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Abstract

A framework for automatic human head pose estimation
from single view images is proposed. The 6DOF head pose
was estimated using Pose from Orthography and Scaling
with ITerations (POSIT) where a statistical anthropometric
3D rigid model is used as an approximation of the human
head, combined with Active Appearance Models (AAM) for
facial features extraction and tracking. The overall perfor-
mance of the proposed solution was evaluated comparing
the results with a ground-truth data obtained by a pose pla-
nar approach. The results show that orientations and head
location were, on average, found within 2◦ or 1cm error
standard deviations respectively.

1. Introduction
For Human Computer Interface (HCI) applications,

knowledge about face pose, i .e. position and oriention, is
an important issue, enabling build smart interactive systems
such as: face recognition systems, teleconference, knowl-
edge about gaze direction, video compression, etc.
The presented paper deals with the problem of estimate

the tridimensional orientation and position of faces (6DOF)
using a non-intrusive system. A statistical anthropometric
3D rigid model is used in conjunction with with Pose from
Orthography and Scaling with ITerations (POSIT) [2] algo-
rithm for pose estimation. Since POSIT estimates pose by a
set of 3Dmodel points and 2D image projections correspon-
dences, a way to extract facial characteristics and perform
the associations is required.
For that purpose, a model-based approach for the in-

terpretation of face images, Active Appearance Models
(AAM) [9] its used. The AAM fitting procedure provides
an effective way to locate facial features on 2D images [1].
Given a sufficient representative training set, AAM has the
key advantage of fit an unseen person, modeling non-rigid
deformations fully describing facial characteristics.
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Monocular head pose estimation is achieved combining
the tracking of facial features with POSIT, using for that
purpose a 3D anthropometric head model of human head.
Due to the AAM landmark-based nature, the 3D model /
2D correspondences registration problem is easily solved.
This paper is organised as follows: section 2 gives a in-

troduction to the standard AAM theory and section 3 de-
scribes the POSIT algorithm. Section 4 explains the com-
bined methodology used to perform human head pose esti-
mation. Experimental results are presented in section 5 and
section 6 describes an Augmented Reality (AR) application
where 3D virtual glasses were inserted on the subjects face
using the pose estimation approach described. Section 7
discusses the results.

2. Active Appearance Models
Active Appearance Models (AAM) [9] is a statistical

based template matching method, where the variability of
shape and texture is captured from a representative training
set. Principal Components Analysis (PCA) on shape and
texture data allow building a parametrized face model that
fully describe with photorealistic quality the trained faces
as well as unseen. For futher details refer to [8].

2.1. Shape Model

The shape is defined as the quality of a configuration
of points which is invariant under Euclidian Similarity
transformations [8]. This landmark points are selected to
match borders, vertexes, profile points, corners or other
features that describe the shape. The representation used
for a single n-point shape is a 2n vector given by x =
(x1, y1, x2, y2, . . . , xn−1, yn−1, xn, yn)

T . With N shape
annotations, follows a statistical analysis where the shapes
are previously aligned to a common mean shape using a
Generalised Procrustes Analysis (GPA) removing location,
scale and rotation effects. Optionally, we could project the
shape distribution into the tangent plane, but omitting this
projection leads to very small changes [7]. Applying a Prin-
cipal Components Analysis (PCA), we can model the statis-

978-1-4244-2154-1/08/$25.00 c°2008 IEEE



tical variation with

x = x+Φsbs (1)

where new shapes x, are synthesised by deforming the mean
shape, x, using a weighted linear combination of eigenvec-
tors of the covariance matrix, Φs. bs is a vector of shape pa-
rameters which represents the weights. Φs holds the ts most
important eigenvectors that explain a user defined variance.

2.2. Texture Model
For m pixels sampled, the texture is represented by the

vector g = [g1, g2, . . . , gm−1, gm]T . Building a statistical
texture model, requires warping each training image so that
the control points match those of the mean shape. In order
to prevent holes, the texture mapping is performed using the
reverse map with bilinear interpolation correction. The tex-
ture mapping is performed, using a piece-wise affine warp,
i .e. partitioning the convex hull of the mean shape by a set
of triangles using the Delaunay triangulation. Each pixel
inside a triangle is mapped into the correspondent triangle
in the mean shape using barycentric coordinates, see figure
1. This procedure removes differences in texture due shape

(a) Original (b) Warped texture

Figure 1. Texture mapping example.

changes, establishing a common texture reference frame.
The effects of differences in illumination are reduced per-
forming a histogram equalization independently in each of
the three color channels [3]. A texture model can be ob-
tained by applying a low-memory PCA on the normalized
textures,

g = g+Φgbg (2)

where g is the synthesized texture, g is the mean texture, Φg
contains the tg highest covariance texture eigenvectors and
bg is a vector of texture parameters.

2.3. Combined Model
The shape and texture from any training example is de-

scribed by the parameters bs and bg. To remove cor-
relations between shape and texture model parameters
a third PCA is performed to the following data, b =µ
Wsbs
bg

¶
=

µ
WsΦ

T
s (x− x)

ΦTg (g− g)
¶
, where Ws is a diag-

onal matrix of weights that measures the unit difference be-
tween shape and texture parameters. A simple estimate for

Ws is to weight uniformly with ratio, r, of the total vari-
ance in texture and shape, i .e. r =

P
i λgi/

P
i λsi, where

λs and λg are shape and texture eigenvalues, respectively.
Then Ws = rI [6]. As a result, using again a PCA, Φc
holds the tc highest eigenvectors, and we obtain the com-
bined model, b = Φcc. Due the linear nature for the model,
it is possible to express shape, x, and texture, g, using the
combined model by

x = x+ΦsW−1s Φc,sc (3)

g = g+ΦgΦc,gc (4)

where Φc =
µ
Φcs
Φcg

¶
and c is a vector of appearance con-

trolling both shape and texture. An AAM instance is built
by generating the texture in the normalized frame using eq.
4 and warping-it to the control points given by eq. 3.

2.4. Model Training

An AAM search seek to minimize the texture difference
between a model instance and the beneath part of the tar-
get image that it covers. It can be treated as an optimiza-
tion problem where argmin|c |Iimage − Imodel|2 updating
the appearance parameters c and pose. This nonlinear prob-
lem can be solved by learning offline how the model be-
haves due parameters change and the correspondent rela-
tions between the texture residual [9]. Additionally, similar-
ity parameters are considered to represent the 2D pose, t =
(sx, sy, tx, ty)

T . To maintain linearity and for zero param-
eters value represent no change in pose, these parameters
are redefined to sx = (s cos(θ) − 1), sy = s sin(θ) which
represents a combined scale, s, and rotation, θ, while the
remaining parameters tx and ty are translations. The com-
plete model parameters include also pose, p = (cT |tT )T .
The initial AAM formulation uses the Multivariate Linear
Regression (MLR) approach over the set of training texture
residuals, δg, and the correspondent model perturbations,
δp. Assuming that the correlation of texture difference and
model parameters update is locally linear, the goal is to get
the optimal prediction matrix, in the least square sense, sat-
isfying the linear relation, δp = Rδg. Solving it involves
perform a set experiences, building huge residuals matri-
ces and perform MLR on these. It was suggested [9] that
appearance parameters, ci, should be perturbed in about
±0.25σi and ±0.5σi. Scale around 90%, 110%, rotation
±5◦, ±10◦ and translations ±5%, ±10%, all with respect
to the reference mean frame.
The MLR was later replaced by a simpler approach [9],

computing the gradient matrix,
∂r
∂p
, requiring much less

memory and computational effort. The texture residual vec-
tor is defined as r(p) = gimage(p) − gmodel(p), where the
goal is to find the optimal update at model parameters to



minimize |r(p)|2 = rT r. Expanding the texture residuals,
r(p), in Taylor series around p and holding the first order

terms, r(p + ∂p) ≈ r(p) + J∂p where J = ∂r(p)
∂p

is the

Jacobian matrix. Differentiating w .r .t p and equalling to
zero leads to ∂p = −(JT J)−1JT r. Normally steepest de-
scent approaches require the Jacobian evaluation for each
iteration. Since the AAM framework works on a normal-
ize reference frame, the Jacobian matrix can be considered
fixed over the training set and can be estimated once on the
training phase.

2.5. Iterative Model Refinement
The model parameters are updated over texture residuals

by,
pk = pk−1 − α(JT J)−1JT δg (5)

which is a damped Gauss-Newtowmodification on Steepest
Descent methods where J is the Jacobian matrix and α is
the damping factor. Starting with a given estimate for the
model, p0, and a rough estimate of the location of the face,
an AAM model can be fitted following the algorithm 1. As
better is the initial estimate minor the risk of being trap in
a local minimum, in this work AdaBoost [10] method its
used. Figure 2 shows a successful AAM search.

Algorithm 1 Iterative Model Refinement.
1: whileMaxIterations reached or no improvement is made to errorE0 do
2: Sample image at (x, y)→ gimage

3: Build an AAM instance AAM(p)→ (xmodel, ymodel, gmodel)
4: Compute residual δg = gimage − gmodel

5: Evaluate ErrorE0 = |δg|2 = δgδgT

6: Predict model displacements δp = (JT J)−1JT δg
7: Set α = 1
8: Update Model Parameters pk = pk−1 − αδp
9: Update sample control points from (xmodel, ymodel) with similarity pose

correction→ (xk, yk)
10: Sample image at (xk, yk)→ gimagek

11: Compute residual δgk = gimagek
− gmodel

12: Evaluate ErrorEk = δgkδg
T
k

13: ifEk < E0 then
14: Accept model parametes, pk
15: Accept control points (x, y) = (xk, yk)
16: Update current errorE0 = Ek
17: else
18: Try α = 1.5, α = 0.5, α = 0.25, α = 0.125
19: end if
20: end while

3. POSIT
Pose from Orthography and Scaling with ITerations

(POSIT) [2] is a fast and accurate iterative algorithm for
finding the 6DOF pose (orientation and translation) of a 3D
model or scene with respect to a camera given a set of 2D
image and 3D object points correspondences.
Figure 3 shows the pinhole camera model, with its cen-

ter of projection O and image plane at the focal length f
(focal length and image center are assumed to be known).

(a) 1st (b) 2nd (c) 3rd (d) 5th

(e) 8th (f) 10th (g) Final (h) Original

Figure 2. Iterative model refinement.

Figure 3. Perspective projectionsmi for model pointsMi.

Unit vectors in the camera frame are i, j and k. A 3Dmodel
with feature points M0,M1 . . . ,Mi, . . . ,Mn is positioned
at camera frustrum. The model coordinate frame is cen-
tered at M0 with unit vectors u, v and w. A Mi point has
known coordinates (Ui, Vi,Wi) in the model frame and un-
known coordinates (Xi, Yi, Zi) in the camera frame. The
projections of Mi are known and called mi, having image
coordinates (xi, yi). The pose matrix P gives the rigid trans-
formation between the model and the camera frame

P =
∙
R T
0 1

¸
=

⎡⎢⎢⎣
iu iv iw Tx
ju jv jw Ty
ku kv kw Tz
0 0 0 1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
P1
P2
P3
P4

⎤⎥⎥⎦ .
(6)

R is the rotation matrix representing the orientation of
the camera frame with respect to the model frame, T =
(Tx, Ty, Tz) is the translation vector from the camera cen-
ter to the model frame center. P1,P2,P3 and P4 are defined
as the pose matrix rows. The rotation matrixR is the matrix
whose rows are the coordinates of the unit vectors (i, j, k)
of camera frame expressed in the model coordinate frame
(M0u,M0v,M0w). R, transforms model coordinates of
vectors M0Mi into coordinates defined in the camera sys-
tem, for instance, the dot productMoMi ·i between the vec-
torM0Mi and the first row of the rotation matrix, provides
the projection of this vector on the unit vector of the camera



system, i .e. the coordinate Xi. To full compute R is only
needed to compute i and j since k = i× j. The translation
vector T is the vector OM0, has coordinates (X0, Y0, Z0)
and is aligned with the vector Omo, so, T = Z0

f Om0. To
compute the model translation form the camera center its
just need Z0 coordinate. Knowing i, j and Z0 the model
pose becomes fully defined.
In a perspective projection model, a 3D point

(Xi, Yi, Zi) is projected in the image by (xi, yi) =
(f Xi

Zi
, f Yi

Zi
). Under weak perspective (or also known scaled

orthographic) projection model which make the assumption
that the depth of an object is small compared to distance of
the object from the camera, and that visible scene points are
close to the optical axis [5], a 3D image point projection
can be written as (xi, yi) = ( f

(1+�)
Xi

Tz
, f
(1+�)

Yi
Tz
).. In scaled

orthographic projection, a vectorM0Mi in the model frame
is projected by an orthographic projection over the plane
z = Tz followed by a perspective projection. The projected
vector in the image plane has a scaling factor equals to f

Z0
.

3.1. Fundamental Equations

Defining the 4D vectors I = f
Tz
P1, J = f

Tz
P2 and know-

ing that (1+�i) = Zi
Tz
, the fundamental equations that relate

the row vectors P1, P2 of the pose matrix, the coordinates of
the model featuresM0Mi and the coordinates (xi, yi) from
the correspondent imagesmi are

M0Mi · I = x0i, M0Mi · J = y0i (7)

with
I = f

Tz
P1, J = f

Tz
P2 (8)

x0i = xi(1 + �i), y0i = yi(1 + �i) (9)

and
�i = P3 ·M0Mi/Tz − 1. (10)

If values are given for �i, eqs. 7 provide a linear system of
equations with unknowns I and J. Unit vectors i and j are
found by normalizing I and J. Tz is obtained by the norms
of either I and J. This approach is called Pose from Orthog-
raphy and Scaling (POS) [2], i .e. finding pose for fixed val-
ues of �i. Once i and j have been computed, more refined
values for �i can be found using again POS. The steps of
this iterative approach called POSIT (POS with Iterations)
[2] are described in algorithm 2.
This method does not require an initial pose estimate, is

very fast (it converges in about four iterations) and robust
with respect to image measurements and camera calibration
errors. The image registration problem, i .e. the image and
model points correspondences will be a straightful problem
as will be shown in the following section.

Algorithm 2 POSIT
1: �i = best guess, or �i = 0 is no pose information available
2: loop
3: Solve for I and J: M0Mi · I = x0i andM0Mi · J = y0i

with x0i = xi(1 + �i) and y0i = yi(1 + �i)

4: Tz =
kIk+kJk

2

5: P1 = Tz
f
I; R1 = (I1, I2, I3)

6: P2 = Tz
f
J; R2 = (J1, J2, J3)

7: R3 = R1
kR1k ×

R2
kR2k

8: P3 = [R3|Tz]
9: �i = P3 ·M0Mi/Tz − 1
10: if �i ≈ �i−1 then
11: P4 = (0, 0, 0, 1)
12: Exit Loop
13: end if
14: end loop

4. Head Pose Estimation
The full automatic framework for head pose extraction

is composed by the two parts previously described. An
AAM model fitting is performed on a subject leading to
shape model landmarks location tracking over time. No-
tice that no temporal filter is used. Since the model fitting,
in certain occasions, fails especially when the movements
of the head were particularly quick and a model is assumed
a failure if any of the appearance parameters don’t follow
−3σi ≤ ci ≤ 3σi. The recovery from lost track is over-
come by reinitialize the appearance-based detection process
each time the model fails.

Figure 4. Anthropometric head used as POSIT 3D model.

The head pose estimation is performed using POSIT. As
3D model an anthropometric 3D rigid model of the human
head its used, see figure 4, since it is the best suitable rigid
body model that describe the 3D face surface of several in-
dividuals. It was acquired by a frontal laser 3D scan of
an physical model, selecting the equivalent 3D points of
the AAM annotation procedure creating a sparse 3D model.
Figure 5 illustrates this procedure.
By tracking features in each video frame combined with

the landmark-based nature of AAMs, the image/3Dmodel
registration problem required for the use of POSIT is easily
solved.



(a) Physical
anthropometric
model

(b) 3D laser scan data (c) Sparse
OpenGL model

Figure 5. a) Physical model used. b) Laser scan data acquired c)
OpenGL built model using the AAM shape features.

5. Experimental Results

The orientation of the estimated pose is represented by
the Roll, Pitch and Yaw (RPY) angles. Figure 6 shows some
examples of pose estimation where the pose is represented
by an animated 3DOF rotational OpenGL model showed at
images top right. This model, used only for display, follows
the subject head rotations, ignoring translational effects.

(a) Pitch variation (b) Yaw variation

(c) Roll variation

Figure 6. Example of pose estimation.

The evaluation of pose estimation accuracy is performed
comparing the pose estimated with the one estimated from
a planar checkerboard [4], used as ground truth reference
values. Figure 7 presents results from the pose estimated
during a video sequence where the subject performs sev-
eral human head movements, ranging from yaw, pitch and
roll head rotations of several degrees (during a total of 140
frames). The experience began by rotating head left, chang-
ing pitch angle, and recovering to frontal position, followed
by a yaw angle, moving head up and down and again re-
covering to frontal position, and finally performing a head
roll rotation. Near the end, after frame 95 the distance from
camera is also changed. The individual parameters (Pitch,

Yaw, Roll and distance) results are presented in figure 7-a,
7-b, 7-c and 7-d respectively. The graphical results show
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(b) Yaw
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(c) Roll
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Figure 7. Angle Results.



some correlations between Pitch and Yaw angles that re-
sult from the differences between the subject and the rigid
3D anthropometric model used. Table 1 displays the errors
average standard deviations of the pose parameters for six
similar performed experiences with different individuals.

Table 1. Errors standard deviations. The angle parametes are in
degrees and the distance in centimeters.

Param. Experiences error std Avg std
Roll 1.92 1.86 1.87 2.15 2.14 1.69 1.95◦
Pitch 1.91 2.46 2.10 2.94 3.23 2.81 2.57◦
Yaw 3.0 1.47 1.48 1.64 1.49 1.14 1.70◦

Distance 1.29 1.72 1.37 1.50 1.30 0.85 1.33cm

The application with AAM model fitting combined with
POSIT for pose estimation runs at 5 frames/s on 1024×768
images using a 3.4 GHz P4 Intel Processor under Linux
OS. AAM is based on a 58 landmark shape points (N =
58), sampling 48178 pixels with color information (m =
48178 × 3 = 144534) by OpenGL hardware-assisted tex-
ture mapping using a Nvidia GeForce 7300 graphics board.

6. Augmented Reality Application
In Augmented Reality (AR) applications pose estimation

is a critical issue. As accurate is the pose estimation, better
is the model backprojection on the target image. Supported
by the head pose estimation approach described, an AR sys-
tem where virtual glasses were inserted on the subjects face
was develop. The monocular pose estimation system ex-
tracts the pose from the head model, animating the rigid 3D
anthropometric model in a OpenGL application with 6DOF.
Mapping the capture image combined with the model ani-
mation, a system where the rigid face model reacts to the
user pose variation is achieved. Including a 3D glasses
model requires drawing-it with respect to the head model.
Similarly, the final AR application consists on animating
only the glasses model. Image 8 shows several views of
the subject with glasses augmentation with different head
poses.

7. Conclusions
This work describes a single view solution to estimate

the head pose of human subjects combining AAM and
POSIT. AAM extracts in each image frame the landmarks
position. These selected features are tracked over time and
used in conjunction with POSIT to estimate head pose.
Since the solution requires the use of a 3D rigid model,
a statistical anthropometric model is selected since is the
most suitable one. One of the major advantage of using
combined AAM plus POSIT is that it solves directly the
correspondences problem, avoiding the use of registration

Figure 8. 3D glasses augmentation.

techniques. An accurate pose estimation is achieved with
average standard deviations about 2 degrees in orientation
and 1 centimeter in distance and subjects exhibiting a nor-
mal expression. The facial expression influence on pose es-
timation will be analyzed on future work.
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