denotes the PCA eigenvalue of the ith mode of deformation.

3 Global PDM Optimization - DBASM

This section describes the proposed global optimization method (Discriminative
Bayesian Active Shape Models -DBASM). The deformable model fitting goal
(that follows the parametric form eq.1) is formulated as a global shape alignment
problem in a maximum a posteriori (MAP) sense.
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(a) Example image and search regions.
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Fig. 2. The DBASM combines a Point Distribution Model (PDM) and a set of discrim-
inant local detectors, one for each landmark. a) Image with the current mesh showing
the search region for some landmarks. b) The local detector (the MOSSE filter [11]
itself). c) Response maps for the correspondent highlighted landmarks. The DBASM
global optimization jointly combines all landmark response maps, in a MAP sense,
using 2nd order statistics of the shape and pose parameters.

3.1 MAP Formulation

Given a 2v vector of observed positions y, the goal is to find the optimal set of
parameters b∗s that maximizes the posterior probability of being its true position.
Using a Bayesian approach, the optimal shape parameters are defined as

b∗s = arg max
bs

p(bs|y) ∝ p(y|bs)p(bs) (2)

where y is the observed shape, p(y|bs) is the likelihood term and p(bs) is a
prior distribution over all possible configurations. The section 3.2 describe some
possible strategies to set the observed shape vector y.

The complexity of the problem, in eq.2, can be reduced by making some
simple assumptions. Firstly, conditional independence between landmarks can
be assumed simply by sampling each landmark independently. Secondly, it can
also be considered that we have an approximate solution to the true parameters
(b ≈ b∗s). Combining these approximations, the eq.2 can be rewritten as

p(b|y) ∝

(
v∏
i=1

p(yi|b)

)
p(b|b∗k−1) (3)

where yi is the ith landmark coordinates and b∗k−1 is the previous optimal esti-
mate of b.
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The likelihood term, including the PDM model (in eq.1), becomes the
following convex energy function:

p(y|b) ∝ exp

−1
2

(y− (s0︸ ︷︷ ︸
∆y

+Φb))TΣ−1
y (y− (s0 + Φb))

 (4)

where ∆y is the difference between the observed and the mean shape and Σy

is the uncertainty of the spatial localization of the landmarks (2v × 2v block
diagonal covariance matrix). From the probabilistic point of view, the likelihood
term follows a Gaussian distribution given by

p(y|b) ∝ N (∆y|Φb, Σy). (5)

The prior term, according to the approximations taken, can be written as

p(bk|bk−1) ∝ N (bk|µb, Σb) (6)

where µb = bk−1 and Σb = Λ + Ξ. The Λ is the shape parameters covariance
(diagonal matrix with PCA eigenvalues) and Ξ is an additive dynamic noise
covariance (that can be estimated offline).

An important property of Bayesian inference is that, when the likelihood and
the prior are Gaussian distributions the posterior is also Gaussian [12]. Following
the Bayes’ theorem for Gaussian variables, and considering p(bk|bk−1) a prior
Gaussian distribution for bk and p(y|bk) a likelihood Gaussian distribution, the
posterior distribution takes the form ([12], pag 90).

p(bk|y) ∝ N (bk|µ,Σ) (7)

Σ = (Σ−1
b + ΦTΣ−1

y Φ)−1 (8)

µ = Σ(ΦTΣ−1
y y +Σ−1

b µb). (9)

Note that, the conditional distribution p(y|bk) has a mean that is a linear func-
tion of bk and a covariance which is independent of bk. This could be a possible
solution to the global alignment optimization [13]. However, in practice, this is a
naive approach because it does not model the covariance of the latent variables,
bk, which is crucial to account for the confidence in the current parameters
estimate.

The MAP global alignment solution can be inferred by a Linear Dynamical
System (LDS). The LDS is the ideal technique to model the covariance of the
latent variables and solve the naive approach limitations. The LDS is a simple
approach that recursively computes the posterior probability using incoming
Gaussian measurements and a linear model process, taking into account all the
available measures (same requirements as our alignment problem). The state and
measurement equations of the LDS, according to the PDM alignment problem,
can be written as

bk = Abk−1 + q (10)
∆y = Φbk + r (11)
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where the current shape parameters bk are the hidden state vector, q ∼ N (0, Σb)
is the additive dynamic noise, ∆y is the observed shape deviation that are re-
lated to the shape parameters by the linear relation Φ (eq.1) and r is the additive
measurement noise following r ∼ N (0, Σy). The previous shape estimated pa-
rameters bk−1 are connected to the current parameters bk by an identity relation
plus noise (A = In).

We highlight that the final step of the LDS derivation consists of a Bayesian
inference step [12] (using the Bayes’ theorem for Gaussian variables), where the
likelihood term is given by eq.5 and the prior follows N (AµF

k−1,Pk−1) where

Pk−1 = (Λ+Ξ) + AΣF
k−1A

T . (12)

From these equations we can see that the LDS keep up to date the uncertainty
on the current estimate of the shape parameters. The LDS recursively computes
the mean and covariance of the posterior distributions of the form

p(bk|yk, . . . ,y0) ∝ N (bk|µF
k ,Σ

F
k ) (13)

with the posterior mean µF
k and covariance ΣF

k given by the LDS formulas:

K = Pk−1Φ
T (ΦPk−1Φ

T +Σy)−1 (14)

µF
k = AµF

k−1 + K(y− ΦAµF
k−1), ΣF

k = (In −KΦ)Pk−1. (15)

Finally, the optimal shape parameters that maximize eq.2 are given by µF
k .

In order to estimate the pose parameters, we also apply the LDS paradigm. The
difference is that, in this case, the state vector is given by q and the obser-
vation matrix is Ψ . The algorithm 1 summarizes the proposed DBASM global
optimization.

3.2 Local Optimization Strategies

This section briefly describes several local strategies to represent the true re-
sponse maps by a probabilistic model (parametric and nonparametric). We also
describe how to extract from each probabilistic model the likelihood term of the
MAP formulation (observed shape y and the uncertainty covariance Σy).

Let zi = (xi, yi) be a candidate to the ith landmark, being yci the current
landmark estimate, Ωyc

i
a L×L patch centered at yci , ai a binary variable that

denotes correct landmark alignment, Di the score of a generic local detector and
I the target image up to a similarity transformation (typically the detector is
designed to operate at a given scale). The probability of pixel zi to be aligned
is given by

pi(zi) = p(ai = 1|I(zi),Di) =
1

1 + e−aiDi(I(zi))
(16)

where the detector score is converted to probability using the logistic function.
The parameters yi and Σyi

can be found by minimizing the expression [13]

arg min
yi,Σyi

∑
zi∈Ωyc

i

pi(zi)N (zi|yi, Σyi
) (17)
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where several strategies can be used to do this optimization.
Weighted Peak Response (WPR): The simplest solution is to take the

spatial location where the response map has a higher score [4]. The new landmark
position is then weighted by a factor that reflects the peak confidence. Formally,
the WPR solution is given by

yWPR
i = max

zi∈Ωyc
i

(pi(zi)) , ΣWPR
yi

= diag(pi(yWPR
i )−1) (18)

that is equivalent to approximate each response map by an isotropic Gaussian
N (zi|yWPR

i , ΣWPR
yi

).
Gaussian Response (GR): The previous approach was extended in [8] to

approximate the response maps by a full Gaussian distribution N (zi|yGR
i , ΣGR

yi
).

This is equivalent to fit a Gaussian density to weighted data.
Let d =

∑
zi∈Ωyc

i

pi(zi), the solution is given by

yGR
i =

1
d

∑
zi∈Ωyc

i

pi(zi)zi, ΣGR
yi

=
1

d− 1

∑
zi∈Ωyc

i

pi(zi)(zi − yGR
i )(zi − yGR

i )T .

(19)
Kernel Density Estimator (KDE): The response maps can also be ap-

proximated by a nonparametric representation, namely using a Kernel Density
Estimator (KDE) (isotropic Gaussian kernel with a bandwidth σ2

h). Maximiz-
ing over the KDE is typically performed by using the well-known mean-shift
algorithm [10]. The kernel bandwidth σ2

h is a free parameter that exhibits a
strong influence on the resulting estimate. This problem can be addressed by
an annealing bandwidth schedule [14]. It can be shown that there exists a σ2

h

value such that the KDE is unimodal. As σ2
h is reduced, the modes divide and

the smoothness of KDE decreases, guiding the optimization towards the true
objective. Formally, the ith annealed mean-shift landmark update is given by

yKDE(τ+1)
i ←

∑
zi∈Ωyc

i

zi pi(zi) N (yKDE(τ)
i |zi, σ2

hj
I2)∑

zi∈Ωyc
i

pi(zi) N (yKDE(τ)
i |zi, σ2

hj
I2)

(20)

where I2 is a two-dimensional identity matrix and σ2
hj

represents the decreasing
annealed bandwidth. The KDE uncertainty error consists on computing the
weighted covariance using the mean-shift results as mean

ΣKDE
yi

=
1

d− 1

∑
zi∈Ωyc

i

pi(zi)(zi − yKDE
i )(zi − yKDE

i )T . (21)

Figure 3 highlights the differences between the three local optimization strate-
gies (WPR, GR and KDE). Notice that DBASM deals with mild occlusions.
When a landmark is under occlusion typically the response map is multi-modal.
If a KDE local strategy is used (DBASM-KDE), the landmark update will se-
lect the nearest mode (eq.20) and the covariance of that landmark (eq.21) will
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Fig. 3. Qualitative comparison between the three local optimization strategies. The
WPR simply chooses the maximum detector response. GR approximates the response
map by a full Gaussian distribution. KDE uses the mean-shift algorithm to move to
the nearest mode of the density. Its uncertainty is centered at the found mode. The two
examples in the right show patches under occlusion (typically multimodal responses).

be inherently large, modeling a high localization uncertainty. Then, the global
optimization stage jointly combines all uncertainties (MAP sense) handling oc-
clusions. Similarly, to deal with large occlusions, a minor tweak is required. One
can simply set a large covariance for the occluded landmarks.

Precompute:1
The parametric models (s0, Φ, Ψ) and the MOSSE filters in the Fourier domain H∗i2
Initial estimate of the shape/pose parameters and covariances (b0,P0) / (q0,Q0).3
repeat4

Warp image I to the base mesh using the current pose parameters q [0.5ms]5
Generate current shape s = s0 + Φb + Ψq6
for Landmark i = 1 to v do7

Evaluate the detectors response (MOSSE correlation F−1{F{(I)} � H∗i }) [3ms]8
Find yi and Σyi

using a local strategy (sec. 3.2),e.g. if using KDE, eqs.20 and 21, respectively.9

end10
Update the pose parameters and their covariance [0.1ms]:11

Qk−1 = (Λq + Ξq + Qk−1), Kq = Qk−1Ψ
T (ΨQk−1Ψ

T +Σy)
−1

qk = qk−1 + Kq(y− Ψqk−1), Qk = (I4 − KqΨ)Qk−112

Update the shape parameters (with pose correction) and their covariance [0.2ms]:13

Pk−1 = (Λ+ Ξ + Pk−1), Kb = Pk−1Φ
T (ΦPk−1Φ

T +Σy)
−1

bk = bk−1 + Kb(y− Φbk−1 − Ψqk), Pk = (In − KbΦ)Pk−114

until ||bk − bk−1|| ≤ ε or maximum number of iterations reached ;15

Algorithm 1: Overview of the DBASM method. The performance of DBASM is comparable to ASM
[4], CQF [8] or SCMS [10] depending of the local strategy DBASM-WPR, DBASM-GR or DBASM-KDE,
respectively. It achieves near real-time performance. The bottleneck is always obtaining the response maps
(3ms x number landmarks), although it can be done in parallel.

3.3 Hierarchical Search (DBASM-KDE-H)

A slightly different annealing approach is proposed in this section. Instead of
using the mean-shift with an iterative kernel bandwidth relaxation and then
optimize using the LDS MAP formulation, a hierarchical search can be used
instead. This solution is composed by multiple levels of fixed kernel bandwidth
mean-shifts followed by LDS optimization steps. The annealing is performed
between hierarchical levels.
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4 Evaluation Results

The experiments in this paper were designed to evaluate the local detector
(MOSSE [11]) and the new Bayesian global optimization (DBASM). All the
experiments were conducted on several databases with publicly available ground
truth. (1) The IMM [15] database that consists on 240 annotated images of
40 different human faces presenting different head pose, illumination, and facial
expression (58 landmarks). (2) The BioID [16] dataset contains 1521 images,
each showing a near frontal view of a face of one of 23 different subjects (20
landmarks). (3) The XM2VTS [17] database has 2360 images frontal faces of
295 subjects (68 landmarks). (4) The tracking performance is evaluated on the
FGNet Talking Face (TF) [18] video sequence that holds 5000 frames of video of
an individual engaged in a conversation (68 landmarks). (5) Finally, a qualita-
tive evaluation was also performed using the Labeled Faces in the Wild (LFW)
[3] database that contains images taken under variability in pose, lighting, focus,
facial expression, occlusions, different backgrounds, etc.

4.1 Local Detector - MOSSE filter

The Minimum Output Sum of Squared Error (MOSSE) filter, recently proposed
in [11], finds the optimal filter that minimizes the Sum of Squared Differences
(SSD) to a desired correlation output. Briefly, correlation can be computed in the
frequency domain as the element-wise multiplication of the 2D Fourier transform
(F) of an input image I with a filter H, also defined in the Fourier domain as
G = F{I} �H∗, where the � symbol represents the Hadamard product and ∗
is the complex conjugate. The correlation value is given by F−1{G}, the inverse
Fourier transform of G.

MOSSE finds the filter H, in the Fourier domain, that minimizes the SSD
between the actual output of the correlation and the desired output of the cor-
relation, across a set of N training images, minH∗

∑N
j=1 (F{Ij} �H∗ −Gj)

2,
where G is obtained by sampling a 2D Gaussian uniformly. Solving for the filter
H∗ yields the closed form solution

H∗ =

∑N
j=1 Gj �F{Ij}∗∑N

j=1 F{Ij} � F{Ij}∗
. (22)

The MOSSE filter maps all aligned training patch examples to an output,
G, centered at the feature location, producing notably stable correlation filters.

At the training stage, each patch example is normalized to have zero mean
and a unitary norm, and is multiplied by a cosine window (required to solve the
Fourier Transform periodicity problem). This also has the benefit of emphasizing
the target center. These filters have a high invariance to illumination changes,
due to their null DC component and revealed to be highly suitable to the task
of generic face alignment.
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4.2 Evaluating Local Detectors

Three landmark expert detectors were evaluated. The most used detector [8][10]
is based on a linear classifier built from aligned (positive) and misaligned (neg-
ative) grey level patch examples. The score of the ith linear detector is given
by

Dlinear
i (I(yi)) = wT

i I(yi) + bi, (23)

with wi being the linear weight, bi the bias constant and I(yi) a vectorized patch
of pixel values sampled at yi. Similarly, a quadratic classifier can be used

Dquadratic
i (I(yi)) = I(yi)

TQiI(yi) + LTi I(yi) + bi (24)

with Qi and Li being the quadratic and linear terms, respectively. Finally, the
MOSSE filter correlation gives

DMOSSE
i (I(yi)) = F−1{F{I(yi)} �H∗i } (25)

where H∗i is the MOSSE filter from eq.22. Both linear and quadratic classifiers
(linear-SVM [19] and Quadratic Discriminant Analysis) were trained using im-
ages from the IMM [15] dataset with 144 negative patch examples (for each
landmark and each image) being misaligned up to 12 pixels in x and y transla-
tion.

The MOSSE filters were built using aligned patch samples with size 128×128.
A power of two patch size is used to speed up the FFT computation, however
only a 40× 40 subwindow of the output is considered. During the MOSSE filter
building, each training patch requires a normalization step. Each example is
normalized to have a zero mean and a unitary norm and is multiplied by a
cosine window. The desired output G (eq.22) is set to be a 2D Gaussian function
centered at the landmark with 3 pixels of standard deviation.

The global optimization method that best evaluates the detectors perfor-
mance is the approach that relies the most on the output of the detector, i.e.,
the Active Shape Models (ASM) [4]. The results are present in the form of fitting
performance curves, which were also adopted by [20][5][21][8][10]. These curves
show the percentage of faces that achieved a given Root Mean Square (RMS)
error amount. The figure 4 shows fitting performance curves that compare the
three kinds of detectors using the ASM [4] optimization1 and the proposed global
DBASM technique using a Weighted Peak Response strategy (DBASM-WPR).
From the results we can highlight some conclusions: (1) the MOSSE filter always
outperforms the others, specially when using simpler optimization methods; (2)
the DBASM optimization improves the results even with simple detectors; (3)
maximum performance can be achieved by using the MOSSE detector and the
DBASM optimization.

The use of MOSSE filters is an interesting solution that works well in practice
and is particularly suited to detection of facial parts. However we highlight that
is not crucial for the performance of our Bayesian formulation. DBASM still
improves performance when using standard detectors.
1 The ASM [4], CQF [8] and SCMS [10] use as local optimizations the WPR, GR and

KDE strategies, respectively.
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(a) IMM [15] database
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(b) XM2VTS [17] database
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(c) BioID [16] database

Fig. 4. Fitting performance curves comparing different detectors (Linear, Quadratic
and MOSSE) on the IMM, XM2VTS and BioID database, respectively. The AVG means
the average location provided by the initial estimate (Adaboost [22] face detector).

4.3 Evaluating Global Optimization Strategies

In this section the DBASM optimization strategy is evaluated w.r.t. state-of-the-
art global alignment solutions. The proposed DBASM and DBASM-H methods
are compared with (1) ASM [4], (2) CQF [8], (3) BCLM [13], (4) GMM [9] using 3
Gaussians (GMM3) and (5) SCMS [10]. Note that the DBASM can be used with
different local strategies to approximate the response maps (e.g. WPR, GR or
KDE as described in section 3.2). In these experiments we fixed the local strategy
as a KDE (BCLM-KDE, SCMS-KDE, DBASM-KDE) in order to compare the
global optimization approaches. The results from ASM, CQF and GMM3 are
provided as a baseline. The same bandwidth schedule of σ2

h = (15, 10, 5, 2) is
always used for KDE. All the experiments, in this section, use MOSSE filters
as local detectors (using the same settings as in section 4.2) built with only
training images from the IMM [15] set and tested on the remaining datasets2. In
all cases, the nonrigid parameters start from zero, the similarity parameters were
initialized by a face detection [22] and the model was fitted until convergence
(limited to a maximum of 20 iterations).

Figure 5 shows the fitting performance curves for the IMM, XM2VTS and
BioID datasets, respectively. The CQF performs better than GMM3, mainly be-
cause GMM is very prone to local optimums due to its multimodal nature (it
is worth mentioning that given a good initial estimate GMM offers a superior
fitting quality). The main drawback of CQF is the limited accuracy due to the
over-smoothness of the response map (see figure 3). The BCLM is slightly bet-
ter than SCMS due to its improved parameter update (MAP update vs first
order forwards additive). The SCMS improves the results when compared to
CQF due to the high accuracy provided by the mean-shift. In some cases, the
ASM achieves a comparable performance to the SCMS; the reason for this relies
on the excellent performance of the MOSSE detector. The proposed Bayesian
global optimization (DBASM) outperforms all previous methods, by modeling

2 The results on the IMM dataset use training images collected at our institution.
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(a) IMM [15] database

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

RMS Error

P
ro

po
rt

io
n 

of
 Im

ag
es

XM2VTS Fitting Performance

 

 

AVG
ASM
CQF
GMM3
SCMS
BCLM−KDE
DBASM−KDE
DBASM−KDE−H

(b) XM2VTS [17] database
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(c) BioID [16] database

Reference 7.5 RMS IMM (240 images) XM2VTS (2360 images) BioID (1521 images)
ASM 50.0 30.7 70.0
DBASM-WPR∗ (our method) 56.7 (+6.7) 45.1 (+14.4) 75.4 (+5.4)
CQF 45.4 10.9 47.0
GMM3 40.8 (-4.6) 10.4 (-0.5) 51.7 (+4.7)
BCLM-GR∗ 48.3 (+2.9) 15.9 (+5.0) 54.2 (+7.2)
DBASM-GR∗ (our method) 50.4 (+5.0) 18.0 (+7.1) 62.2 (+15.2)
SCMS-KDE 54.6 35.7 69.0
BCLM-KDE 57.1 (+2.5) 43.4 (+7.7) 71.9 (+2.9)
DBASM-KDE (our method) 64.6 (+10.0) 54.5 (+18.8) 76.5 (+7.5)
DBASM-KDE-H (our method) 64.6 (+10.0) 53.5 (+17.8) 76.5 (+7.5)

Fig. 5. Fitting performance curves. The table shows quantitative values taken by set-
ting a fixed RMS error amount (7.5 pixels - vertical line in the graphics). Each table
entry show how many percentage of images converge with less or equal RMS error than
the reference. The results show that our proposed methods outperform all the other
(using all the local strategies WPR, GR and KDE). Top images show DBASM-KDE
fitting examples from each database.

the covariance of the latent variables which represent the confidence in the cur-
rent parameters estimate (see figure 5). The results show that the hierarchical
annealing version of DBASM-KDE (DBASM-KDE-H) performs slightly better,
but at the cost of more iterations. Tracking performance is also tested on the
FGNET Talking Face video sequence (figure 6). Each frame is fitted using as ini-
tial estimate the previously estimated shape and pose parameters. The relative
performance between the global optimization approaches is similar to the pre-
vious experiments, where the DBASM technique yields the best performance.
Qualitative evaluation is also performed using the Labeled Faces in the Wild
(LFW) database [3], where some results can be seen on figure 7.

5 Conclusions

An efficient solution to align facial parts in unseen images is described in this
work. We present a novel Bayesian paradigm (DBASM) to solve the global align-
ment problem, in a MAP sense, showing that the posterior distribution of the
global warp can be efficiently inferred using a Linear Dynamical System (LDS).
The main advantage w.r.t. previous Bayesian formulations is that DBASM model
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Fig. 6. Tracking performance evaluation of several fitting algorithms on the FGNET
Talking Face [18] sequence. The values on legend box are the mean and standard
deviation RMS errors, respectively. Top images show DBASM-KDE fitting examples.

the covariance of the latent variables which represent the confidence in the cur-
rent parameters estimate. Several performance evaluation results are presented,
comparing both local detectors and global optimization strategies. Evaluating
the local detectors show that the MOSSE correlation filters offer a superior
performance in landmark local detection. Global optimizations evaluation were
performed in several image publicly available datasets, namely, the IMM, the
XM2VTS, the BioID, and the LFW. Tracking performance is also evaluated on
the FGNET Talking Face video sequence. This new Bayesian paradigm is shown
to significantly outperform other state-of-the-art fitting solutions.
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