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ABSTRACT

This work addresses the problem of human head pose es-
timation from single view images. 3D rigid head pose is
estimated combining Active Appearance Models(AAM) with
Pose from Orthography and Scaling with ITerations(POSIT).
AAM shape landmarks are tracked over time and used in
POSIT for pose estimation. A statistical anthropometric 3D
model is used as reference. Several experiences were per-
formed comparing our approach with a planar ground truth.
It was achieved average standard deviations about 2 degrees
in orientation and 1 centimeter in distance.

Index Terms— Active Appearance Models, POSIT, An-
thropometric Model

1. INTRODUCTION

In many Human Computer Interface(HCI) applications such
as face recognition systems, teleconference, knowledge about
gaze direction, video compression, etc, an accurate head pose
(position and orientation) estimation is an important issue.

Traditionally there exists two classes of single view head
pose estimation approaches: local methods that estimate the
head pose [1] [2] from correspondences between image fea-
tures and a model in order to extract the position and orienta-
tion of the subject, and global approaches that use the entire
image to estimate head pose by template matching using sev-
eral methods such as Gabor Wavelet [3] or Support Vector
Machines [4]. The principal advantage of these methods is
that they rely on just locating the face in the image, but have
the disadvantage of relatively pour accuracy when compared
to local approaches.

The work presented in this paper deals with the prob-
lem of estimate the tridimensional orientation and position of
faces using a non-intrusive system. Our approach fits on local
methods and is based on consider the human head as a rigid
body. A statistical anthropometric 3D model is used com-
bined with Pose from Orthography and Scaling with ITera-
tions(POSIT) [5] algorithm for pose estimation. Since POSIT
estimates pose by a set of 3D model points and 2D image
projections correspondences, a way to extract facial charac-
teristics is required. AdaBoost [6] is used primarily to locate
the face in image and features like the position of eyes, eye-
brows, mouth, nose, etc, are acquired using an Active Ap-
pearance Model(AAM) [7]. AAM is a statistical template
matching method, can be used to track facial characteristics
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[8] and combined with POSIT solves the model/image regis-
tration problem.

2. ACTIVE APPEARANCE MODELS

AAM is a statistical based segmentation method, where the
variability of shape and texture is captured from a dataset.
Building such a model allows the generation of new instances
with photorealistic quality. In the search phase the model is
adjusted to the target image by minimizing the texture resid-
ual. For futher details refer to [7].

2.1. Shape Model

The shape is defined as the quality of a configuration of points
which is invariant under Euclidian Similarity transformations
[9]. This landmark points are selected to match borders, ver-
texes, profile points, corners or other features that describe the
shape. The representation used for a single n-point shape is
a 2n vector given by x = (x1, y1, x2, y2, . . . , xn, yn)T . With
N shape annotations, follows a statistical analysis where the
shapes are previously aligned to a common mean shape using
a Generalised Procrustes Analysis (GPA) removing location,
scale and rotation effects. Applying a Principal Components
Analysis (PCA), we can model the statistical variation with
x = x + Φsbs, where new shapes x, are synthesised by de-
forming the mean shape, x, using a weighted linear combi-
nation of eigenvectors of the covariance matrix, Φs. bs is a
vector of shape parameters which represents the weights. Φs
holds the ts most important eigenvectors that explain a user
defined variance.

2.2. Texture Model

For m pixels sampled, the texture is represented by the vec-
tor g = [g1, g2, . . . , gm−1, gm]T . Building a statistical texture
model, requires warping each training image so that the con-
trol points match those of the mean shape. In order to prevent
holes, the texture mapping is performed using the reverse map
with bilinear interpolation correction. The texture mapping is
performed, using a piece-wise affine warp, i.e. partitioning
the convex hull of the mean shape by a set of triangles us-
ing the Delaunay triangulation. Each pixel inside a triangle
is mapped into the correspondent triangle in the mean shape
using barycentric coordinates, see figure 1. This procedure re-
moves differences in texture due shape changes, establishing
a common texture reference frame. To reduce the influence
of global lighting variation a scaling, α and offset, β is ap-
plied gnorm = (gi − β.1)/α. After the normalization we get



Fig. 1. Texture mapping example. Left) Original. Right) Warped
texture

gT
norm.1 = 0 and |gnorm| = 1. A texture model can be ob-

tained by applying a low-memory PCA(since m >> N ) on
the normalized textures g = g + Φgbg, where g is the synthe-
sized texture, g is the mean texture, Φg contains the tg highest
covariance texture eigenvectors and bg is a vector of texture
parameters.

2.3. Combined Model

The shape and texture from any training example is described
by the parameters bs and bg. To remove correlations between
shape and texture model parameters a third PCA is performed
to the following data:

b =

„
Wsbs

bg

«
=

„
WsΦ

T
s (x− x)

ΦT
g (g− g)

«
(1)

Where Ws is a diagonal matrix of weights that measures the
unit difference between shape and texture parameters. A sim-
ple estimate for Ws is to weight uniformly with ratio, r, of the
total variance in texture and shape, i.e. r =

∑
i λgi/

∑
i λsi.

Then Ws = rI [10]. As result, using again a PCA, Φc holds
the tc highest eigenvectors, and we obtain the combined
model b = Φcc. Due the linear nature for the model, is pos-
sible to express shape, x, and texture, g, using the combined
model by:

x = x + ΦsW−1
s Φc,sc and g = g + ΦgΦc,gc (2)

where
Φc =

„
Φcs

Φcg

«
(3)

c is a vector of appearance controlling both shape and texture.
One AAM instance is built by generating the texture in the
normalized frame and warping-it to the control points given
by eq. 2. See figure 2.

Fig. 2. Building a AAM instance. Left) Shape control points.
Center) Texture in normalized frame. Right) AAM instance.

2.4. Model Training

An AAM search can be treated as an optimization problem,
where the texture difference between a model instace and a
target image is minimized, |Iimage−Imodel|2 updating the ap-
pearance parameters c and pose. This problem can be solved

by learning offline the relation between the texture residual
and the correspondent parameters change [7]. Additionally,
are considered the similarity parameters for represent the 2D
pose. To maintain linearity and keep the identity transfor-
mation at zero, these pose parameters are redefined to: t =
(sx, sy, tx, ty)t where sx = (s cos(θ) − 1), sy = s sin(θ)
represents a combined scale, s, and rotation, θ. The remain-
ing parameters tx and ty are the usual translations. Now the
complete model parameters, p, (a tp = tc + 4 vector) are
given by p = (cT |tT )T .

The initial AAM formulation uses the multivariate linear
regression approach over the set of training texture residu-
als, δg, and the correspondent model perturbations, δp. The
goal is to get the optimal prediction matrix, in the least square
sense, satisfying the linear relation δp = Rδg. Later [7] it
was suggested a better method, computing the gradient ma-
trix ∂r

∂p . The texture residual vector is defined as r(p) =
gimage(p) − gmodel(p) where the goal is to find the optimal
update at model parameters to minimize |r(p)|. A first order
Taylor expansion leads to r(p + δp) ≈ r(p) + ∂r(p)

∂p δp, by
minimizing in the least square sense, gives

δp = −
(

∂r
∂p

T ∂r
∂p

T
)−1

∂r
∂p

T r(p) with R =
(

∂r
∂p

)†

(4)
δp in eq. 4 gives the parameters probable update to fit the
model. Regard that, since the sampling is always performed
at the reference frame, the prediction matrix, R, is considered
fixed and it can be only estimated once.

2.5. Iterative Model Refinement

For a given estimate p0, the model can be fitted by

Algorithm 1 Iterative Model Refinement
Sample image at x → gimage

Build an AAM instance AAM(p) → gmodel

Compute residual δg = gimage − gmodel

Evaluate Error E0 = |δg|2
Predict model displacements δp = Rδg
Set k = 1

Establish p1 = p0 − kδp
If |δg1|2 < E0 accept p1 Else try k = 1.5, k = 0.5, k = 0.25

this procedure is repeated until no improvement is made to
error |δg|. Figure 3 shows a successful AAM search. Notice
that, as better the initial estimate is, minor the risk of being
trap in a local minimum. In this work AdaBoost [6] method
is used to locate human faces.

(a) 1st (b) 5th (c) Final (d) Original

Fig. 3. Iterative model refinement.



3. POSE ESTIMATION METHOD

Pose from Orthography and Scaling with ITerations(POSIT)
[5] is a fast and accurate, iterative algorithm for finding the
pose (orientation and translation) of an 3D model or scene
with respect to a camera given a set of 2D image and 3D ob-
ject points correspondences.

Fig. 4. Perspective projections mi for model points Mi

Figure 4 shows the pinhole camera model, with its center
of projection O and image plane at the focal length f (focal
Lent and image center are assumed to be known). In the cam-
era referential the unit vectors are i, j and k. A 3D model
with feature points M0,M1 . . . , Mi, . . . , Mn is positioned at
camera frustrum. The model coordinate frame is centered at
M0 with unit vectors u, v and w. A Mi point has known coor-
dinates (Ui, Vi,Wi) in the model frame and unknown coordi-
nates (Xi, Yi, Zi) in the camera frame. The projections of Mi

are known and called mi, having image coordinates (xi, yi).
The pose matrix P gives the rigid transformation between

the model and the camera frame:

P =

»
R T
0 1

–
=
ˆ

P1 P2 P3 P4

˜T (5)

where R is the rotation matrix representing the orientation
of the camera frame with respect to the model frame, T =
(Tx, Ty, Tz) is the translation vector from the camera cen-
ter to the model frame center. P1, P2, P3 and P4 are defined
as the pose matrix rows.The rotation matrix R is the matrix
whose rows are the coordinates of the unit vectors (i, j, k)
of camera frame expressed in the model coordinate frame
(M0u, M0v,M0w). The rotation matrix transforms model
coordinates of vectors M0Mi into coordinates defined in the
camera system, for instance, the dot product MoMi·i between
the vector M0Mi and the first row of the rotation matrix, pro-
vides the projection of this vector on the unit vector of the
camera system, i.e. the coordinate Xi. To full compute R is
only needed to compute i and j since k = i× j. The transla-
tion vector T is the vector OM0, has coordinates (X0, Y0, Z0)
and is aligned with the vector Omo, so, T = Z0

f Om0. To
compute the model translation form the camera center its just
need Z0 coordinate. Knowing i, j and Z0 the model pose
becomes fully defined.

In a perspective projection model, a 3D point (Xi, Yi, Zi)
is projected in the image by

(
xi = f Xi

Zi
, yi = f Yi

Zi

)
. Under

weak perspective (or also known scaled orthographic) projec-
tion model [11], a 3D image point projection can be written as(
xi = f

(1+ε)
Xi

Tz
, yi = f

(1+ε)
Yi

Tz

)
. In scaled orthographic pro-

jection, a vector M0Mi in the model frame is projected by an

orthographic projection over the plane z = Tz followed by
a perspective projection. The projected vector in the image
plane has a scaling factor equals to f

Z0
.

3.1. Fundamental Equations

Defining the 4D vectors I = f
Tz

P1 and J = f
Tz

P2 and know-
ing that (1 + εi) = Zi

Tz
, the fundamental equations that relate

the row vectors P1, P2 of the pose matrix, the coordinates of
the model features M0Mi and the coordinates (xi, yi) from
the correspondent images mi are:

M0Mi · I = x′i, M0Mi · J = y′i (6)

I = f
Tz

P1, J = f
Tz

P2 (7)

x′i = xi(1 + εi), y′i = yi(1 + εi) (8)

εi = P3 ·M0Mi/Tz − 1. (9)

If values are given for εi, eqs. 6 provide a linear system of
equations with unknowns I and J. Unit vectors i and j are
found by normalizing I and J. Tz is obtained by the norms of
either I and J. This approach is called Pose from Orthography
and Scaling(POS) [5], i.e. finding pose for fixed values of εi.
Once i and j have been computed, more refined values for εi
can be found using again POS.

This method does not require an initial pose estimate, is
very fast and robust with respect to image measurements and
camera calibration errors, but in its original formulation it is
required that the model origin image m0 should be located.
This means that we have restrictions building the 3D model.
This situation can be solved by using POSIT in homogeneous
form [12].

4. HEAD POSE ESTIMATION

Our framework is composed by the two parts previously de-
scribed. The first part consists on AAM model fit for a given
subject performing features tracking. The features used in this
context are the AAM shape model landmarks location on the
image over time. Notice that no temporal filter is used.

The second part is the head pose estimation using POSIT.
By tracking features in each video frame combined with the
landmark-based nature of AAMs we solve directly the im-
age/3Dmodel registration problem.

As 3D model we use an anthropometric 3D rigid model
of the human head. This is the best suitable rigid body model
used to describe the face of several individuals and it was ac-
quired by a frontal laser 3D scan of an physical model, se-
lecting the equivalent 3D points of the AAM annotation pro-
cedure creating a sparse 3D model. Figure 5 illustrates this
procedure.

5. EXPERIMENTAL RESULTS

The orientation of the estimated pose is represented by the
Roll, Pitch and Yaw (RPY) angles. Figure 6 shows some sam-
ples of pose estimation. The pose estimated is represented by
an animated 3DOF rotational OpenGL model showed at im-
ages top right. The evaluation of pose estimation accuracy is
performed comparing the pose estimated by our framework
with the estimated value obtained with the planar checkboard



Fig. 5. Left) Physical anthropometric model. Center) 3D laser
scan data acquired Right) Sparse OpenGL model built model
using the AAM shape features.

(a) Pitch variation (b) Yaw variation (c) Roll variation

Fig. 6. Samples of pose estimation.

used as ground truth values. Figure 7 presents results from
the pose estimated during a video sequence where the sub-
ject performs several human head movements, ranging from
yaw, pitch and roll head rotations of several degrees. The ex-
perience begins by rotating head left, changing pitch angle,
and recovering to frontal position, followed by a yaw angle,
moving head up and down and again recovering to frontal po-
sition, and finally performing a head roll rotation. Near the
end, after frame 95 the distance from camera is also changed.
The individual parameters (Pitch, Yaw, Roll and distance) re-
sults are presented in figure 7-a, 7-b, 7-c and 7-d respectively.
The graphical results show some correlations between Pitch
and Yaw angles that result from the differences between the
subject and the rigid 3D anthropometric model used.
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(a) Pitch
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(b) Yaw
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(c) Roll
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Fig. 7. Angle Results.

Table 1 displays the error and average standard deviations
of the pose parameters for several similar performed experi-
ences with different individuals.

Table 1. Error standard deviation. The angle parametes are
in degrees and the distance in centimeters.

Param. Experiences error std Avg std
Roll 1.92 1.86 1.87 2.15 2.14 1.69 1.95o

Pitch 1.91 2.46 2.10 2.94 3.23 2.81 2.57o

Yaw 3.0 1.47 1.48 1.64 1.49 1.14 1.70o

Distance 1.29 1.72 1.37 1.50 1.30 0.85 1.33cm

6. CONCLUSIONS

This work describes a single view solution to estimate the
head pose of human subjects combining AAM and POSIT.
AAM extract in each image frame the landmarks position.
These selected features are tracked over time and used in con-
junction with POSIT to estimate head pose. Required the
use of a 3D rigid model, a statistical anthropometric model
is selected since is the most suitable one. One of the ma-
jor advantage of using combined AAM plus POSIT is that
it solves directly the correspondences problem, avoiding the
use of registration techniques. An accurate pose estimation is
achieved with average standard deviations about 2 degrees in
orientation and 1 centimeter in distance and subjects exhibit-
ing a normal expression. The facial expression influence on
pose estimation will be analyzed on future work.
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