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ABSTRACT

This paper proposes an extended Constrained Local Model (CLM)
formulation for aligning faces using depth information. The CLMs
are popular methods that were initially designed to locate facial fea-
tures in regular intensity images. Briefly, they combine a set of lo-
cal detectors, one for each landmark, whose locations are regular-
ized by a linear shape model. Fitting a CLM is usually framed as
a two step approach: locally search, using the detectors, producing
response maps (likelihood maps) followed by a global optimization
strategy that jointly maximize all detection scores while enforcing
an appropriate shape. Including depth data could be simply posed as
adding additional likelihood sources to the main formulation. The
paper discusses several likelihood fusion techniques and propose to
jointly learn a multi-dimensional correlation filter as a more reli-
able solution. Moreover, we propose to learn the local detectors,
in the Fourier domain, effectively augmenting the training set with
virtual samples. Besides improving the detections reliability, this
approach is particular important when applied to depth data, as no
additional processing is required (such as fill missing information).
The performance evaluation shows that our extended approach fur-
ther increases the fitting performance (accuracy) effectively proving
the benefit of using depth data in facial alignment tasks.

Index Terms— Non-rigid face alignment, facial feature local-
ization, Constrained Local Model (CLM), RGBD face alignment.

1. INTRODUCTION

Non-rigid face alignment is a fundamental task in many computer
vision applications such as tracking, recognition, pose estimation,
video compression, video editing, etc. Accurately retrieving facial
information still remains a challenging problem, mainly to the huge
variability that a human face can exhibit, such as changes in identity,
expression, occlusion, illumination and 3D orientation.

The Active Appearance Model (AAM) [1, 2], since its introduc-
tion, had become a quite popular strategy to align faces, therefore
locating the desired facial features. The AAMs are generative meth-
ods that rely in a shape model (Point Distribution Model) that de-
scribes the spatial localization of all facial landmarks and an holistic
appearance model that encodes its texture (captured by PCA). The
AAMs are indeed able to achieve an impressive registration quality,
however, their generative nature generalizes poorly beyond unseen
data (individuals not included in the training dataset).

Later, the Constrained Local Model (CLM) [3, 4, 5, 6, 7] was
proposed. The CLM has greatly improved the generic face repre-
sentation by using a discriminative based appearance model. It com-
bines a set of local feature detectors, one for each landmark, whose
search locations are regularized by a linear shape model. Fitting a
CLM is usually framed as a two step approach: locally search, using
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the detectors, producing response maps (likelihood maps) followed
by a global optimization strategy that jointly maximize all detection
scores while enforcing an appropriate shape. Most CLM strategies
aim to approximate the responses maps by simple parametric forms
(Weighted Peak Responses [8], Gaussians Responses [4, 9], Mixture
of Gaussians [10]) or non-parametrically by a Kernel Density Esti-
mator [5]. However, the most recent CLM optimizations have been
reformulated in terms of Bayesian inference [9, 11, 12, 6] where the
local detectors responses and the shape model behave as building
blocks for the likelihood and prior terms.

Unfortunately, even leading CLMs techniques [4, 5, 6, 7] can
struggle with some problems, such as extreme illumination changes.
In addition, the well-know aperture problem can sometimes lead to
wrong detector estimates in some landmarks (with strong responses
along the edges, p.e. nose ridge and chin regions). Fortunately, with
the recent developments in RGBD sensors, depth data can be easily
and affordably obtained. Actually, depth data might be a potential
solution to relieve some of these drawbacks.

In this paper we present an extended CLM formulation that will
allow to take advantage of both color/intensity and depth data, simul-
taneously. Essentially, considering depth data could be simply posed
as including an additional likelihood source to the main formulation.
In fact, previous attempts were made [13][14], however, only basic
likelihood data fusion was achieved. In particular, only two differ-
ent sources, originating from grey intensities and depth, were con-
sidered and both had a 50/50 contribution for the overall likelihood
map. Here we discuss several more alternatives, that can deal with
more than two sources (p.e. RGBD with 4 channels), and propose
to jointly learn a multi-dimensional correlation filter as a more reli-
able solution. Moreover, we efficiently learn these detectors, in the
Fourier domain, where training data is effectively augmented with
virtual samples, making the local detections much more reliable. In
addition, these detectors when applied to depth data do not require
any extra processing, such as fill missing information.

The remaining of the paper is organized as follows: section 2
briefly explains the basics in the CLM formulation, section 3 de-
scribes the multiple likelihood fusion strategies, section 4 presents
the evaluation results and finally, section 5 draws the conclusions.

2. BACKGROUND

Briefly, the Constrained Local Model (CLM) consist of a collection
of v local detectors, one for each landmark, denoted here as {hi}v1
whose search locations are regularized by a linear shape model.

2.1. Shape Model

The shape (s) with v landmarks is usually represented by a vector
with their 2D locations s = (x1, y1, . . . , xv, yv)T . A Point Distri-
bution Model (PDM) [15] essentially describes a shape by

s = S (s0 + Φb, q) (1)



where s0 is the mean shape, Φ is the shape subspace matrix holding
n eigenvectors (that resulted from applying Principal Components
Analysis on a set of normalized training shapes), b is a vector of
shape parameters representing the mixing weights and S(., q) lin-
early represents a similarity transformation [2] function of the pose
parameters q = [s cos(θ) − 1, s sin(θ), tx, ty]T where s, θ, tx, ty
are the scale, rotation and translations, respectively.

2.2. Local Detectors

The score Di of the ith landmark detector, evaluated at the pixel
location xi = (xi, yi), is given by

Di(I(xi)) = hTi I(xi) (2)

where hi is a linear detector and I(xi) is a surrounding image patch
(with L × L support region centered at xi, denoted by Ωxi ). Note
that, by now, only single channel images and detectors are assumed.
In a probabilistic framework, the detector score Di must be con-
verted into a probability value. The common solution is to use a
logistic function. Defining ai to be a binary variable that denotes
correct landmark alignment, the probability of pixel zi ∈ Ωxi being
aligned is given by

p(zi) = p(ai = 1|Di, I(zi)) =
1

1 + e−aiβ1Di(I(zi))+β0
(3)

where β1 and β0 are the regression coefficient and intercept, respec-
tively. Eq. 3 use p(zi) as a short notation for the response map.

2.2.1. MOSSE Filters

Several kinds of local detectors have been used within the CLM
framework [16][17][4][18][11]. Probably, the most popular is the
linear SVMs when trained with aligned (positive) vs. misaligned
(negative) image patch examples. Recently, correlation filters have
been used [11][7][6], in particular the Minimum Output Sum of
Squared Error (MOSSE) filter [19]. Compared with the previous,
it has several advantages: (1) it extends the linear SVM with real
valued labels (meaning that a large amount of virtual samples are in-
corporated in the training [20]), (2) it allows discriminative learning
using only aligned (positive) data, (3) it maintains a linear nature,
and (4) it can outperform others [6].

Briefly, finding each MOSSE filter hi, consists of solving the
following linear regression problem

min
hi

NX
j=1

`
hi ∗ Ij − gj

´2
+ λ||hi||2 (4)

where (∗) is the correlation operator, Ij is the jth training patch
(N in total), gj the desired target correlation (usually set to be a
2D Gaussian with σh standard deviation) and λ is a regularization
parameter. Eq. 4 can be efficiently solved in the Fourier domain
(where convolutions become products), with the solution given by

hi = F−1

( PN
j=1 F{gj} � F{Ij}

†PN
j=1 F{Ij} � F{Ij}† + λ

)†
(5)

where F represents the 2D Fourier transform, the � symbol the
Hadamard product and (†) the complex conjugate. Note that, the
MOSSE filter is particularly useful when applied to depth data be-
cause it finds a low pass filter (with null dc value), thus avoiding the
need to an additional processing stage (such as excluding or filling
missing information [13]). Depth data ’holes’ are simply filtered out.

Fig. 1. The Constrained Local Model (CLM) combine a set of local
detectors whose locations are regularized by a linear shape model.
The proposed extension jointly learns multi-dimensional local de-
tectors that include color and depth data simultaneously. The image
shows RGBD scan regions, followed by a column of response maps
and each RGBD local detectors, respectively.

2.3. CLM Fitting

Under a Bayesian paradigm [9, 6, 7], the optimal shape parameters
(b̂) are provided by the Bayes’ theorem, where the following poste-
rior probability is maximized

b̂ = arg max
b
p(b|y) ∝ p(y|b)p(b) (6)

with y ∈ <2v being the observed shape vector (shape measurement),
p(y|b) is the likelihood term (which is extracted from the response
maps) and p(b) is the prior term that defines the current knowledge
of the shape model. Usually in CLMs, conditional independence
between landmarks is assumed (sampling each landmark indepen-
dently), leading to an overall likelihood that becomes the individual
landmark contribution as p(y|b) ≈

Qv
i=1 p(yi|b).

2.4. The Likelihood Term

The likelihood term can be expressed by [6]

p(y|b) ∝ exp

„
−1

2
(y− (s0 + Φb))TΣ−1

y (y− (s0 + Φb))

«
(7)

where Σy represents the uncertainty in the localization of the land-
marks (2v × 2v block diagonal covariance matrix due to the con-
ditional independence assumed). Several strategies have been pro-
posed to extract the shape measurement (y) and its uncertainty (Σy)
from the response maps. The most popular are the Active Shape
Models (ASM) [8], the Convex Quadratic Fitting (CQF) [4] and,
more recently, the Subspace Constrained Mean-Shifts (SCMS) [5].
SCMS approximates the response maps by a non-parametric repre-
sentation using a Kernel Density Estimator (KDE) [21]. Maximizing
over the KDE is typically accomplished by using the mean-shift al-
gorithm [22]. Formally, the ith landmark observation is given by

yKDE(τ+1)
i ←

P
zi∈Ωyc

i

zi p(zi)N (yKDE(τ)
i |zi, σ2

j I2)P
zi∈Ωyc

i

p(zi)N (yKDE(τ)
i |zi, σ2

j I2)
(8)

where yci represents the center location of the search region, I2 is
a 2D identity matrix, σ2

j defines the decreasing bandwidth schedule
and the superscript (τ) is the iteration number. The uncertainty lo-
calization error (Σy) consists of computing the weighted covariance,
centered at yKDE

i , which is given by

ΣKDE
yi

=
1P

zi
p(zi)− 1

X
zi∈Ωyc

i

p(zi)(zi− yKDE
i )(zi− yKDE

i )T . (9)



2.5. The Prior Term

The shape parameters (b) follow a multivariate Gaussian distribution
with zero mean and a diagonal covariance Λ = diag(λ1, . . . , λn),
where λj denotes the jth PCA eigenvalue [23]. According, the prior
term becomes p(b) ∝ N (b|0,Λ). The pose parameters (q) are
typically modeled using an uniform prior.

2.6. The Posterior Term

According to the Bayes’ theorem for Gaussian variables [24], when
the likelihood and the prior terms are both Gaussian distributions,
comes that posterior distribution is also a Gaussian. In fact, this
basic inference was used in [9]. Later in, Bayesian CLM Revis-
ited (BCLM) [11, 6], the previous approach was extended to in-
clude second order estimates (the covariance) of shape parameters.
In essence, the global CLM alignment was formulated in terms of
a Linear Dynamic System (LDS) where it recursively estimates a
Gaussian posterior distribution using Gaussian shape measurements
and a linear process. According, the state and measurement equa-
tions can be written as

bl = Inbl−1 + q (10)
∆y = Φbl + r (11)

where q ∼ N (0,Λ) is the dynamic transition noise, ∆y = y − s0
is the observed shape deviation from the mean, r ∼ N (0,Σy) is
the measurement noise and the subscript (l) represents the iteration
number. The state transition (eq. 10) relates bl−1 to bl by an identity
relation In with additive noise [6] and the measurement step (eq. 11)
simply expresses the likelihood term from eq. 7. The LDS infers the
posterior distribution according to

p(bl|yl, . . . , y0) ∝ N (bl|µF
l ,Σ

F
l ) (12)

with the mean µF
l and covariance ΣF

l given by the Kalman Filter
equations [6, 25]. Finally, the shape parameters that maximize the
goal, in eq. 6, are given by the expectation of the posterior distribu-
tion which is b̂ = µF

l . In summary, fitting a BCLM is an iterative
procedure that requires to generate a shape using the model (eq. 1),
evaluate the response maps around each landmark, extract the likeli-
hood parameters (y,Σy) and then infer a new shape using the LDS.

3. LIKELIHOOD FUSION STRATEGIES

In a Bayesian framework, multiple likelihood observations (shape
measurements) can be considered by just updating the posterior dis-
tribution (eq. 12) using several times the LDS update steps [25].
However, the LDS relies in Gaussian inference techniques, where
each likelihood source contributes (weighted by the error covari-
ance) to a final solution. When facing low quality response maps
(weak detectors or noisy estimates), the LDS will over smooth the
solution, leading the overall CLM fitting into a loss of accuracy.

In this work, we overcome this limitation, by moving to a solu-
tion that relies in the fusion of several response maps into one, mak-
ing it still suitable to be used with regular CLM fitting algorithms.

In the following sections it is assumed that, (k) multiple local
detectors h(k)

i exist for the ith landmark. These local detectors can
be learnt from several features/image channels (such as R-G-B col-
ors or depth), by using eq. 5 in each data channel, independently.
Every detector then produce a likelihood map (response map), ac-
cording to eq. 3, given by p(ai|D(k)

i , I(xi)(k)) where the superscript
(k) represents the kth image channel. The next sections describe
some possible response map fusion strategies.

3.1. Average Fusion

The simplest likelihood fusion strategy is to take the mean value
across all available D response maps. According to eq. 3, comes

p(zi)AVG =
1

D

DX
k=1

p(ai|D(k)
i , I(zi)(k)) (13)

where I(zi)(k) is the kth feature channel (taken from the ith land-
mark support region) and D(k)

i the score produced by each individ-
ual detector. In fact, this strategy extends the approach proposed in
[13] and [14], when grey and depth channels are used (D = 2).
In both works it was considered that the overall response has 50/50
contribution between grey intensity and depth data.

3.2. Max Fusion

A different non-linear approach, proposed in [26], consists of using
the maximum norm (or L-infinity norm) in each response map

p(zi)MAX = max
zi

p(ai|D(k)
i , I(zi)(k)). (14)

The resulted combined response map, simply holds the highest score
values, preserving all modes of every individual response.

3.3. Multi-Dimensional Filters

As an alternative, we propose to jointly learn a multi-dimensional
correlation filter that uses all available data (from all channels) at
once. This approach is based in a multi-channel extension of the
MOSSE filters [27][28][29]. Briefly, eq. 5 is now extended into a
minimization across all D channels

min
h(1)

i ,...,h(D)
i

NX
j=1

DX
k=1

“
h(k)
i ∗ I(k)j − gj

”2

+ λ

DX
k=1

||h(k)
i ||

2 (15)

where (once again) N is the number of training images and λ a
regularization parameter. Eq. 15 finds the multi-dimensional filter
{h(k)
i }

D
k=1 that minimizes the correlation between the actual out-

put (h(k)
i ∗ I(k)j ) and the desired correction (gj) across all multi-

dimensional samples (I(k)j ), simultaneously. The solution becomes

{h(k)
i }

D
1 = F−1

8<:
 
λI +

NX
j=1

ΞH
j Ξj

!−1 NX
j=1

ΞH
j (1⊗F{gj})

9=;
†

(16)
with Ξj =

h
diag

“
F{I(1)j }

”
, . . . , diag

“
F{I(D)

j }
”i

, 1 is a D di-
mensional vector with ones, the ⊗ symbol is the Kronecker product
and, in this case, (H) stands for the conjugate transpose. Note that,
Ξj is mostly sparse, therefore, we can take advantage of this struc-
ture to efficiently compute the term that requires inversion in eq. 16.
Please refer to [28][29] for additional details.

Finally, the overall correlation simply aggregates the score of
each feature channel as

DMDF
i =

DX
k=1

h(k)
i I(zi)(k) (17)

which is then converted to a single response map (using eq. 3) by

p(zi)MDF = p(ai|DMDF
i , I(zi)(k)). (18)

Note that, the data fusion is intrinsically applied during the detectors
learning stage, in the optimization of eq. 15. Figure 1 shows the
multi-dimensional filters, and their responses, in RGBD data.
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(a) CLM global strategies.
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(b) Grey & depth fusion.
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(c) RGB & depth fusion.
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(d) Individual landmark error.

CLM optimization Area under cdf curve / total area (%)
Initial Estimate [30] 32.3
ASM [8] 36.8
CQF[4] 40.3
GMM [10] 4.8
SCMS [5] 44.7
BCLM [6] 48.2

Fusion strategy Area ratio (%)

Grey 48.2
Depth 7.8
Grey+Depth AVG 40.1
Grey+Depth MAX 40.2
Grey+Depth MDF 48.4

Fusion strategy Area ratio (%)
RGB AVG 49.8
RGB MAX 48.9
RGB MDF 54.7
RGB+Depth AVG 49.8
RGB+Depth MAX 42.5
RGB+Depth MDF 56.4

Fig. 2. The fitting performance curves in the Kinect Face Database [31]. (a) CLM optimization strategies evaluation using only grey data,
(b) fusion evaluation grey and depth, (c) fusion evaluation RGB and depth and (d) individual landmark error. The tables show a quantitative
measure of the ratio between the area below each curve and the total area. The top images show fitting results with BCLM RGB+Depth MDF.

4. EVALUATION RESULTS

The performance evaluation was mainly conducted in the recent Eu-
recom Kinect Face Database [31]. The dataset provides RGB-D fa-
cial images of 52 people (14 females, 38 males) captured by Mi-
crosoft Kinect sensor, under different facial expressions, lighting
conditions, occlusions and taken in two sessions. Annotations with 6
landmarks are provided for almost all the images (total ofN = 624).

A initial experiment was designed to evaluate leading CLMs
techniques using only standard grey level data. This procedure was
aimed to rule out the best approach to further evaluate, in detail, the
multiple likelihood fusion strategies. According, some CLM global
alignment solutions, ASM [8], CQF [4], GMM [10] with 3 Gaus-
sians (GMM3), SCMS [5] were evaluated against the BCLM [11, 6]
(described in sec. 2.6). The local detectors (MOSSE filters in eq. 5)
have been built using a 31 × 31 support region and a desired Gaus-
sian correlation output (g) with a standard deviation σh = 2.5 and
regularization λ = 10−4. All methods share the same shape model
(v = 6), the initial shape parameters start from the mean shape,
the pose parameters were initialized by a face detector [30] and the
model was fitted until convergence up to a max of 30 iterations.

The Figure 2(a) shows the fitting performance curves for all
the evaluated methods in the Kinect Face Database [31]. These
curves, that were widely adopted in [3, 4, 5, 6], are cumulative dis-
tribution functions that show the percentage of faces that achieved
a given error amount (shown at the horizontal axis). Following the
usual practice [3, 4, 5, 6], the error metric is given by the mean er-
ror per landmark as fraction of the inter-ocular distance, deyes, as
em(s) = 1

v deyes

Pv
i ‖si − sgt

i ‖
2 where sgt

i is the location of ith land-
mark in the ground truth. The table in the same figure shows a quan-
titative measure of the results, which is defined as the ratio in per-
centage, between the area bellow the fitting curve and the total area

of a ground truth curve (step curve). As expected, the results show
that ASM, CQF, GMM3 and SCMS are outperformed by BCLM,
which is known to be an enhanced global optimization [6].

The main evaluation was designed to evaluate the effect of the
fusion strategies presented in section 3 (while using BCLM fitting
technique, previously proven to perform better). The experiments
exhaustively evaluate several features (grey, RGB and depth) com-
bined with the likelihood fusion strategies: AVG, MAX and our pro-
posed MDF (sections 3.1, 3.2 and 3.3, respectively). Regarding the
MDF strategy, the multi-channel filters used the same settings as be-
fore (L = 31, σh = 2.5 and λ = 10−4). Figures 2(b) and 2(c)
show fitting performance curves for all combinations. Note that,
using only ’grey’ features in fig. 2(b) match the curve BCLM in
fig. 2(a) and the AVG ’grey+depth’ strategy correspond to meth-
ods [13, 14] (D = 2). Finally, figure 2(d) displays bar charts with
the (inter-ocular normalized) average errors in each individual facial
landmark, for all evaluated strategies. The results show, in first, that
using just raw depth has low accuracy. Grey intensities alone per-
form better than just adding depth with simple basic fusions. The
AVG and MAX strategies have similar results, except when all 4
channels are involved (where AVG seams better). As expected, in-
cluding full RGB color improves on the results. Adding depth with
RGB only produce better results with our MDF strategy. Finally, the
best results in every category happen when using our proposed MDF.

5. CONCLUSIONS

This work presents an extended CLM fitting approach that is able to
integrate multiple features simultaneously. Several likelihood fusion
strategies are described. It is shown that the proposed jointly learn-
ing of muti-dimensional correlation filters outperform all methods.
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